Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 119219 dokumen yang sesuai dengan query
cover
Sitorus, Yusuf Beltsazar
"Tanaman karet merupakan salah satu komoditas utama ekspor Indonesia. Namun, dalam beberapa tahun terakhir, produksi karet di Indonesia mengalami penurunan. Hal tersebut disebabkan karena adanya penyakit gugur daun yang disebabkan oleh jamur Pestalotiopsis sp.. Berkembangnya teknologi artificial intelligence dengan pendekatan deep learning mampu melakukan pendeteksian pada penyakit ini dengan menggunakan data citra. Convolutional Neural Network (CNN) merupakan algoritma deep learning yang diterapkan pada data berbentuk visual atau citra. Pada penelitian ini, peneliti menggunakan metode Convolutional Neural Network (CNN) dengan arsitektur Residual Network 50 (ResNet-50). Pada penelitian ini juga digunakan Transfer Learning yang merupakan sebuah model yang dapat diajarkan dan disempurnakan untuk suatu kegiatan dan kemudian bisa diterapkan pada kegiatan lain. Dataset yang digunakan pada penelitian ini adalah data daun karet yang berjumlah 1629 data yang dibagi dalam 5 kelas yaitu level 0 atau sehat merupakan daun yang sehat, level 1 merupakan daun yang telah terbentuk bercak coklat yang merupakan gejala dari penyakit namun belum memiliki tanda-tanda perubahan warna, level 2 merupakan daun yang telah terbentuk banyak bercak cokelat disertai dengan adanya perubahan warna pada daun, level 3 merupakan daun yang mengalami kerusakan jaringan, perubahan warna menjadi cokelat atau kuning namun masih memiliki sedikit bagian daun yang berwarna hijau, level 4 merupakan daun yang mengalami kerusakan jaringan cukup parah, dipenuhi bercak cokelat dan telah berwarna cokelat menyeluruh. Dari hasil simulasi yang dilakukan, diperoleh hasil terbaik dengan rata-rata accuracy 96,01%, recall 95,888%, dan precision 96,184% dengan running time rata-rata running time 69,759 detik.

Rubber plants are one of Indonesia's main export commodities. However, in recent years, rubber production in Indonesia has experienced a decline. This is due to the presence of the leaf fall disease caused by the Pestalotiopsis sp. fungus. The advancement of artificial intelligence technology using deep learning approaches enables the detection of this disease using image data. The Convolutional Neural Network (CNN) is a deep learning algorithm applied to visual or image data. In this study, researchers utilized the Convolutional Neural Network (CNN) method with the Residual Network 50 (ResNet50) architecture. Transfer Learning was also employed in this research, which involves training and refining a model for one task and then applying it to another task. The dataset used in this study consists of 1629 rubber leaf samples divided into 5 classes: level 0, representing the healthy leaves; level 1, indicating leaves with brown spots, a symptom of the disease, but without major visible color changes; level 2, comprising of leaves with numerous brown spots accompanied by slight color changes; level 3, representing leaves with tissue damage, a color change from green to brown or yellow, but still retaining some green parts; and level 4, depicting leaves with severe tissue damage, extensively covered in brown spots and having turned completely brown. The simulation results showed the best outcome with an average accuracy of 96.01%, recall of 95.888%, and precision of 96.184%, with an average running time of 69.759 seconds."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fakhry Arief Fabian
"Tanaman karet berperan sebagai komoditas penting di Indonesia karena menghasilkan karet alami yang memiliki banyak manfaat dan mampu bersaing di pasar internasional. Namun, sejak tahun 2017, produksi karet mengalami hambatan karena timbul serangan penyakit gugur daun baru yang berbeda dari penyakit terdahulu. Penyakit tersebut dapat menyebabkan gugur daun hingga 90% dan penurunan produksi lateks hingga 45%. Setelah ditelusuri, penyakit gugur daun baru ini disebabkan oleh patogen Pestalotiopsis sp. dan diberi nama penyakit gugur daun Pestalotiopsis. Sebagai penyakit baru, perlu dilakukan penelitian lebih lanjut untuk memonitor laju pertumbuhan penyakit ini. Salah satu penelitian ini adalah melakukan klasifikasi indeks atau level keparahan penyakit gugur daun Pestalotiopsis. Keparahan penyakit ini dapat dikelompokkan berdasarkan perubahan warna daun dan lesi khas yang timbul pada permukaan daun tanaman karet. Pada penelitian sebelumnya, pengukuran intensitas keparahan dilakukan dengan observasi secara langsung bercak gejala yang muncul pada daun atau pohon dalam jangka waktu tertentu. Pengamatan secara konvensional ini memerlukan tenaga yang banyak dan waktu yang cukup lama. Diperlukan suatu metode yang mampu melakukan klasifikasi level keparahan ini secara tepat dan cepat terhadap sampel daun yang berjumlah banyak. Saat ini, implementasi Artificial Intelligence (AI) melalui algoritma machine learning dapat menjadi solusi untuk menyelesaikan suatu permasalahan seperti klasifikasi multikelas secara otomatis dan efisien. Penelitian