Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 23456 dokumen yang sesuai dengan query
cover
Fitria Febrianti
"Tofu waste can be used as a raw material for bioethanol production due to its high carbohydrate content in the form of starch. A microbial consortium, consisting of Aspergillus niger and Saccharomyces cerevisiae. The study’s first objective wasto capture the amount of sugar produced from starch hydrolysis using single cultures of Aspergillus niger.The study’s second objective wasto determine the amount of ethanol produced by the SSF technique. Aspergillus niger was used to produce an amylase enzyme that hydrolyzes starch into simple sugar.Then, Saccharomyces cerevisiae was used to produce bioethanol from the sugar produced earlier.The synthesis of bioethanol consists of two main stages, hydrolysis and fermentation. In previous studies, the hydrolysis and fermentation processes were performed separatelyusing a separated hydrolysis and fermentation (SHF)technique. This studyprocesses via a simultaneous saccharification and fermentation (SSF) technique which produced higher substrate efficiency, cell yield, and product yield compared to the SHF process.The characterization process showed that tofu waste flour was mainly composed of carbohydrates, which comprised 52.82±0.01% (dw) and had a starch content of 35.1±0.2% (dw). Sugar from the starch of the tofu waste was produced by batch system cultivation for 84 hours using Aspergillus niger. The highest sugar production (14.48 g/L) was achieved during the 48th hour. Then, Saccharomyces cerevisiae was used to convert the produced sugar into bioethanol. The production of bioethanol by SSF using a microbial consortium for 72 hours was 7.69 g/L of bioethanol, with a yield of bioethanol per substrate use (Yp/s) of 0.23 g ethanol/g substrate and a substrate conversion efficiency of 88%."
Depok: Faculty of Engineering, Universitas Indonesia, 2017
UI-IJTECH 8:5 (2017)
Artikel Jurnal  Universitas Indonesia Library
cover
Ahmad Hamzah Syafiq
"Dalam rangka mengurangi ketergantungan terhadap BBM, pemerintah melalui Peraturan Menteri Energi dan Sumber Daya Mineral, mengeluarkan Permen ESDM No.12/2015 mengenai pemanfaatan Bioetanol (E100) sebagai campuran BBM diproyeksikan akan mencapai 5% pada tahun 2020 dan 20% pada tahun 2025 khususnya pada bidang transportasi. Pencampuran fuel grade bioetanol dengan bahan bakar minyak akan meningkatkan nilai Research Octane Number (RON) dari bahan bakar. Namun, bahan bakar campuran tersebut akan memiliki total nilai kalor yang lebih rendah. Sehingga, diperlukan adanya modifikasi dari mesin agar dapat berfungsi dengan optimal. Engine Control Module digunakan untuk mengubah pengaturan pada mesin khususnya dari segi ignition timing dan injection duration. Melalui penelitian ini, akan dicari nilai Research Octane Number (RON) yang paling optimal sebagai dasar untuk menentukan kombinasi persentase fuel grade bioetanol dengan bahan bakar yang telah tersedia di pasaran. Selain itu, penelitian ini akan memberikan pengaturan Engine Control Module yang paling optimal sehingga didapatkan unjuk kerja mesin yang terbaik dengan kadar emisi yang memenuhi standar. Sebelum melakukan pengujian unjuk kerja dan emisi, bahan bakar campuran akan diuji karakterisasi yaitu Research Octane Number (RON) dan densitas berdasarkan standar ASTM D 2699 dan ASTM D 4052. Pengujian unjuk kerja dilakukan dengan menggunakan AVL Engine Dynamometer untuk mengetahui besaran torsi, daya, dan specific fuel consumption yang dihasilkan pada kecepatan putar mesin 3500, 5000, 6500, dan 8000 RPM. Mesin dioperasikan dalam keadaan bukaan throttle penuh (wide-open throttle) untuk mendapatkan unjuk kerja maksimum yang dihasilkan mesin. Pengujian emisi gas buang yang dihasilkan juga diperhatikan agar tetap memenuhi kriteria Euro-4 yang telah diterapkan di Indonesia. Pengujian emisi dilakukan menggunakan AVL Compact Diagnostic System. Pengaturan ignition timing dan injection duration memengaruhi unjuk kerja dan emisi yang dihasilkan oleh mesin. Hal tersebut berpengaruh terhadap proses pembakaran dan perbandingan campuran udara dengan bahan bakar. Efek yang dihasilkan yaitu peningkatan unjuk kerja mesin (torsi, daya, dan specific fuel consumption). Sedangkan hasil pengujian emisi menunjukkan pembakaran yang mendekati stoikiometri yaitu ketika kadar karbon dioksida dan nitrogen oksida maksimum, sedangkan kadar karbon monoksida dan hidrokarbon minimum. Berdasarkan hasil penelitian, bahan bakar campuran yang menghasilkan torsi dan daya maksimum yaitu Bensin RON 90 E40 dengan pengaturan pengaturan ignition timing 28°bTDC dan injection duration -10%. Specific fuel consumption mencapai minimum pada bahan bakar Bensin RON 90 E60 dengan pengaturan ignition timing 28°bTDC dan injection duration -10%. Kadar karbon dioksida mencapai maksimum pada bahan bakar Bensin RON 90 E50 dengan pengaturan ignition timing 28°bTDC dan injection duration -15%. Kadar karbon monoksida dan nitrogen oksida mencapai optimum pada Bensin RON 90 E60 pengaturan ignition timing 28°bTDC serta injection duration -10% serta pada Bensin RON 90 E40 dengan pengaturan ignition timing 28°bTDC dan injection duration -15%. Sedangkan kadar hidrokarbon mencapai minimum pada Bensin RON 90 E50 dengan pengaturan ignition timing 24°bTDC dan injection duration -10%.

