Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 35244 dokumen yang sesuai dengan query
cover
Ariel Miki Abraham
"Pemanfaatan Artificial Intelligence (AI) terutama Machine Learning (ML) semakin banyak ditemui dalam berbagai hal termasuk pengambilan keputusan. Hal ini menimbulkan kebutuhan untuk memperoleh explanation dari prediksi model ML sebagai akuntabilitas dan kepercayaan terhadap sistem AI. Penelitian ini menggunakan abduction yang terdapat pada pendekatan logika untuk memperoleh minimal explanations yang valid secara formal dari suatu prediksi model Artificial Neural Network (ANN) berbasiskan Rectified Linear Unit (ReLU). Peneli-
tian ini melakukan implementasi terhadap algoritma subset-minimal dan algoritma cardinality-minimal yang telah ada sebelumnya. Selain itu, penelitian ini mengajukan algoritma randomized-subset-minimal sebagai bentuk pengembangan dari kedua algoritma. Eksperimen menunjukkan bahwa algoritma randomized-subset-
minimal dapat menghasilkan explanation dengan ukuran yang lebih kecil daripada algoritma subset-minimal, dengan waktu komputasi yang jauh lebih efisien daripada algoritma cardinality-minimal.
Abstrak Berbahasa Inggris:

Artificial Intelligence (AI), especially Machine Learning (ML) is prevalent today in many donations, including for decision making. It raises the need for explanations of predictions by ML models to guarantee the accountability and trust of the AI system. This research exploits abduction from logic for obtaining minimal explanations of predictions by Artificial Neural Network (ANN) with rectifier activation function. This research implements both subset-minimal and cardinality-minimal algorithms for finding those explanations. Furthermore, this research proposes randomized subset-minimal algorithm for improving the algorithms. The experiment shows that the proposed algorithm is able to give explanations with a smaller size than the subset-minimal algorithm with computation time that much efficient than the cardinality-minimal algorithm.
"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Kezia Sulami
"Machine Learning (ML) sebagai bagian dari Artificial Intelligence (AI) telah membuat komputer mampu melakukan hal-hal yang membutuhkan kecerdasan manusia secara otomatis. Binarized Neural Network (BNN) merupakan arsitektur ML modern yang memiliki keunggulan yakni penggunaan memori yang efisien dan performa yang baik. Namun, seperti neural network pada umumnya, BNN juga merupakan black-box model yang memiliki kesulitan dalam menjelaskan prediksi yang dihasilkan. Penelitian ini menggunakan teknik abduction untuk memperoleh minimal explanations, dalam bentuk himpunan pasangan fitur dan nilainya, dari hasil prediksi BNN. BNN dimodelkan sebagai model Mixed-Integer Linear Programming (MILP) dan selanjutnya disederhanakan menjadi model Integer Linear Programming (ILP) yang merupakan bentuk formal agar dapat dilakukan teknik abduction. Hasil penelitian menunjukkan bahwa teknik abduction dapat digunakan untuk menjelaskan hasil prediksi BNN. Penelitian ini juga menerapkan teknik abduction untuk menghasilkan penjelasan subset-minimal pada hasil prediksi BNN untuk beberapa dataset.

Machine Learning (ML) as part of Artificial Intelligence (AI) has enabled computers to do things that require human intelligence automatically. Binarized Neural Network (BNN) is a modern ML architecture that has some advantages: efficient use of memory and good performance. However, like other neural networks in general, BNN is also a black-box model that has difficulties in explaining the resulting predictions. This research employs the abduction technique to obtain minimal explanations, that is a set of pairs of features and its values, from a BNN prediction. BNN is modeled as a Mixed-Integer Linear Programming (MILP) model and then further simplified into an Integer Linear Programming (ILP) model which is a suitable formalism for finding explanations using abduction. This research shows that the abduction technique can be used to explain BNN predictions. Furthermore, this research applies the abduction technique to produce subset-minimal explanations on BNN predictions for several datasets."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Bayu Satria Persada
"Perkembangan Artificial Intelligence (AI) sudah berkembang pesat. Dari ketiga arah pengembangan AI yakni computer vision, speech processing dan natural language processing. Speech processing memiliki tren paling rendah di antara ketiga pengembangan tersebut. Meskipun begitu pengembangan di bidang speech processing seperti speech recognition dan keyword spotting sudah banyak di implementasikan seperti model keyword spotting menggunakan Convolutional Neural Network (CNN) di microcontroller, mobile device dan perangkat lainnya. Namun CNN saja belum tentu menghasilkan akurasi yang tinggi maka dicoba Depthwise Separable Convolutional Neural Network (DSCNN) untuk mendapatkan hasil dengan akurasi yang lebih tinggi. Pengembangan model keyword spotting belum banyak diimplementasikan di edge device lainnya, yang dimaksud dengan edge device yaitu perangkat sederhana di sisi pengguna yang kemampuan komputasinya terbatas. Dengan menggunakan DSCNN menunjukkan nilai F1 score yang dibandingkan dengan model CNN. Model DSCNN menghasilkan model dengan nilai F1 score paling optimal dengan 4 layer konvolusi depthwise separable, menggunakan filter konvolusi sebanyak 256 dengan jumlah filter konvolusi depthwise 512 menggunakan optimizer RMSprop dan menggunakan batch size berukuran 126. Dari hasil pengujian dapat diketahui bahwa secara umum DSCNN menghasilkan F1 score yang lebih baik dibandingkan CNN yaitu sebesar 31,8% dengan CNN sebesar 28,35%. Namun DSCNN menggunakan sumber daya yang lebih banyak dan lebih lama waktu responsnya.