ini memanfaatkan salah satu teknik machine learning, yaitu artificial neural network berupa deep learning dengan arsitektur convolutional neural network (CNN). Dengan mempertimbangkan penelitian sebelumnya, maka penelitian ini mengajukan sebuah pengembangan dari CNN, yaitu arsitektur DenseNet121 sebagai metode untuk melakukan klasifikasi level keparahan penyakit gugur daun Pestalotiopsis menggunakan data citra daun karet. Klasifikasi level keparahan dibagi menjadi lima kelas, yaitu Level 0 (daun sehat atau tidak terinfeksi penyakit gugur daun Pestalotiopsis) dan Level 1-4 (menunjukkan tingkat keparahan penyakit gugur daun Pestalotiopsis). Pada Penelitian ini, digunakan 257 data citra daun karet yang dikumpulkan mahasiswa Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia ketika berkunjung ke Pusat Penelitian Karet Sembawa, Palembang pada tahun 2022. Data citra tersebut melalui preprocessing berupa crop dan resize agar dapat menjadi input yang diterima arsitektur.  Data dipisahkan menjadi data latih dan data uji dengan rasio 80:20. Model dilatih dengan pendekatan 5-fold cross validation sehingga pengujian dilakukan terhadap lima model berbeda. Berdasarkan simulasi, diperoleh rata-rata lima model berupa ccuracy sebesar 56,16% , precision sebesar 54,2% , recall sebesar 55,6%, skor F1 sebesar 51% , dan running time 3,110 detik.

Rubber plant is an essential commodity in Indonesia since natural rubbers from this plant are very beneficial and have high international market potential. Unfortunately, since 2017, a new leaf fall disease has caused massive decline of the rubber production. This disease leads to at most 90% leaf fall percentage and production decline as high as 45%. Subsequently, researchers found that this new leaf fall disease is caused by Pestalotiopsis sp., thus, the name of this disease is Pestalotiopsis leaf fall disease. Studies must be conducted to further investigate the growth and pattern of this new leaf fall disesase. One of these studies is to classify the intensity of the Pestalotiopsis leaf fall disease.The intensity can be measure by observing distinct symptoms and lesion frequency that would appear on the rubber plant’s leave surface. In earlier works, intensity are measured by conventionally taking notes of the symptomps that appear on the leaves or trees and these methods was done on timely basis. These traditional approaches takes a lot of time and requires a handful of people. Hence, there must be new methods to classify this disease’s intensity with less time and resource when the amount of leaf samples increase. Recent studies implement Artificial Intelligence (AI) by using machine learning to solve classification problems efficiently. This study takes a technique of machine learning, that is, deep learning convolutional neural network (CNN) architectures. By comparing previous researches, we propose the architecture DenseNet121 to implement CNN in multiclass classification problem by using leaf image data. The classification consists of five classes, which are the intensity of the Pestalotiopsis leaf fall disease from level 0 to level 4. Level 0 corresponds to healthy leaves or leaves with other diseases whereas Level 1-4 refer to leaves with the intensity of lesion and discoloration caused by Pestalotiopsis leaf fall disease. This study uses 257 image data that was taken by students of the Math and Science Faculty from Universitas Indonesia when they visited Rubber Research Center, Sembawa in 2022. The data is split into train and test data with 80:20 ratio. Models are trained with 5-fold cross validation approach so the that each model will be trained and tested towards 5 folds of data. Then, five different models are tested by evaluating their predictions to the test data. The result of this simulation shows the average performance from five models, they are an accuracy of 56,16%, a precision of 54,2%, a recall of 55,6%, an F1-score of 51% , and an average running time of 3,110 seconds."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ahmad Ihsan Farhani
"Indonesia menempati posisi kedua sebagai negara penghasil karet alami di dunia. Karet alami memiliki nama lain yaitu lateks. Belakangan ini produksi lateks di Indonesia menurun. Salah satu faktor penyebab menurunnya produksi lateks Indonesia adalah penyakit gugur daun. Jamur Pestalotiopsis sp. adalah salah satu jamur yang dapat menyebabkan penyakit gugur daun. Penyakit gugur daun yang disebabkan oleh jamur ini pertama kali terjadi di Indonesia pada tahun 2016 di Sumatera Utara. Penyakit tersebut menyebabkan tanaman karet menggugurkan daun sebelum waktunya sehingga menyebabkan produksi lateks berkurang. Cadangan makanan pohon karet lebih banyak dialokasikan untuk menumbuhkan kembali daun yang telah gugur dibanding untuk memproduksi lateks. Luas lahan pohon karet di Indonesia yang terinfeksi penyakit gugur daun Pestalotiopsis sp. sudah mencapai 30.328,84 hektar pada tahun 2021 menyebabkan penurunan produksi lateks hingga 30%. Pendeteksian penyakit gugur daun dapat dilakukan secara morfologi yaitu