Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 9867 dokumen yang sesuai dengan query
cover
Jannice Coktama
"Waktu survival adalah waktu dimana seorang individu atau suatu objek bertahan hingga suatu kejadian terjadi. Data waktu survival lebih sering digambarkan dengan fungsi hazard karena kurva fungsi hazard dapat memiliki berbagai bentuk, seperti bentuk naik, turun, konstan, bathtub, dan unimodal. Salah satu distribusi yang dapat digunakan untuk memodelkan data waktu survival adalah distribusi Rayleigh. Distribusi Rayleigh memiliki fungsi hazard yang naik secara linier terhadap waktu. Namun pada praktiknya, tidak semua data waktu survival yang hazardnya mengalami peningkatan, terjadi secara linier. Akan tetapi, terdapat data waktu survival yang hazardnya naik dengan tren cekung ke atas maupun cekung ke bawah, turun, dan konstan. Dalam skripsi ini, dibahas pembentukan distribusi Rayleigh Weibull (RW) sebagai generalisasi dari distribusi Rayleigh dengan menggunakan metode Transformed-Transformer atau metode T-X. Generalisasi ini bertujuan untuk menambah fleksibilitas distribusi Rayleigh dengan menambah satu parameter bentuk (shape parameter). Kemudian, dibahas juga beberapa karakteristik dari distribusi RW, seperti fungsi kepadatan peluang, fungsi distribusi kumulatif, fungsi survival, fungsi hazard, dan momen ke-r. Estimasi parameter dari distribusi RW dilakukan dengan menggunakan metode maksimum likelihood. Sebagai ilustrasi, data pasien leukemia dimodelkan dengan distribusi Rayleigh, distribusi Weibull, dan distribusi Rayleigh Weibull. Hasil pemodelan menunjukkan bahwa distribusi Rayleigh Weibull lebih baik dalam memodelkan data dibandingkan dengan distribusi Rayleigh dan distribusi Weibull.

Survival time is the time where an individual or object survives until an event occurs. Survival data is more frequently described with a hazard function because the curve of the hazard function can have various shapes, such as increasing, decreasing, constant, bathtub, and unimodal. Rayleigh distribution is one of the distributions that can be used to model survival data. Rayleigh distribution has a linearly increasing hazard function curve. However, in practice, not every survival data shows a linear increase. There are survival data where the hazard increases with a concave up trend or concave down trend, decreasing, and constant. The Transformed-Transformer method, often known as the T-X method, is used to construct Rayleigh Weibull distribution as a generalization of Rayleigh distribution. This generalization aims to increase the flexibility of Rayleigh distribution by adding one shape parameter. Some characteristics of Rayleigh Weibull distribution, such as probability density function, distribution function, survival function, hazard function, and r-th moment are also discussed. Rayleigh Weibull distribution’s parameters were estimated using the maximum likelihood method. As an illustration, leukemia cancer data is modeled with Rayleigh distribution, Weibull distribution, and Rayleigh Weibull distribution. In comparison to Rayleigh distribution and Weibull distribution, Rayleigh Weibull distribution is better at modeling the data.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nur Safana Putri Ramadhini
"Daerah Sipoholon merupakan daerah yang terletak pada zona Sesar Sumatera dimana sekitar wilayah ini ditemukan keberadaan manifestasi panas bumi berupa sumber air panas yang berada di sepanjang zona patahan dan Cekungan Tarutung. Penelitian ini dilakukan untuk mengidentifikasi litologi bawah permukaan wilayah Sipoholon melalui analisis karakter nilai kecepatan grup gelombang Rayleigh yang diperoleh menggunakan metode ambient noise tomography (ANT). Dalam penelitian ini menggunakan data waveform berkomponen vertikal yang berasal 15 jaringan sensor seismik milik BMKG-GFZ yang tersebar luas di sekitar bagian barat Danau Toba hingga Tapanuli Tengah selama rentang bulan Juni – September 2008. Proses pengolahan dilakukan melalui rangkaian single data preparation, korelasi silang & stacking, kurva dispersi, dan tomografi. Hasil tomografi menunjukan variasi zona anomali kecepatan grup gelombang Rayleigh dengan rentang nilai 1.20 km/s - 2.50 km/s. Berdasarkan hasil checkerboard test wilayah bawah permukaan yang mampu dipercaya untuk diinterpretasikan sampai dengan periode 13 detik. Keberadaan kaldera tersembunyi mampu teridentifikasi pada zona anomali kecepatan grup rendah yang berkaitan dengan deformasi dari batuan beku vulkanik yang mengalami pelapukan. Sementara itu, zona anomali kecepatan grup tinggi berasosiasi dengan keberadaan litologi tuffa Toba yang diikuti keberadaan batuan granit sebagai batuan intrusi pada lapisan bawah.