The development of Artificial Intelligence (AI) has grown rapidly. Of the three directions of AI development, namely computer vision, speech processing, and natural language processing. Speech processing has the lowest trend among the three developments. However, many developments in speech processing such as speech recognition and keyword spotting have been implemented, such as the keyword spotting model using the Convolutional Neural Network (CNN) in microcontrollers, mobile devices, and other devices. However, CNN alone does not necessarily produce high accuracy, so a Depthwise Separable Convolutional Neural Network (DSCNN) is used to get results with higher accuracy. The development of the keyword spotting model has not been widely implemented in other edge devices, which is meant by edge devices, namely simple devices on the user's side with limited computing capabilities. Using DSCNN shows the F1 score which is compared with the CNN model. The DSCNN model produces a model with the most optimal F1 score with 4 layers of convolution depthwise separable, using a convolution filter of 256 with a convolution depthwise filter of 512 using the RMSprop optimizer and using a batch size of 126. From the test results, in general DSCNN produces F1 score which is better than CNN, which is 31,8% with CNN at 28,35%. However, DSCNN uses more resources and a longer response time."
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Chester, Michael
New Jersey: Prentice-Hall, 1993
006.3 CHE n
Buku Teks  Universitas Indonesia Library
cover
Karenina Kamila
"Sektor perikanan Indonesia merupakan salah satu sektor penting bagi kemajuan perekonomian Indonesia dikarenakan Indonesia yang memiliki luas laut yang sangat besar dan SDA ikan yang berlimpah. Namun, sampai saat ini perdagangan ikan ilegal masih sering terjadi di kalangan nelayan yang biasanya dilakukan di atas kapal walaupun sudah ada petugas pengawas. Untuk mengatasi masalah ini perlu adanya sistem pengawasan dengan menggunakan kamera CCTV dan artificial intelligence di atas kapal dengan harapan dapat mengurangi resiko kecurangan petugas setempat dan meningkatkan efektivitas pengawasan penangkapan ikan. Penelitian ini berfokus untuk mencari model dengan menyesuaikan beberapa hyperparameter untuk mendapatkan hasil yang terbaik dengan menggunakan algoritma YOLOv6 untuk object detection dan YOLOv8 untuk segmentation. Penelitian ini mendapatkan model terbaik untuk object detection menggunakan YOLOv6 dengan nilai mAP @0,5 sebesar 0,833, mAP @0,5-0,95 sebesar 0,63, F1-score sebesar 0,861 dan FPS 92 dan segmentation menggunakan YOLOv8 menghasilkan nilai mAP mask @0,5 sebesar 0,804, mAP mask @0,5-0,95 sebesar 0,426, mAP box @0,5 sebesar 0,843, dan mAP box @0,5-0,95 sebesar 0,561. Kedua versi YOLO tersebut dapat mengklasifikasi jenis ikan yang ditangkap oleh nelayan dengan harapan dapat mempermudah proses pencatatan dan penyimpanan data hasil penangkapan ikan.