dengan pegamatan pada daun. Gejala penyakit gugur daun yang disebabkan oleh Pestalotiopsis sp. adalah munculnya bintik cokelat pada tulang daun yang lama kelamaan berkembang menjadi bintik cokelat gelap. Bintik tersebut kemudian membesar, menyebabkan daerah di sekitar daun mengalami nekrosis kemudian gugur. Kekurangan dari pendeteksian secara morfologi adalah memerlukan waktu dan tenaga yang cukup besar, serta keahlian khusus di bidang tanaman karet. Dalam penelitian ini, akan dilakukan pendeteksian penyakit gugur daun yang disebabkan oleh jamur Pestalotiopsis sp. dengan bantuan machine learning untuk mengurangi tenaga dan waktu yang diperlukan dalam mendeteksi penyakit gugur daun. Model machine learning akan menerima input data citra daun tanaman karet. Model yang digunakan dalam pendeteksian adalah k-means clustering untuk mensegmentasi data citra daun karet, convolutional autoencoder untuk melakukan fitur ekstraksi pada data citra hasil segmentasi dan suppport vector machine sebagai classifier. Dari hasil eksperimen dengan 5 kali percobaan didapat accuracy testing sebesar 62,91%, accuracy training sebesar 78,50%. Accuracy testing dan accuracy training memiliki perbedaan yang cukup signifikan menandakan model mengalami overfitting. Overfitting terjadi ketika dataset yang tersedia hanya sedikit, pada penelitian ini yaitu 257 data citra namun, model yang dilatih kompleks. Sehingga diperlukan penambahan data citra untuk menghindari overfitting dan meningkatkan accuracy dari model.

Indonesia occupy the second position as a natural rubber producing country in the world. Natural rubber has another name, namely latex. Recently, latex production in Indonesia has declined. One of the factors causing the decline in Indonesian latex production is leaf fall disease. The fungus Pestalotiopsis sp. is one of the fungi that can cause leaf fall disease. Leaf fall disease caused by this fungus first occurred in Indonesia in 2016 in North Sumatra. The disease causes rubber plants to drop their leaves prematurely, causing reduced latex production. Rubber tree food reserves are allocated more to regrow fallen leaves than to produce latex. The area of rubber trees in Indonesia infected with the Pestalotiopsis sp. leaf fall disease. has reached 30,328.84 hectares in 2021 causing a decline in latex production by up to 30%. Disease detection can be done morphologically by observing the leaves. Symptoms of leaf fall disease caused by Pestalotiopsis sp. is the appearance of brown spots on the veins of the leaves which over time develop into dark brown spots. These spots then enlarge, causing the area around the leaves to experience necrosis and then fall. The drawback of morphological detection is that it requires a lot of time and effort, as well as special expertise in the field of rubber plantations. In this research, we will detect leaf fall disease caused by the fungus Pestalotiopsis sp. with the help of machine learning to reduce the effort and time needed to detect leaf fall disease. The machine learning model will be using image of rubber plant leaves as input data. The model used in the detection is k-means clustering to segment rubber leaf image data, convolutional autoencoder to perform feature extraction on segmented image data and support vector machine as a classifier. From the experimental results with 5 trials obtained testing accuracy of 62.91%, training accuracy of 78.50%. Accuracy testing and accuracy training have significant differences indicating that the model is overfitting. Overfitting occurs when the available dataset is only a few, namely 257 image data but the model being trained is complex. So it is necessary to add image data to avoid overfitting and increase the accuracy of the model."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hepatika Zidny Ilmadina
"Leptomeningeal metastatis merupakan indikasi keganasan yang terjadi pada pasien leukemia. Meskipun hanya memiliki porsi 30-40% yang menyebabkan kekambuhan keganasan pada pasien leukemia, hal tersebut yang dijadikan dasar dalam menentukan pengobatan terbaik yang diberikan kepada mereka. Leptomeningeal metastasis lebih baik dideteksi dengan menggunakan Magnetic Resonance Imaging (MRI) karena sensitivitasnya yang tinggi dalam citra neuraxis. Kemampuan expert yang tinggi untuk melihat dan menganalisis sangat diperlukan dalam membaca hasil Brain MRI pasien leukemia dengan suspek leptomeningeal metastasis. Oleh karena itu, klasifikasi akan memakan waktu yang lama dan memungkinkan kesalahan pembacaan hasil. Berbagai metode telah banyak diusulkan dan dikembangkan dalam klasifikasi Brain MRI untuk mendapatkan hasil terbaik namun tantangan dalam penelitian ini adalah leptomeningeal metastasis yang karakteristiknya lebih sudah dikenali dibandingkan tumor pada otak. Oleh karena itu peneliti mengusulkan pengklasifikasian leptomeningeal metastasis dengan menggunakan metode CNN via transfer learning. Dengan berbagai skenario yang dilakukan, hasil akurasi terbaik adalah implementasi metode CNN (ResNet50) via transfer learning mencapai 82,22%.