The Sipoholon area is an area located in the Sumatra Fault zone where around this area there are geothermal manifestations in the form of hot springs located along the fault zone and Tarutung Basin. This study was conducted to identify the subsurface lithology of the Sipoholon area through the Rayleigh wave group velocity value obtained using the ambient noise tomography (ANT) method. In this study, we used vertical waveform data from a network of 15 seismic sensors owned by BMKG-GFZ that were widely distributed around the western part of Lake Toba to Central Tapanuli during June - September 2008. Processing stages are carried out from the single data preparation stage, cross-correlation & stacking, dispersion curves, and tomography. The tomography results show variations in the Rayleigh wave group velocity anomaly zone with a value range of 1.20 km/s - 2.50 km/s. Based on the results of the checkerboard test, subsurface areas that can be reliably interpreted up to a period of 13 seconds. The existence of a hidden caldera can be identified in the low group velocity anomaly zone related to the deformation of volcanic igneous rocks undergoing weathering. Meanwhile, the high group velocity anomaly zone is associated with the presence of Toba tuff lithology followed by the presence of granite rocks as intrusive rocks in the lower layers.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Mochamad Ivan Janitra Rama
"Distribusi Weibull digunakan untuk menyelesaikan masalah-masalah yang menyangkut lama waktu suatu objek yang mampu bertahan hingga akhirnya objek tersebut tidak berfungsi (dengan kata lain rusak atau mati). Distribusi Weibull merupakan salah satu solusi untuk masalah fleksibilitas yang tidak dimiliki oleh distribusi Exponensial, yaitu hanya memiliki bentuk fungsi hazard yang konstan. Dalam melakukan inferensi dari kasus yang dimodelkan dengan distribusi Weibull, perlu dilakukan penaksiran terhadap parameternya. Distribusi Weibull dua parameter memiliki parameter skala dan parameter shape. Pada skripsi ini, akan dilakukan penaksiran parameter skala dari distribusi Weibull pada data terpancung kiri dan tersensor kanan dengan asumsi bahwa parameter shape diketahui menggunakan metode Bayesian. Prosedur dalam penaksiran parameter meliputi penentuan distribusi prior, fungsi dan distribusi posterior. Kemudian penaksir titik Bayes diperoleh dengan meminimumkan ekspektasi dari fungsi. Fungsi yang digunakan adalah Squared Error Loss Functio (SELF) dan Precautionary Loss Function (PLF). Kemudian dilakukan simulasi data untuk membandingkan nilai Mean Squared Error (MSE) dari taksiran parameter skala menggunakan fungsi. Hasil simulasi menunjukan bahwa taksiran parameter menggunakan fungsi memiliki nilai MSE yang lebih kecil untuk parameter skala lebih kecil atau sama dengan satu sedangkan taksiran parameter menggunakan fungsi PLF memiliki nilai MSE yang lebih kecil untuk parameter skala lebih besar daripada satu.