The Indonesian fisheries sector is one of the important sectors for the progress of the Indonesian economy because Indonesia has a very large sea area and abundant fish resources. However, until now illegal fish trade is still common among fishermen, which is usually carried out on boats even though there are supervisors. To overcome this problem, it is necessary to have a surveillance system using CCTV cameras and artificial intelligence on board so that it will reduce the risk of fraud by local officers and increase the effectiveness of fishing supervision. This research focuses on finding a model by adjusting several hyperparameters to get the best results using the YOLOv6 algorithm for object detection and YOLOv8 for segmentation. This study found the best model for object detection using YOLOv6 with a mAP @0.5 value of 0.833, mAP @0.5-0.95 of 0.63, F1-score of 0.861 and FPS 92 and segmentation using YOLOv8 produces a mAP mask value @0.5 is 0.804, mAP mask @0.5-0.95 is 0.426, mAP box @0.5 is 0.843, and mAP box @0.5-0.95 is 0.561. The two YOLO versions can classify the types of fish caught by fishermen in the hope of facilitating the process of recording and storing data on fishing results.
"
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Anandwi Ghurran Muhajjalin Arreto
"Artificial Intelligence (AI) telah berkembang sangat pesat sehingga sudah sering terlihat dan digunakan secara umum oleh masyarakat. Salah satu jenis AI yang sering digunakan adalah speech recognition terutama keyword spotting yang disebabkan karena pandemi COVID-19. Implementasi keyword spotting dapat diterapkan pada lift sebagai sistem navigasi agar para pengguna lift tidak perlu melakukan kontak pada tombol, melainkan dapat menggerakkan lift hanya dengan mengucapkan lantai yang dituju. Metode untuk melakukan implementasi keyword spotting pada sistem lift dapat dilakukan dengan banyak metode, namun pada skripsi ini, metode yang diujikan adalah CNN (Convolutional Neural Network) dan MHAtt RNN (Multihead Attention Recurrent Neural Network). Penelitian yang dilakukan memiliki batasan untuk setiap metode agar dapat melakukan klasifikasi enam keyword dan melihat performa kedua metode dalam berbagai skenario yang dapat terjadi dalam lift. Dalam pembentukan model dari MHAtt RNN, dapat diketahui bahwa model memiliki performa terbaik ketika dibentuk dengan jumlah head untuk attention sebesar 8 dan LSTM dengan jumlah unit sebanyak 32. Pelatihan pada model dilakukan menggunakan optimizer Adam dengan learning rate sebesar 0.001 dan decay 0.005 agar pelatihan dapat menghasilkan model yang paling baik. Setelah melakukan pengujian pada berbagai skenario yang dapat terjadi di dalam sebuah lift, didapatkan hasil bahwa secara keseluruhan model CNN memiliki performa yang lebih baik dibandingkan model MHAtt RNN karena memiliki nilai F1-score dan precision yang lebih tinggi.

Artificial Intelligence (AI) has grown so rapidly that it has often been seen and used in general by the public. One type of AI that is often used is speech recognition, especially keyword spotting caused by the COVID-19 pandemic. The implementation of keyword spotting can be applied to elevators as a navigation system so that elevator users do not need to make contact with buttons but can move the elevator just by saying the intended floor. There are many methods to implement keyword spotting in elevator systems, but in this thesis, the methods tested are CNN (Convolutional Neural Network) and MHAtt RNN (Multihead Attention Recurrent Neural Network). The research conducted has limitations for each method in order to be able to classify six keywords and see the performance of both methods in various scenarios that can occur in an elevator. In forming the model from MHAtt RNN, it can be seen that the model has the best performance when it is formed with the number of heads for attention of 8 and the LSTM with the number of units of 32. The training on the model is carried out using the Adam optimizer with a learning rate of 0.001 and a decay of 0.005 so that the training can produce the best models. After testing on various scenarios that can occur in an elevator, the results show that the CNN model overall has better performance than the MHAtt RNN model because it has a higher F1-score and precision."
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dudi Heryadi
Depok: Fakultas Teknik Universitas Indonesia, 1995
S38718
UI - Skripsi Membership  Universitas Indonesia Library
cover
Silitonga, Permatasari
"Di Indonesia, dengue telah menjadi salah satu penyakit yang bersifat hiperendemis. Dengue diderita oleh masyarakat dari berbagai kalangan usia, baik pria maupun wanita. Dengue memiliki manifestasi klinis yang terdiri dari tiga fase: fase demam, fase kritis, dan fase penyembuhan. Banyak pasien dengue meninggal pada fase kritis karena pengobatan yang tidak dilaksanakan tepat waktu. Oleh karena itu, dibangunlah model-model yang dapat memprediksi tingkat keparahan dengue berdasarkan hasil uji laboratorium dari pasien yang bersangkutan menggunakan Artificial Neural Network (ANN) dan Analisis Diskriminan (AD). Dalam pembangunan model-model tersebut, digunakan data dengan jumlah yang sangat kecil, yakni sebesar 77 data. Dalam data tersebut, terdapat informasi mengenai hasil uji laboratorium dan diagnosis dari pasien yang bersangkutan. Diagnosis tersebut dikelompokkan ke dalam tiga kategori keparahan dengue, yakni DF sebagai tingkat ringan, DHF grade 1 sebagai tingkat sedang, dan DHF grade 2 sebagai tingkat parah. Dalam penelitian ini, dilakukan tiga pemisahan data, yakni dengan rasio data training : data testing sebesar 70% : 30%, 80% : 20%, and 90% : 10%. Berdasarkan hasil yang diperoleh, model-model prediksi ANN yang dibangun menggunakan fungsi aktivasi logistik dan tangen hiperbolik dengan persentase data training sebesar 70% menghasilkan akurasi (90.91%), sensitivitas (91.11%), dan spesifisitas (95.51%) tertinggi. Model-model tersebutlah yang diajukan dalam penelitian ini. Model-model tersebut akan mampu membantu para dokter dalam memprediksi tingkat keparahan dengue dari pasien yang bersangkutan sebelum memasuki fase kritis. Lebih jauh, model-model tersebut dapat memudahkan para dokter dalam mengobati pasien dengue secara dini, sehingga kasus-kasus fatal atau kematian dapat dihindari.