Leptomeningeal metastasis is an indication of malignancy that occurs in leukemia patients. Although it only has a 30-40% portion, which causes recurrence of malignancy in leukemia patients, it is the basis for determining the best treatment given to them. Leptomeningeal metastases are better detected by using Magnetic Resonance Imaging (MRI) because of their high sensitivity in neuroaxis images. A high expert ability to see and analyze is needed in reading the brain MRI results of leukemia patients with suspected leptomeningeal metastasis. Therefore, the classification will take a long time and may an incorrect reading of the results. Various methods have been proposed and developed in the brain MRI classification to get the best results, but the challenge in this research is leptomeningeal metastasis, whose characteristics are more not recognizable than tumors in the brain. Therefore, we propose the classification of leptomeningeal metastasis using the CNN method via transfer learning. With various scenarios done, we obtained the best accuracy result is the implementation of the CNN (ResNet50) method via transfer learning, up to 82.22%."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2020
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Rezika Damayanti
"Jagung (Zea mays L.) merupakan salah satu tanaman serelia atau tanaman biji-bijian yang menjadi bahan pangan utama terpenting setelah padi dan gandum di dunia. Komoditas jagung dinilai sangat penting karena memiliki fungsi multiguna sebagai bahan pangan, bahan baku industri, bahan pakan ternak dan bahan bakar nabati. Seiring dengan kebutuhan jagung yang kian naik dari tahun ke tahunnya, kekurangan produksi dalam pasokan jagung global dan kenaikan harga input jagung menjadi hal yang harus diperhatikan karena memiliki dampak yang serius. Salah satu ancaman utama bagi produksi jagung adalah penyakit daun jagung yang disebabkan oleh jamur, beberapa diantaranya adalah Gray leaf spot, Northern leaf blight, dan Common rust. Gray leaf spot, Northern leaf blight, dan Common rust dapat menyebabkan hilangnya hasil panen sekitar 50%-70% di beberapa daerah penghasil jagung di dunia. Oleh karena itu, salah satu cara yang dapat dilakukan untuk mengurangi resiko kegagalan produksi jagung adalah mengambil langkah-langkah pencegahan dengan pendeteksian dini pada penyakit daun jagung melalui citra digital. Pada penelitian ini, digunakan pendekatan deep learning dengan metode Convolutional Neural Network (CNN) arsitektur ResNet-50 yang merupakan salah satu metode yang paling baik dalam mengolah citra digital. Data yang digunakan adalah Maize or Corn Dataset oleh Smaranjit Ghose dan diambil dari Kaggle yang merupakan online database. Setelah itu, dilakukan tahapan mengolah data citra dengan melakukan preprocessing data yang bertujuan agar meningkatkan akurasi seperti mengubah ukuran dan melakukan flip horizontal kemudian rotasi. Hasil penelitian menunjukkan bahwa Convolutional Neural Network ResNet-50 dengan menggunakan fungsi optimasi Adam dapat mendeteksi penyakit daun jagung dengan sangat baik. Hasil tersebut diperoleh dari 5 kali percobaan simulasi pada setiap skenario kasus yang menghasilkan rata-rata nilai training dan validation accuracy sebesar 98,68% dan 97,86%. Kemudian, rata-rata hasil accuracy testing, recall macro, recall micro, precision macro dan precision micro terbaik diperoleh dengan hasil masing-masing sebesar sebesar 97,49%, 97,13%, 97,53%, 96,69% dan 97,87%.