Weibull distribution is used to solve problems that involve the length of time an object is able to survive until the object is not function (in other words damaged or dead). Weibull distribution is one of many solutions to the flexibility problem that is not owned by an Exponential distribution, which only has the form of a constant hazard function. In making inferences from cases modeled with the Weibull distribution, it is necessary to estimate the parameters. The two-parameter Weibull distribution has a scale parameter and a shape parameter. In this thesis, the scale parameter of the Weibull distribution will be estimated on left truncated and right censored data assuming that the shape parameter are known using Bayesian method. The procedure in parameter estimation includes the determination of the prior distribution, the likelihood function and the posterior distribution. Then the point estimator of the scale parameter is obtained by minimizing the expectation of loss function. The loss function used in this thesis are Squared Error Loss Function (SELF) and Precautionary Loss Function (PLF). Data simulation is done to compare the value of Mean Squared Error (MSE) from the estimated parameters using SELF and PLF. The simulation result shows that the estimated parameter using SELF has a smaller MSE value for scale parameter below or equal one while the estimated parameter using PLF has a smaller MSE value for scale parameter above one."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Imam Ahmadi
"Tugas akhir ini membahas tentang distribusi Weibull-Pareto yang merupakan distribusi probabilitas kontinu yang dibangun dengan menggunakan metode Transformed-Transformer. Distribusi Weibull-Pareto dapat menggambarkan data yang menceng kanan, menceng kiri, atau simetris serta dapat menggambarkan data yang mempunyai light-tailed maupun heavy-tailed. Pembahasan meliputi fungsi kepadatan probabilitas, fungsi distribusi, fungsi survival, dan fungsi hazard. Kemudian dicari karakteristik-karakteristik dari distribusi Weibull-Pareto yang meliputi modus, persentil, dan fungsi pembangkit momen. Terakhir dicari taksiran parameter dari distribusi ini dengan menggunakan metode Alternative Maximum Likelihood (AML). Simulasi data juga dilakukan sebagai ilustrasi.

This paper discusses about Weibull-Pareto distribution, the continuous probability distribution which arised by Transformed-Transformer method. The Weibull-Pareto distribution gives a good fit to right skew, left skew, or symmetric. In particular, Weibull-Pareto distribution can solve light tailed or heavy tailed problem. At first, we study about probability density function, cumulative distribution function, survival function, and hazard function. Then, we find the characteristic of Weibull-Pareto distribution, that is mode, percentile, and moment generating function. Finally, we estimate the parameters of Weibull-Pareto distribution using Alternative Maximum Likelihood (AML) method. Simulation data is used as illustration."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2015
S57837
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ade Irawan
"Konsumsi energi akan meningkat bersamaan dengan meningkatnya aktivitas manusia. Hingga kini, sumber energi terbesar masih diperoleh dari bahan bakar fosil, namun berdasarkan LAPAN (Indonesia) diperkirakan pada abad 22 akan ada kelangkaan bahan bakar fosil. Dampak lingkungan pun menjadi alasan untuk mencari sumber energi alternatif seperti energi dari angin. Berdasarkan kebijakan energi nasional, Pemerintah Indonesia akan menambah kapasitas terpasang mesin pembangkit energi dari angin (PLTB) sebesar 0,79 GW pada tahun 2025. Dalam rangka mengoptimalkan mesin pembangkit energi, besar kecepatan angin harus ditentukan secara akurat, dan distribusi probabilitas adalah salah satu cara untuk menjelaskan bagaimana penyebaran besar kecepatan angin tersebut. Beberapa tahun yang lalu, ilmuan menggunakan distribusi Weibull untuk memodelkan penyebaran besar kecepatan angin, namun terjadi masalah pada daerah asal dari distribusi Weibull. Tidak adanya besar kecepatan angin sekitar 0 m/s menyebabkan banyak peneliti untuk memikirkan alternatif atau modifikasi dari distribusi weibull. Pada 2013, Ramadan telah memodifikasi distribusi weibull dengan menambahkan parameter shape dan menghasilkan distribusi weighted weibull. Pada skripsi ini akan dijelaskan bagaimana membangun distribusi weighted Weibull dan karakteristik-karakteristiknya. Untuk melengkapi skripsi ini, data kecepatan angin di Bali (Indonesia) akan dianalisis untuk menjelaskan bagaimana distribusi weighted weibull dan distribusi weibull menggambarkan karakteristik kecepatan angin di Bali.
Energy consumption will increase simultaneously with increasing human activity. The most common source of energy used is still derived from fossil fuels, and based on LAPAN(Indonesia) is estimated in the 22nd century there will be scarcity of fossil fuels. Environmental impact becomes a reason to seek alternative energy sources such as wind energy. The Ministry of Energy and Mineral Resources and the Agency for the Assessment and Application of Technology (BPPT, Indonesia) tries to take advantage of wind for electrical power and refers to the national energy policy, the Government of Indonesia will add installed capacity of the power generating machine (PLTB) station of 0.79 GW in 2025. In order to optimize machine used to generate energy, the characteristics of wind speed should be specified accurately, and the probability distribution is one way to describe the characteristics. Many years ago, the scientist used weibull distribution to modelling wind speed but there is problem with the support area of weibull distribution. There is no wind speed around 0 m/s led researchers to think of alternatives or modifications of weibull distribution. In 2013, Ramadan has modifed weibull distribution by adding a shape parameter to generate weighted weibull distribution. In this project will decribes how to construct weighted weibull distribution and characteristics of weighted Weibull distribution. To complete this project, wind speed data from Bali (Indonesia) will be analyzed to explain how weighted weibull distribution and weibull distribution describes about characteristics of the wind speed in Bali."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2015
S61733
UI - Skripsi Membership  Universitas Indonesia Library
cover
Detasya Avri Magfira
"