In order to reduce dependence on gasoline fuel, the government, through the Minister of Energy and Mineral Resources Regulation, issued ESDM Regulation No.12 / 2015 regarding the use of Bioethanol (E100) as a gasoline fuel mixture is projected to reach 5% in 2020 and 20% in 2025 especially in the transportation sector. Mixing fuel grade bioethanol with gasoline fuel will increase the Research Octane Number (RON) value. However, the gasoline-bioethanol fuel mixture will have a lower total heating value. Thus, modifications are needed from the engine to function optimally. Engine Control Module is used to change parameters on the engine especially in terms of ignition timing and injection duration. Through this research, the most optimal Research Octane Number (RON) value will be sought as a basis for determining the percentage combination of fuel grade bioethanol with gasoline fuels that are already available on the market. Besides, this research will provide the most optimal Engine Control Module parameters so that the best engine performance with emission levels that meet the standards is obtained. Before conducting performance and emission testing, the sample of gasoline-bioethanol fuel mixture will be tested for characterization in terms of Research Octane Number (RON) and density based on ASTM D 2699 and ASTM D 4052. Performance tests are carried out using the AVL Engine Dynamometer to determine the amount of torque, power, and specific fuel consumption resulting in engine rotational speeds of 3500, 5000, 6500 and 8000 RPM. The engine is operated in wide-open throttle to get the maximum performance generated by the engine. Examination of the resulting exhaust emissions is also considered to continue to meet the Euro-4 criteria that have been applied in Indonesia. Emission testing is carried out using the AVL Compact Diagnostic System. The ignition timing and injection duration settings affect the engine's performance and emissions. This affects the combustion process and the air-fuel ratio (AFR). The effect is an increase in engine performance (torque, power, and specific fuel consumption). The results of emission tests show that the combustion approaching stoichiometry is when the levels of carbon dioxide and nitrogen oxides are maximum, while the levels of carbon monoxide and hydrocarbons are minimum. Based on the results of the research, a gasolinebioethanol fuel mixture that produces maximum torque and power is RON 90 E40 Gasoline with ignition timing 28°bTDC and injection duration of -10%. Specific fuel consumption reaches a minimum in RON 90 E60 Gasoline with ignition timing 28°bTDC and -10% injection duration. The levels of carbon dioxide reach maximum in RON 90 E50 Gasoline with ignition timing 28°bTDC and injection duration -15%. The levels of carbon monoxide and nitrogen oxide reach optimum in RON 90 E60 Gasoline with ignition timing 28°bTDC and injection duration -10% and in RON 90 E40 Gasoline with ignition timing 28° bTDC and injection duration -15%. While the levels of hydrocarbon reach minimum in RON 90 E50 Gasoline with ignition timing 24°bTDC and injection duration -10%.