Maize (Zea Mays L.) is one of the cereal plants or grain crops that become an important food ingredient after rice and wheat in the world. Maize is also considered very important because it has a multi-purpose function as food, industrial raw materials, animal feed ingredients, and biofuels. Along with increasing demand for maize from year to year, lack of production for global maize supply and increase of maize price is one thing that needs more attention because it has a serious impact. One of the main threats to maize production is maize leaf disease that is caused by fungi, some of them are Gray leaf spot, Northern leaf blight, and Common rust. Gray leaf spot, Northern leaf blight, and Common rust can lead to reduced yields of about 50%-70% in some maize-producing areas. Therefore, one method that can be done to reduce the failure of maize production is taking preventive measures by detecting disease using digital images. This study uses deep learning methods by Convolutional Neural Network (CNN) ResNet-50 architecture, which is one of the best methods in processing digital images. The data used in this study is Maize or Corn Dataset by Smaranjit Ghose and taken from Kaggle which is an online database. After that, the stages of processing image data are carried out by preprocessing data to increase accuracies such as resizing and doing horizontal flips and rotations. The results showed that the Convolutional Neural Network ResNet-50 using the Adam optimization function could detect maize leaf disease very well. These results were obtained from 5 simulations experiments in each case scenario which resulted in an average value of training and validation accuracy of 98.68% and 97.86. Then, the average results of the best accuracy testing, recall macro, recall micro, precision macro, and precision micro were obtained with results of 97.49%, 97.13%, 97.53%, 96.69%, and 97,87%."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Helmi Alfarel
"Diagnosa dan pengobatan kanker pada tahap jinak adalah hal yang sangat penting. Akhir akhir ini, ahli patologi menggunakan bantuan komputer dengan teknologi machine learning untuk membantu mendiagnosis pasien menggunakan citra medis. Namun, jumlah data yang dibutuhkan machine learning besar dan biasanya jumlah citra medis yang tersedia terbatas. Transfer learning adalah teknik machine learning yang dapat mengatasi terbatasnya jumlah data. Transfer learning adalah teknik yang mentransfer pengetahuan yang didapat saat model mempelajari untuk menyelesaikan suatu masalah dan digunakan untuk menyelesaikan masalah lain. Pada machine learning, pemilihan arsitektur model dan hyperparameter lainnya sangat berpengaruh pada performa model. Penelitian ini melakukan hyperparameter optimization terhadap CNN yang mengklasifikasi citra histopatologi berisi jaringan sehat dan jaringan kanker. Penelitian ini menemukan CNN dengan arsitektur DenseNet121, freeze rate 75%, 0 lapis classifier, learning rate 0.001, dan optimizer RMSProp mempunyai performa keakuratan terbaik pada 98% dengan waktu latih selama 19.5 detik.

Diagnosis and treatment of cancer at the benign stage is very important. Recently, pathologists are using computer-aided diagnostics with machine learning techniques to diagnose patients from medical images. However, the amount of data required for machine learning is large and the number of medical images available is usually limited. Transfer learning is a machine learning technique that can handle limited amounts of data. Transfer learning is a technique that transfers knowledge gained when learning to solve a problem, to use it to solve a different problem. In machine learning, choosing an optimum architecture and hyperparameters is very important because it affects the performance of the network. In this research, we did a hyperparameter optimization of a CNN that classifies images that contain healthy tissue and cancer tissue. The research concludes that CNN with architecture DenseNet121, freeze rate 75%, zero hidden layer on classifier, learning rate 0.001, and optimizer RMSProp have the best performance with 98% accuracy and 19.5 seconds training time."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Mahesa Oktareza
"Kanker kolorektal adalah kanker yang berkembang pada usus besar dan/atau rektum. Berdasarkan survei GLOBOCAN 2012, insidens kanker kolorektal di seluruh dunia menempati urutan ketiga dan menduduki peringkat keempat sebagai penyebab kematian. Dalam proses diagnosis kanker kolorektal, telah diterapkan pendekatan medis dengan digital rectal examination menggunakan colonoscopy untuk menilai keadaan tumor dan mobilitas tumor. Namun, seiring berkembangnya teknologi, para ilmuwan mencoba pendekatan lain untuk pendeteksian kanker kolorektal salah satunya menggunakan penggunaan artificial intelligence khususnya machine learning. Terdapat beberapa penelitian yang lalu mengenai pengaplikasian machine learning dalam kasus klasifikasi kanker kolorektal dengan berbagai model dan tingkat akurasi. Pada penelitian ini, penulis menggunakan pendekatan Convolutional Neural Network (CNN) dengan arsitektur You Only Look Once (YOLO) untuk mengklasifikasi kanker kolorektal tipe ganas dan jinak. Data yang digunakan pada penelitian ini adalah Lung and Colon Cancer Histopathological Image Dataset oleh Borkowski AA, dkk. dengan mengambil dataset kanker kolorektal yaitu 5000 kanker ganas dan 5000 kanker jinak. Model akan dibangun melalui data tersebut, yang dilatih menggunakan metode CNN dengan arsitektur YOLO. Data di split dengan perbandingan data latih dan data uji 70:30 dan 80:20. Kinerja model dievaluasi dengan nilai accuracy, recall, loss dan running time. Accuracy dan Recall yang didapatkan pada masing-masing split data sebesar 100% dengan running time 3 jam 7 menit 43 detik pada split data 70:30 dan 3 jam 30 menit 6 detik pada split data 80:20.