Pada sistem reliabilitas atau sistem ketahanan suatu objek penelitian dikenal prinsip sistem seri dimana dari sekumpulan kejadian yang mungkin merupakan penyebab kegagalan pada akhirnya hanya akan ada satu kejadian yang secara nyata berhasil menyebabkan kegagalan pada sebuah sistem. Dalam kehidupan nyata, pada sistem seri, antar kejadian seolah saling berkompetisi untuk dapat menyebabkan kegagalan sistem. Aplikasi sistem seri banyak diimplementasikan pada kasus di bidang medis dan bidang teknik. Oleh karena itu, sebelumnya telah dibangun beberapa distribusi hasil compounding distribusi lifetime yang dapat memodelkan data pada sebuah sistem seri. Namun kelemahannya adalah distribusi-distribusi tersebut tidak dapat memodelkan data dengan fungsi hazard bathtub. Bentuk hazard bathtub sering ditemukan dalam berbagai permasalahan di kehidupan nyata khususnya masalah mortalitas pada manusia. Oleh karena itu dibutuhkan distribusi yang dapat memodelkan data pada sebuah sistem seri dan dapat menganalisis data dengan fungsi hazard bathtub. Distribusi Weibull Lindley merupakan distribusi hasil compounding antara distribusi Weibull dan distribusi Lindley yang dapat memodelkan kegagalan pada sebuah sistem seri dimana objek penelitian dapat mengalami kegagalan disebabkan oleh 2 kemungkinan kejadian dan dapat menganalisis data dengan bentuk hazard naik, turun dan bathtub. Penulisan skripsi ini membahas tentang proses pembentukan distribusi Weibull Lindley, karakteristik dari distribusi Weibull Lindley dan penaksiran parameter dengan metode maximum likelihood. Selain itu, dibahas pula aplikasi distribusi Weibull Lindley pada data masa fungsional mesin yang terdiri dari 2 komponen.

 


In reliability systems there are known two types of systems namely series systems and parallel systems. In the series system, failure will occur if any of the possible event happens. Applications of the series system analysis also varies from inspecting the durability of manufactured products to examining diseases in human. Therefore, several distributions have been introduced to model failure data in series system. However, these distributions cannot model data with bathtub shaped hazard function even though it is the one mostly found in real life situation. As a result, distribution which can model lifetime data in series system with bathtub-shaped hazard function has to be developed. Weibull Lindley distribution, which was introduced by Asgharzadeh et al. (2016), is developed to solve the problem. Weibull Lindley distribution describes lifetime data of an object that can experience failure caused by 2 possible events. It can model data with increasing, decreasing and bathtub shaped hazard function. This paper discusses the process of forming the Weibull Lindley distribution, its properties and parameter estimation using the maximum likelihood method. In addition, the application of Weibull Lindley distribution in lifetime data of machine consists of two independent component paired in series also be discussed.

 

"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rugun Ivana Monalisa Banjarnahor
"Distribusi Weibull-Poisson merupakan distribusi kontinu yang dapat memodelkan beberapa macam bentuk hazard yaitu monoton naik, monoton turun dan increasing upside-down bathtub shape yang mempunyai bentuk bathtub shape terbalik dan monoton naik. Distribusi ini merupakan suatu distribusi lifetime yang dapat memodelkan kegagalan dalam suatu sistem seri dan merupakan pengembangan dari distribusi EksponensialPoisson. Distribusi ini diperoleh dengan melakukan metode compounding terhadap distribusi Weibull dan distribusi ZT-Poisson. Untuk mendapatkan bentuk akhir dari distribusi tersebut digunakan beberapa sifat matematis seperti order statistik dan ekspansi deret taylor. Selain pembentukan distribusi Weibull-Poisson, skripsi ini menjelaskan fungsi kepadatan peluang, fungsi distribusi, momen ke-r, momen sentral ke-r, mean, dan variansi. Sebagai ilustrasi, dibahas pula aplikasi distribusi Weibull-Poisson pada data survival marmut setelah terinfeksi virus Turblece Bacilli.