"
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Octaviany Magdalena
"Bioetanol dari biomassa limbah pertanian adalah generasi kedua dari bahan bakar alternatif selain biofuel dari bahan fosil dan baru-baru ini pengembangan produksi bioetanol secara luas dibahas melibatkan metode dan bahannya. Salah satu limbah biomassa potensial untuk produksi bioetanol adalah tongkol jagung, karena kandungan karbohidrat yang tinggi dan ketersediaannya yang melimpah. Tujuan utama dari penelitian ini adalah meningkatkan produksi bioetanol dari tongkol jagung menggunakan metode sakarifikasi dan fermentasi secara simultan dengan proses enzimatik hidrolisis menggunakan err,im selulase dan xilanase dari dua Actinomycetes Catenuloplarus indicus dan Streptomryes sp. potensial dan fermentasi menggunakan Saccharomyces Cereviceae NBRC 1440. Sakarifikasi tongkol jagung menggunakan kombinasi enzim dianalisis dengan kromatografi lapis tipis KLT. Data menunjukkan bahwa enzim yang dihasilkan dari actinomycetes memiliki kemampuan untuk memecah tongkol jagung menjadi monosakarida seperti glukosa dan xilosa. Data menunjukkan hasil analisis gula reduksi dari rentang 0-96 jam yaitu sebesar 3,47;3,59i 3,71; 4,03; 3,48 ppm. Untuk konsentrasi tertinggi pada waktu 72 jam yaitu 4,03 ppm, sedangkan gula total sebesar 24,60;23,13;24,96;20,95;20,62 ppm dan konsentrasi tertinggi pada titik 48 jam sebesar 24,96. Analisis lebih lanjut dari produksi bioetanol dilakukan dengan Kromatografi Cair Kinerja Tinggi KCKT menunjukkan bahwa ragi memiliki kemampuan untuk mengubah glukosa menjadi etanol. Bioeanol dari hidrolisis tongkol mencapai 1.017 g/L untuk proses SSF 48 jam. Dengan nilai untuk yield etanol yaitu sebesar 0,045 grarnl 20 tnL dan persentase konversi produksi etanol dari glukosa sebesar 58,11Yo.

Bioethanol from agriculture waste biomass is a second generation of alternative fuels beside fosil biofuels and recently development of bioethanol production is widely discussed involving methods and materials. One of potential waste biomass for bioethanol production is corn cobs because of its a high carbohydrate content and abundant availability. The main purpose of this research is enhancing bioethanol production from corn cobs by Simultaneous Saccharification and Fermentation method with enzymatic hydrolysis using cellulase and xylanase from two potential Actinomycetes Catenuloplanes indicus and Streptomyces sp. and fermentation using Saccharorryces cereviceae NBRC 1440. The saccharification of corn cobs using a combination of enzymes was analyzed using Thin Layer Chromatography tLC and the data showed that enzryme from actinomycetes has the ability to break down corn cobs into monosaccharides such as glucose and xylose. The data show the results of reducing sugar analysis findings om the range of 0 96 hours is equal to 3.47 3.59 3.71 4.03 3.48 ppm. The highest concentration of 72 hour is 4.03 ppm, while the total sugar amounted to 24.60 23.13 24.96 20.95 20.62 ppm and the highest concentation of at point 48 hours at24.96. Further analysis of bioethanol production is done by High Performance Liquid Chromatography IIPLC showed that yeast has the ability to convert glucose into ethanol. The Highest bioethanol from com cobs hydrolysisreaching 1,017 g L for the SSF process 48 hours. With the value for ethanol yield is 0.045 920 mL and percentage conversion of ethanol production from glucose is 58,llo o."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2017
T46875
UI - Tesis Membership  Universitas Indonesia Library
cover
Kottow, Miguel
"This book pleads for an urgent turn towards directly addressing injustice as a reality that requires pressingly needed arguments and proposals to inspire realistic public health policies and programs based on an ethics of protection. Ever since Hobbes, all shades of political philosophy accept that the basic obligation of the ruling power is to protect its subjects. The ethics of protection emphasizes aiding the needy and the disempowered in obtaining access to basic goods and services related to health-care. Public health is called upon to fulfill protective obligations to guarantee disease prevention and medical services to the population, taking special care to safeguard those unable to cover their health-care needs in market-oriented medical services and institutions. The bioethics of protection developed in this text presents specific and explicit guide-lines to assure that protective public health actions be efficacious (problem-solving), efficient (sustainable cost/benefit relation) and ethically sound (respecting human rights and the common weal). These guide-lines are designed to give ethical support and justification to public health policies even when they require some unavoidable limitations of individual autonomy to promote social health benefits."