Colorectal cancer is cancer that develops in the colon and/or rectum. Based on the 2012 GLOBOCAN survey, the incidence of colorectal cancer worldwide ranks third and ranks fourth as a cause of death. In the process of diagnosing colorectal cancer, a medical approach has been applied with digital rectal examination using colonoscopy to assess the state and mobility of the tumor. However, as technology develops, scientists try other approaches to detect colorectal cancer, one of which is using artificial intelligence, especially machine learning. There have been several past studies regarding the application of machine learning in the case of colorectal cancer classification with various models and levels of accuracy. In this study, the authors used a Convolutional Neural Network (CNN) approach with You Only Look Once (YOLO) architecture to classify malignant and benign types of colorectal cancer. The data used in this study was the Lung and Colon Cancer Histopathological Image Dataset by Borkowski AA, et al. by taking the colorectal cancer dataset, namely 5000 malignant cancers and 5000 benign cancers. The model will be built using the data, which is trained using the CNN method with the YOLO architecture. The data is split with a comparison of training data and test data of 70:30 and 80:20. The performance of the model is evaluated with the values of accuracy, recall, loss and running time. Accuracy and Recall obtained in each data split is 100% with a running time of 3 hours 7 minutes 43 seconds on a 70:30 data split and 3 hours 30 minutes 6 seconds on an 80:20 data split."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Raven Ginola Imanuel
"Mata merupakan salah satu dari panca indra yang digunakan untuk melihat dan menjadi aset terpenting dalam hidup manusia. Salah satu bagian terpenting dari mata ialah kelopak mata di mana terdapat sebuah kelenjar yang disebut kelenjar meibom. Kelenjar ini berada pada lapisan air mata yang berguna untuk menyekresikan komponen minyak atau lipid dan berperan penting dalam memperlambat proses evaporasi yang menyebabkan terjaganya kelembapan pada mata. Kekurangan kelenjar meibom yang dikenal sebagai Disfungsi Kelenjar Meibom (DKM) merupakan penyebab utama dari penyakit mata kering. Karena proses diagnosis yang dikerjakan oleh tenaga medis terbilang subjektif, maka penelitian ini menggunakan pendekatan deep learning untuk melakukan klasifikasi pada tingkat keparahan dari DKM. Klasifikasi dilakukan dengan membagi tingkat keparahan atau kehilangan kelenjar meibom berdasarkan hasil meiboscore-nya menjadi 4 kelas, yaitu kelas 0 untuk meiboscore ≤ 25%, kelas 1 untuk 25% < meiboscore ≤ 50%, kelas 2 untuk 50% < meiboscore ≤ 75%, dan kelas 3 untuk meiboscore  > 75%. Metode deep learning yang digunakan adalah Convolutional Neural Network (CNN) dengan arsitektur AlexNet. Data yang digunakan pada penelitian ini adalah 139 citra meibography yang bersumber dari Rumah Sakit Ciptomangunkusumo (RSCM) Departemen Kirana dari 35 pasien mata kering yang sudah mengalami augmentasi dan segmentasi, sehingga data akhir yang digunakan yaitu sebanyak 417 citra segmentasi. Pada tahap pre-processing, dilakukan perhitungan meiboscore dengan bantuan software dan membaginya ke dalam 4 kelas sesuai dengan nilai meiboscore­-nya. Citra yang sudah dilabel ini kemudian dibagi menjadi 80% data training dan 20% data testing. Dari 80% data training, diambil 10% untuk dijadikan data validation, sehingga 417 data tersebut terbagi menjadi 299 data training, 84 data testing, serta 34 data validation. Training model dilakukan menggunakan arsitekur AlexNet dengan hyperparameter berupa epoch sebanyak 100, batch size 32, dan learning rate 0,0001. Pada arsitektur ini juga diterapkan fungsi optimasi yaitu Adam (Adaptive moment estimation) dan fungsi loss categorical cross entropy. Proses modelling dilakukan sebanyak 5 kali percobaan dan memperoleh nilai rata-rata akurasi training dan validation sebesar 99,59% dan 99,41% dan nilai dari loss training dan loss validation sebesar 0,1259 dan 0,0524. Sedangkan rata-rata kinerja testing model berhasil memperoleh akurasi testing sebesar 87,38%; testing loss sebesar 0,5151; dan Area Under Curve (AUC) sebesar 0,9715.