The Weibull-Poisson distribution is a continuous distribution that can be modeled various forms of hazard namely monotone up, monotone down and upside-down down bathtub shape which is shaped up. This distribution is a lifetime-distribution that can model failures in a series system and is development of the Exponential-Poisson distribution. This distribution is obtained by perform the compounding method on the Weibull distribution and the ZT-Poisson distribution. To obtain the final form of the distribution, several mathematical properties are used such as statistical order and Taylor's number expansion. In addition to the formation of Weibull-Poisson distribution, this thesis includes the probability density function, distribution function, moment rth, rth central moment, mean, and variance. As an illustration, Weibull-Poisson distribution is applied on guinea pig survival data after being infected with Turblece virus Bacilli."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Marko Chindranata
"Data waktu tunggu merupakan data waktu hingga suatu kejadian (event) terjadi. Salah satu distribusi yang sering digunakan dalam memodelkan waktu tunggu adalah distribusi Weibull. Namun dalam pengaplikasiannya, distribusi Weibull memiliki sebuah kekurangan, yaitu bentuk fungsi hazard yang terbatas pada bentuk monoton. Oleh karena itu, diperlukan suatu metode untuk menggeneralisasi distribusi Weibull sehingga dapat memperluas variasi data yang dapat dimodelkannya. Salah satu perluasan tersebut adalah distribusi Weibull-Frechet (WFr). Distribusi Weibull-Frechet memiliki kelebihan dibanding distribusi Weibull, yaitu kemampuannya memodelkan data dengan fungsi hazard berbentuk unimodal. Metode yang digunakan dalam membentuk distribusi Weibull-Frechet adalah Weibull-G (WG). Metode Weibull-G menggunakan suatu fungsi W[G(x)] untuk menggabungkan distribusi Weibull dengan suatu distribusi sembarang yang memiliki fungsi distribusi kumulatif G(x). Oleh karena itu, penelitian ini membahas proses pembentukan distribusi Weibull-Frechet. Selain itu, dibahas juga karakteristik dari distribusi Weibull-Frechet beserta penaksiran parameter distribusi Weibull-Frechet dengan menggunakan metode penaksiran maksimum likelihood. Pada bagian akhir diberikan sebuah ilustrasi data menggunakan data waktu tunggu hingga pasien kanker lambung meninggal. Data tersebut dimodelkan menggunakan distribusi Weibull-Frechet, dengan distribusi Weibull dan distribusi Frechet sebagai pembanding. Hasil pemodelan menunjukkan bahwa distribusi Weibull-Frechet merupakan distribusi terbaik dalam memodelkan data waktu tunggu hingga pasien kanker lambung meninggal.

Lifetime data is a type of data that consists of waiting time until an event occurs. The distribution usually used for modeling lifetime data is the Weibull distribution. However, Weibull distribution has a limitation in its application : it can only model data with a monotonic hazard function. Therefore, a method for generalizing The Weibull distribution is needed so it can model a greater variety of data. One of those generalizations is the Weibull-Frechet distribution (WFr). The Weibull-Frechet distribution has an advantage over the Weibull distribution, due to its capability in modeling data with unimodal hazard function. The method used in generating the Weibull-Frechet distribution is the Weibull-G (WG). The Weibull-G method combines the distribution of a Weibull distribution with an arbitrary distribution with a cumulative distribution function G(x) using a function W[G(x)]. Hence, this thesis studies how to generate a Weibull-Frechet distribution. Furthermore, it also studies the characteristics of the Weibull-Frechet distribution and how to estimate the distribution’s parameters using the maximum likelihood estimation method. At the end of this thesis, lifetime data of gastric cancer patients is given for illustration purposes. The data is modeled using the Weibull-Frechet distribution, and both the Weibull and Frechet distribution for comparison. The model result shows that the Weibull-Frechet distribution is the best distribution for modeling the lifetime data of gastric cancer patients."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fauziyyah Aulia Siwi
"Tugas akhir ini membahas mengenai Jeffrey prior dalam penaksiran parameter scale distribusi Weibull menggunakan data yang tersensor kanan maupun yang tidak tersensor. Pada Jeffrey prior, posterior yang akan didapatkan hanya berdasarkan data yang diketahui. Pada tugas akhir ini juga akan dibahas mengenai Bayesian Central Limit Theorem yang dapat dipakai untuk mencari credible interval. Sebagai pembanding untuk taksiran dengan Jeffrey prior, akan dicari juga taksiran parameter scale distribusi Weibull dengan conjugate prior. Sebagai ilustrasi, akan dilakukan simulasi dengan data yang berdistribusi Weibull. Setelah taksiran telah didapatkan, akan dihitung MSE dan MIL pada masing-masing taksiran. Hal tersebut dilakukan untuk mengetahui seberapa baik taksiran yang dihasilkan oleh Jeffrey prior.