New York: [Springer, ], 2012
e20410726
eBooks  Universitas Indonesia Library
cover
Ahmad Hamidi
"Penghematan energi dan upaya mencari bahan bakar alternatif yang terbarukan seperti bioetanol perlu dilakukan saat ini. Produksi bioetanol dapat ditingkatkan diantaranya dengan mengoptimasi temperatur fermentasi dan waktu retensiya. Waktu retensi dipengaruhi oleh laju reaksi pembentukan, yang dalam penelitian ini akan diteliti lebih lanjut mengenai konstanta laju reaksi pembentukan bioetanol. Pada penelitian ini akan diproduksi bioetanol berbasis tandan kosong sawit TKS. TKS terlebih dahulu didelignifikasi untuk menghilangkan kandungan ligninnya, kemudian TKS tersebut dikonversi menjadi bioetanol dengan menggunakan metode Simultaneous Saccharification and Fermentation SSF. Pada proses ini, suhu reaksi divariasikan yaitu 30, 33, dan 35 agar diperoleh suhu terbaik, dengan pengambilan sampel setiap 24 jam selama 4 hari. Kondisi terbaik pada penelitian dicapai pada suhu 30 dengan waktu sakarifikasi dan fermentasi selama 24 jam. Koefisien kinetika yang diperolah pada kondisi terbaik tersebut yaitu maximum spesific growth reaction rate ?max = 0,008 h-1; monod constant Ks = 0,005 g/dm3; specific natural death constant Kd = 0,011 h-1; dan cell maintenance constant m = 0,457 h-1.

It is necessary for energy savings as well as searching for alternative renewable fuels, such as bioethanol. Bioethanol production could be improved such as by optimizing the fermentation temperature and retention time. The retention time is influenced by the rate of reaction formation, which in this study will be further examined on the reaction rate constant formation of bioethanol. In this research, bioethanol will be produced from oil palm empty fruit bunches EFB. Empty fruit bunches of oil palm EFB will undergo delignification process to remove its lignin content, then cellulosic rich oil palm empty fruit bunches EFB will then be converted into bioethanol using Simultaneous Saccharification and Fermentation SSF method. In this process, the reaction temperature variation 30, 33, and 35 performed to determine the optimum temperature, with sampling every 24 hours for 4 days. The optimum conditions in the study achieved at a temperature of 30 C in 24 hour of sacarification and fermentation. Meanwhile, the kinetic coefficients achieved in this optimum condition are maximum spesific growth reaction rate max 0,008 h 1 monod constant Ks 0,005 g dm3 specific natural death constant Kd 0,011 h 1 and cell maintenance constant m 0,457 h 1."
Depok: Fakultas Teknik Universitas Indonesia, 2017
S67664
UI - Skripsi Membership  Universitas Indonesia Library
cover
"This book addresses current changes in health care, which are the greatest changes in health care history since the advent of Medicare and Medicaid."
Burlington, MA: Jones & Bartlett Learning, 2014
174.2 HEA
Buku Teks SO  Universitas Indonesia Library
cover
Muchammad Syaifudin Zuhri
"Skripsi ini membahas mengenai perhitungan secara tekno-ekonomi konversi bagas menjadi etanol dengan metode proses Sakarifikasi dan Fermentasi Serentak. Secara peluang teknis, industri ini sangat terbuka untuk dikembangkan. Selain terbukti lebih ramah lingkungan, industri ini juga didukung oleh keberadaan pabrik gula dengan kapasitas giling yang cukup besar serta lahan pertanian yang mendukung untuk ditanami, sebagai penghasil bagas sebagai residunya. Nilai konversi yang dihasilkan pun cukup besar yaitu sekitar 36,4% berbasis berat bagas, atau sekitar 91,4% jika dihitung secara teoritis.
Perhitungan ekonomi untuk mencukupi skala industri masih belum menunjukkan nilai yang menggembirakan hal ini salah satunya disebabkan oleh kurangnya fasilitas fiskal pendukung dari pemeirintah. Untuk memenuhi kapasitas industri 80 KL per hari dibutuhkan bagas murni sekitar 20 ton. Perhitungan secara ekonomi yang juga menyertakan variabel kebijakan fiskal juga masih relatif menunjukkan kelayakan untuk dilakukan sebagi usaha investasi di masa mendatang. Dengan nilai NPV sebesar Rp 32.204.238.747 dan nilai IRR sebesar 9% tentu bukan tidak mungkin akan meningkat seiring semakin langkanya bahan bakar berbasis minyak bumi. Kondisi ini semakin menguntungkan jika diintegrasikan dengan pengelolaan jamur tiram sebagai hasil pretreatment.