The eye is one of the five senses used to see and is the most important asset in human life. One of the most important parts of the eye is the eyelid where there is a gland called meibomian gland. This gland is located in the tear film which is useful for secreting oil or lipid components and plays an important role in slowing down the evaporation process which leads to maintaining moisture in the eye. Meibomian gland deficiency, known as Meibomian Gland Dysfunction (MGD), is a major cause of dry eye disease. Since the diagnosis process carried out by medical personnel is subjective, this study uses a deep learning approach to classify the severity of MGD. Classification is done by dividing the severity or loss of meibomian glands based on meiboscore results into 4 classes, namely class 0 for meiboscore ≤ 25%, class 1 for 25% < meiboscore ≤ 50%, class 2 for 50% < meiboscore ≤ 75%, and class 3 for meiboscore > 75%. The deep learning method used is Convolutional Neural Network (CNN) with AlexNet architecture. The data used in this study are 139 meibography images sourced from Ciptomangunkusumo Hospital (RSCM) Kirana Department from 35 dry eye patients that have undergone augmentation and segmentation, so that the final data used is 417 segmentation images. In the pre-processing stage, meiboscore was calculated with the help of software and divided into 4 classes according to the meiboscore value. The labeled images were then divided into 80% training data and 20% testing data. From 80% of the training data, 10% is taken to be used as validation data, so that the 417 data is divided into 299 training data, 84 testing data, and 34 validation data. The training model is carried out using the AlexNet architecture with hyperparameters in the form of epochs of 100, batch size 32, and learning rate 0,0001. In this architecture, the optimization function Adam (Adaptive moment estimation) and categorical cross entropy loss function are also applied. The modeling process was carried out 5 times and obtained an average training and validation accuracy value of 99,59% and 99,41% and the value of training loss and validation loss of 0,1259 and 0,0524. While the average performance of the testing model successfully obtained a testing accuracy of 87,38%; testing loss of 0,5151; and Area Under Curve (AUC) of 0,9715.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Alva Andhika Sa`Id
"Degenerasi makula atau Age-Related Macular Degeneration (AMD) adalah penyakit mata yang menyebabkan kebutaan pada bagian tengah mata yang merusak kinerja retina pada bagian makula yang berfungsi untuk mempertajam penglihatan untuk beberapa aktivitas, seperti membaca, menulis, dan mengenali wajah seseorang. Penderita AMD akan mengalami penglihatan yang buram, distorsi penglihatan, atau bahkan kehilangan penglihatannya. Dalam mendiagnosis AMD dapat digunakan oftalmoskopi, beberapa metodenya yaitu Ocular Coherence Tomography (OCT) dan fotografi fundus sudah banyak dilakukan untuk membantu diagnosis AMD. Namun, diagnosis AMD dengan mengandalkan ahli dapat berlangsung lama dan memungkinkan terjadinya error subjektivitas oleh pendiagnosis. Diagnosis awal diperlukan untuk mendeteksi adanya kemungkinan terjadinya AMD pada tahap awal yang gejalanya tidak dirasakan oleh penderita. Pendekatan diagnosis AMD salah satunya dapat dilakukan dengan pendekatan machine learning. Machine learning sudah berperan besar dalam sektor medis membantu permasalahan klasifikasi diagnosis penyakit seperti metode Support Vector Machines (SVM) dan Twin Support Vector Machines (TSVM). Salah satu cabang machine learning yang sangat baik dalam klasifikasi penyakit lewat gambar adalah deep learning. Metode yang digunakan deep learning untuk permasalahan klasifikasi data citra salah satunya adalah Convolutional Neural Network (CNN). Pada penelitian ini, akan digunakan metode Convolutional Neural Network – Twin Support Vector Machines (CNN-TSVM) untuk mengklasifikasi penyakit AMD menggunakan data citra fundus yang diperoleh dari Ocular Disease Recognition (ODIR-5K) 2019, dengan 227 data citra fundus normal dan 227 data citra fundus penyakit AMD. Evaluasi kinerja metode CNN-TSVM menggunakan teknik hold-out validation dengan membagi data latih dan data uji dengan proporsi 10% - 90% dan metrik akurasi, presisi, dan recall. Hasil kinerjanya dibandingkan dengan metode CNN dan Convolutional Neural Network – Support Vector Machines (CNN-SVM). Hasil yang diperoleh menunjukkan CNN-TSVM menggunakan kernel RBF memberikan akurasi dan recall terbaik, sementara CNN-TSVM menggunakan kernel polinomial memberikan presisi terbaik.