This paper discusses about Jeffrey prior in estimating the scale parameter of Weibull distribution using right censored data well as exact data. In Jeffrey prior, the posterior will be obtained only based on data. This paper will also discuss about the Bayesian Central Limit Theorem that can be used to find a credible interval. As a comparison of the Jeffrey prior estimate,the estimator using conjugate prior will also be considered. For the illustration, simulation with Weibull distributed data (θ, τ) will be performed. Once the estimate have been obtained, MSE and MIL on each estimate will be calculated. This is done to measure the performace of the estimate produced by Jeffrey prior."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2012
S45425
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rahmania Isfahani Latifah
"Kekayaan mineral yang ada di Indonesia terutama besi menjadi salah satu komoditi kebutuhan kehidupan manusia pada zaman ini. Kalimantan Tengah menjadi salah satu daerah dengan prospek bijih besi di Indonesia. Dalam meninjau endapan bijih besi digunakan metode Resisitivitas dan Induced Polarization yang berguna untuk mendeteksi keberadaan suatu mineral dalam litologi batuan bawah permukaan. Penelitian ini menggunakan nilai dari resistivitas dan chargeability untuk menghasilkan gambaran endapan bijih besi. Konfigurasi yang digunakan adalah Wenner karena memiliki resolusi vertikal yang baik dan memiliki sensitivitas yang tinggi terhadap perubahan secara lateral. Terdapat tujuh lintasan akuisisi data dengan panjang ±470 meter dengan arah lintasan dari Barat Laut ke Tenggara. Proses pengolahan data menggunakan metode inversi untuk menghasilkan penampang 2D. Variasi nilai resistivitas berkisar diantara 10 – 8000 Wm yang menunjukkan litologi pasir, lempung, batuan andesit dan tuf serta nilai chargeability berkisar 5 – 450 msec yang menunjukkan adanya mineral konduktif yang berupa bijih besi. Visualisasi dari pemodelan 3-D didapatkan dari penggabungan hasil inversi penampang 2-D. Pemodelan ini menghasilkan volume dari anomali yang diduga bijih besi pada daerah tersebut adalah 823.129 m3

The mineral wealth in Indonesia, particularly iron, has become a crucial commodity for human life in the modern era. Central Kalimantan is one of the regions in Indonesia with promising iron ore prospects. To investigate iron ore deposits, the Resistivity and Induced Polarization (IP) methods are utilized, which are effective in detecting the presence of minerals within subsurface lithology. This study employs resistivity and chargeability values to generate a depiction of iron ore deposits. The Wenner configuration was chosen for its good vertical resolution and high sensitivity to lateral changes. Seven data acquisition lines, each approximately 470 meters in length, were oriented from the northwest to the southeast. Data processing involved inversion methods to produce 2D cross-sections. The resistivity values ranged from 10 - 8000 Ωm, indicating lithologies of sand, clay, andesitic rock, and tuff, while the chargeability values ranged from 5 - 450 msec, suggesting the presence of conductive minerals, specifically iron ore. A 3D visualization was obtained by combining the inversion results of the 2D cross-sections. This modeling estimated the volume of the anomaly, presumed to be iron ore, in the area to be 823.129 m3.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>