This undergraduate thesis focuses in analyzing of techno-economic analysis of ethanol production from bagasse trough Simultaneous Saccharification and Fermentation (SSF). Technically, it has big chance to be developed into a big scale of industry, beside it relatively safe for environment, it also supported by a big number of sugar mill spread in Java and Sumatera. Although the conversion value is also high enough, about 36, 4% base on bagasse mass, or 91,4% theoretically calculated. But, economically with fiscal policy included in, it doesn't work so good in industrial scale. For capacity of 80 KL per day it needs about 20 ton bagasse.
The economic analysis gives enough number to attract people to invest. With value of NPV 32.204.238.747 rupiahs and IRR value 9% it is quiet feasible to be run in the next year, when the capacity of fossil fuel is getting down. In addition, it will be more attractive if we integrate the line with the mushroom produced in pretreatment process. Besides the internal factor of industry, government has important role to keep the industry work, maybe with offering some bigger fiscal policy e.g. tax cut, special tariff, that will attract people to make more innovation in energy resources alternative industry.
"
Depok: Fakultas Teknik Universitas Indonesia, 2010
S51723
UI - Skripsi Open  Universitas Indonesia Library
cover
Nabila Putri Nursafera
"Tandan kosong kelapa sawit (TKKS) merupakan salah satu jenis limbah lignoselulosa primer dari industri kelapa sawit. TKKS merupakan bahan baku yang menjanjikan untuk dikonversi menjadi produk bernilai tambah seperti bioetanol. Namun, pemanfaatan TKKS untuk menghasilkan bioetanol masih menjadi tantangan dalam skala industri. Oleh karena itu, penelitian ini melakukan analisis risiko tekno-ekonomi akan pabrik bioetanol dengan bahan baku TKKS. Proses produksi bioetanol terdiri dari tiga tahap: pretreatment, sakarifikasi dan fermentasi serentak (SSF), dan pemurnian. Model simulasi dilakukan dengan menggunakan perangkat lunak Aspen Plus, dan evaluasi kelayakan ekonomi menggunakan metode real option yang dilakukan dengan menggunakan perangkat lunak Microsoft Office Excel. Data untuk membuat simulasi proses produksi semi-kontinyu skala industri diperoleh dari penelitian-penelitian sebelumnya. Penelitian ini menghasilkan bioetanol dengan yield sebesar 399 L/ton untuk kapasitas produksi sebesar 6.000 kL/tahun dengan biaya produksi sebesar 0,59 USD/L. Analisis profitabilitas menghasilkan nilai NPV, IRR, PBP, dan PI berturut-turut sebesar 3.097.581 USD, 16%, 6,16 tahun, dan 3,44. Analisis risiko dengan metode real option dengan nilai volatility (σ) sebesar 9% menghasilkan keputusan yang dapat diambil yaitu: (1) Proyek berjalan pada awal tahun; (2) Pada akhir tahun ke-1 bisa mulai dilakukan ekspansi; (3) Pabrik berhenti beroperasi pada tahun ke-20 dengan memperoleh salvage value sebesar 619.516 USD.

Oil palm empty fruit bunch (EFB) is a type of primary lignocellulosic residue from the palm oil industry. They are promising feedstocks for bioconversion into value-added products such as bioethanol. However, using empty fruit to produce bioethanol remains a challenge on an industrial scale. As a result, this study conducted a techno-economic and risk analysis of an EFB bioethanol plant. The bioethanol production process consists of three stages: pretreatment, simultaneous saccharification and fermentation (SSF), and purification. The simulation model carried out using Aspen Plus, and the economic feasibility assessed using the real option method, which carried out using Microsoft Office Excel. The data from the previous experiment was used to create a simulation of an industrial-scale semi-continuous production process. With a yield of 399 L/ton and a production capacity of 6,000 kL/year, this study produced bioethanol at a cost of 0.59 USD/L. NPV, IRR, PBP, and PI values from the profitability analysis were 3,097,581 USD, 16%, 6.16 years, and 3.44, respectively. The following decisions can be made as a result of risk analysis using the real option method with a volatility value of 42 percent: (1) The project is open at the start of the year; (2) Expansion can start at the end of the first year; and (3) The plant will be abandoned at the end of the 20th year by obtaining a salvage value of 619,516 USD."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ira Melani Sigar
"ABSTRAK
Bacillus sp. Th4 merupakan bakteri penghasil amilase. Pada proses fermentasi, sumber karbohidrat mempengaruhi dan menentukan hasil akhir proses tersebut. Penelitian ini bertujuan meneliti pengaruh sumber karbohidrat, yaitu: maizena, tepung sagu, tapioka, tepung beras, dan soluble starch, terhadap aktivitas amylase Bacillus sp. Th4; dan menentukan sumber karbohidrat terbaik untuk aktivitas amilase yang maksimum.