In Indonesia, dengue has become one of the hyperendemic diseases. Dengue is being suffered by many people of all ages, both men and women. Dengue has clinical manifestations that are divided into three phases: febrile phase, critical phase, and convalescence phase. Many patients have died in the critical phase due to the lack of timely treatment. Therefore, I developed models that can predict the severity of dengue based on the corresponding patients’ laboratory test results using Artificial Neural Network (ANN) and Discriminant Analysis (DA). In developing the models, I used a very small dataset, which only consisted of 77 data. The data contains information regarding the laboratory test results and the diagnosis of each of the corresponding patients. The diagnoses were classified into three categories of dengue severity, which are DF as the mild level, DHF grade 1 as the intermediate level, and DHF grade 2 as the severe level. I conducted three different data split, that is, with the ratio of training : testing = 70% : 30%, 80% : 20%, and 90% : 10%. It is shown that ANN models developed using logistic and hyperbolic tangent activation function with 70% training data yielded the highest accuracy (90.91%), sensitivity (91.11%), and specificity (95.51%). These ANN models are the proposed models in this research. The proposed models will be able to help physicians predict the dengue severity of a corresponding patient before entering the critical phase. Furthermore, it will ease physicians in treating dengue patients early, so deaths or fatal cases can be avoided."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Rifqy Mikoriza Turjaman
"Data yang didapat dari Polda Metro Jaya, pada arus mudik 6 hari sebelum Hari Raya Idul Fitri tahun 2017 ada sekitar 73 kasus kecelakaan lalu lintas yang disebabkan oleh rasa kantuk pada saat berkendara. Yang dimana 6 orang meninggal dunia, mengalami luka berat sebanyak 17 orang, dan luka ringan sebanyak 82 orang. Jumlah ini meningkat 16 persen dari tahun 2016 yang tercatat sebanyak 63 kejadian. Sistem pendeteksi dan prediksi kantuk dikembangkan untuk mengatasi masalah ini.
Metode peramalan untuk time series yang banyak menimbulkan proses prediksi cukup sulit dilakukan. Sistem prediksi kantuk dibangun dengan algoritme backpropagation neural network yang diharapkan mampu untuk mempelajari dan beradaptasi pada setiap pola dari data historis yang diberikan. Dengan mengenali pola dari data historis, sistem dapat memberikan prediksi dan respons yang akurat dengan akurasi sebesar 100.

Data obtained from Polda Metro Jaya, on the homecoming traffic 6 days before Idul Fitri 2017 there are about 73 cases of traffic accidents caused by drowsiness at the time of driving. Where 6 people died, severe injuries as many as 17 people, and light injuries as many as 82 people. This number increased 16 percent from the year 2016 recorded as many as 63 events. Drowsiness and prediction systems were developed to address this problem.
Forecasting methods for time series caused a lot of prediction process quite difficult. The sleep prediction system is built with backpropagation neural network algorithm expected to be able to learn and adapt to each pattern of given historical data. By recognizing patterns from historical data, the system is expected to provide accurate predictions and responses with 100.
"
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
<<   1 2 3 4 5 6 7 8 9 10   >>