Age-related Macular Degeneration (AMD) is an eye disease that causes blindness in the middle of the eye that impairs retinal performance in the macula that serves to sharpen vision for some activities, such as reading, writing, and recognizing a person's face. AMD sufferers will experience blurred vision, vision distortion, or even loss of vision. In AMD diagnosed, ophthalmology can be used, several methods of ophthalmology including Ocular Coherence Tomography (OCT) and fundus photography have been widely done to help the diagnosis of AMD. However, AMD diagnosis by relying on experts can be long-lasting and allow subjective errors to occur in the diagnosis. An initial diagnosis is needed to detect the possibility of AMD occurrence at an early stage where symptoms are not felt by the sufferer. One of AMD diagnosis approach can be done with machine learning approach as one of artificial intelligence methods. Machine learning method has played a major role in the medical sector helping classification problems of disease diagnosis such as Support Vector Machines (SVM) and Twin Support Vector Machines (TSVM). One of the excellent branches of machine learning in the classification of diseases through images is deep learning. The suitable method used by deep learning for image data classification problems is convolutional neural network (CNN). In this study, Convolutional Neural Network–Twin Support Vector Machines (CNN-TSVM) method will be used to classify AMD diseases using fundus image data obtained from Ocular Disease Recognition (ODIR-5K) 2019, with 227 normal fundus image data and 227 fundus image data of AMD disease. Performance evaluation of CNN-TSVM method using hold-out validation techniques by dividing training data and testing data by a proportion of 10% - 90% and metrics of accuracy, precision, and recall. The performance results will be compared to CNN and Convolutional Neural Network – Support Vector Machines (CNN-SVM). The results showed CNN-TSVM using RBF kernel provided the best accuracy and recall, while CNN-TSVM using polynomial kernel provided the best precision."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Alva Andhika Sa`Id
"Degenerasi makula atau Age-Related Macular Degeneration (AMD) adalah penyakit mata yang menyebabkan kebutaan pada bagian tengah mata yang merusak kinerja retina pada bagian makula yang berfungsi untuk mempertajam penglihatan untuk beberapa aktivitas, seperti membaca, menulis, dan mengenali wajah seseorang. Penderita AMD akan mengalami penglihatan yang buram, distorsi penglihatan, atau bahkan kehilangan penglihatannya. Dalam mendiagnosis AMD dapat digunakan oftalmoskopi, beberapa metodenya yaitu Ocular Coherence Tomography (OCT) dan fotografi fundus sudah banyak dilakukan untuk membantu diagnosis AMD. Namun, diagnosis AMD dengan mengandalkan ahli dapat berlangsung lama dan memungkinkan terjadinya error subjektivitas oleh pendiagnosis. Diagnosis awal diperlukan untuk mendeteksi adanya kemungkinan terjadinya AMD pada tahap awal yang gejalanya tidak dirasakan oleh penderita. Pendekatan diagnosis AMD salah satunya dapat dilakukan dengan pendekatan machine learning. Machine learning sudah berperan besar dalam sektor medis membantu permasalahan klasifikasi diagnosis penyakit seperti metode Support Vector Machines (SVM) dan Twin Support Vector Machines (TSVM). Salah satu cabang machine learning yang sangat baik dalam klasifikasi penyakit lewat gambar adalah deep learning. Metode yang digunakan deep learning untuk permasalahan klasifikasi data citra salah satunya adalah Convolutional Neural Network (CNN). Pada penelitian ini, akan digunakan metode Convolutional Neural Network – Twin Support Vector Machines (CNN-TSVM) untuk mengklasifikasi penyakit AMD menggunakan data citra fundus yang diperoleh dari Ocular Disease Recognition (ODIR-5K) 2019, dengan 227 data citra fundus normal dan 227 data citra fundus penyakit AMD. Evaluasi kinerja metode CNN-TSVM menggunakan teknik hold-out validation dengan membagi data latih dan data uji dengan proporsi 10% - 90% dan metrik akurasi, presisi, dan recall. Hasil kinerjanya dibandingkan dengan metode CNN dan Convolutional Neural Network – Support Vector Machines (CNN-SVM). Hasil yang diperoleh menunjukkan CNN-TSVM menggunakan kernel RBF memberikan akurasi dan recall terbaik, sementara CNN-TSVM menggunakan kernel polinomial memberikan presisi terbaik.

Age-related Macular Degeneration (AMD) is an eye disease that causes blindness in the middle of the eye that impairs retinal performance in the macula that serves to sharpen vision for some activities, such as reading, writing, and recognizing a person's face. AMD sufferers will experience blurred vision, vision distortion, or even loss of vision. In AMD diagnosed, ophthalmology can be used, several methods of ophthalmology including Ocular Coherence Tomography (OCT) and fundus photography have been widely done to help the diagnosis of AMD. However, AMD diagnosis by relying on experts can be long-lasting and allow subjective errors to occur in the diagnosis. An initial diagnosis is needed to detect the possibility of AMD occurrence at an early stage where symptoms are not felt by the sufferer. One of AMD diagnosis approach can be done with machine learning approach as one of artificial intelligence methods. Machine learning method has played a major role in the medical sector helping classification problems of disease diagnosis such as Support Vector Machines (SVM) and Twin Support Vector Machines (TSVM). One of the excellent branches of machine learning in the classification of diseases through images is deep learning. The suitable method used by deep learning for image data classification problems is convolutional neural network (CNN). In this study, Convolutional Neural Network–Twin Support Vector Machines (CNN-TSVM) method will be used to classify AMD diseases using fundus image data obtained from Ocular Disease Recognition (ODIR-5K) 2019, with 227 normal fundus image data and 227 fundus image data of AMD disease. Performance evaluation of CNN-TSVM method using hold-out validation techniques by dividing training data and testing data by a proportion of 10% - 90% and metrics of accuracy, precision, and recall. The performance results will be compared to CNN and Convolutional Neural Network – Support Vector Machines (CNN-SVM). The results showed CNN-TSVM using RBF kernel provided the best accuracy and recall, while CNN-TSVM using polynomial kernel provided the best precision."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>