Bacillus sp. Th4 diinokulasikan pada medium fermentasi Pamatong modifikasi dengan variasi sumber karbohidrat, dan diinkubasi dalam shaking incubator selama 20 jam, 45°C, dengan kecepatan 120 rpm. Aktivitas amilase diuji berdasarkan metode Morgan & Priest modifikasi. Gula pereduksi yang terbentuk diukur dengan menggunakan pereaksi DNS.
Urutan dari tinggi ke rendah, aktivitas amylase hasil penelitian ini, diperoleh pada substrat tapioka, tepung sagu, maizena, soluble starch dan tepung beras. Pada tapioka aktivitas amilase berbeda nyata dengan tepung sagu, maizena, soluble starch dan tepung beras. Aktivitas amilase pada maizena, soluble starch dan tepung beras tidak berbeda nyata, tetapi berbeda nyata dengan tepung sagu.
ABSTRACT
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam. Universitas Indonesia, 1991
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dwini Normayulisa Putri
"Asam suksinat dapat diproduksi dari tandan kosong kelapa sawit (TKKS) melalui proses fermentasi. Pada penelitian ini, produksi asam suksinat dilakukan menggunakan isolat bakteri dari rumen sapi melalui metode Semi Simultaneous Saccharification and Fermentation (SSSF). Isolat bakteri dari cairan rumen sapi diperoleh dengan melakukan tahap isolasi terlebih dahulu. Tahapan isolasi dilakukan dengan melakukan enrichment, subkultur, isolasi, dan fermentasi bakteri. TKKS sebagai sumber karbon, juga dilakukan tahap pretreatment terlebih dahulu menggunakan larutan peracetic acid dan alkaline peroxide serta tahap prehidrolisis menggunakan enzim selulase untuk menghasilkan glukosa. Tahap SSSF dilakukan dengan konsentrasi awal glukosa yang berbeda, yaitu 0,45; 0,48; dan 0,61 g/L.
Berdasarkan hasil yang diperoleh, konsentrasi, yield, dan produktivitas asam suksinat tertinggi sebesar 3,12 g/L, 0,312 g/g TKKS, dan 0,13 g/L/jam, secara berurutan, diperoleh pada konsentrasi awal glukosa sebesar 0,61 g/L. Selain itu, berat kering bakteri dan konversi glukosa tertinggi sebesar 0,0775 gr dan 73,61 %, secara berurutan, juga diperoleh pada konsentrasi awal glukosa sebesar 0,61 g/L. Estimasi parameter kinetika pertumbuhan bakteri juga dilakukan dalam penelitian ini. Berdasarkan perhitungan, laju pertumbuhan spesifik tertinggi sebesar 0,051 jam-1 diperoleh pada konsentrasi awal glukosa sebesar 0,61 g/L.

Succinic acid can be produced from oil palm empty fruit bunches (OPEFB) through a fermentation process. In this study, succinic acid production was carried out using bacteria isolated from cattle rumen through the Semi Simultaneous Saccharification and Fermentation (SSSF) method. Bacteria were isolated from cattle rumen fluid by doing the isolation stage first. The stages of isolation were carried out by doing enrichment, subculture, isolation, and fermentation of bacteria originated. OPEFB as a carbon source, were pretreated through pretreatment stage using peracetic acid and alkaline peroxide solution and then continue to the prehydrolysis stage using cellulase enzymes in order to produce glucose. The SSSF stage was carried out with different initial glucose concentrations, which are 0.45; 0.48; and 0.61 g/L.
Based on the results obtained, the highest concentration, yield, and productivity of succinic acid of 3.12 g/L, 0,312 g/g EFB, and 0.13 g/L/h, respectively, were obtained at the initial glucose concentration of 0.61 g/L. In addition, the highest dry weight of bacteria and glucose conversion were 0.0775 gr and 73.61 %, respectively, were also obtained at the initial glucose concentration of 0.61 g/L. Estimation of bacterial growth kinetics parameters was also carried out in this study. Based on calculations, the highest specific growth rate of 0.051 h-1 was obtained at the initial glucose concentration of 0.61 g/L.
"
Depok: Fakultas Teknik Universitas Indonesia, 2019
T52328
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>