Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 79845 dokumen yang sesuai dengan query
cover
Filda Maharani Hasanah
"Telemedicine merupakan solusi ideal untuk menjadi layanan kesehatan di era COVID-19. Halodoc merupakan salah satu aplikasi telemedicine terbaik di Indonesia. Sejak tahun 2022, Halodoc sudah mempunyai lebih dari 15.000.000 pengguna sehingga perlu mengganti fokus bisnisnya dari product oriented menjadi customer oriented. Halodoc perlu melakukan analisis customer segmentation untuk mengetahui karakteristik pengguna lebih dalam. Analisis ini menggunakan salah satu teknik data mining yaitu clustering menggunakan algoritma K-Prototypes. Atribut penggunaan voucher, total transaksi, kategori produk, spesialis dokter, provider asuransi, kelompok usia, merek handphone, dan lokasi digunakan pada penelitian ini. Pengguna Halodoc yang melakukan transaksi minimal 1 kali selama November 2021 hingga Januari 2022 yang berjumlah 193.000 pengguna akan disegmentasi. Hasilnya adalah pengguna Halodoc dapat disegmentasi menjadi 4 status sosial yaitu working class, petty bourgeoise, middle class, dan high class. Status sosial yang memiliki ukuran terbesar adalah middle class yaitu dengan proporsi 46,69% dari keseluruhan pengguna. Pengguna yang paling potensial untuk Halodoc adalah yang berasal dari status sosial High Class karena memiliki frekuensi transaksi terbanyak dan nominal pengeluaran terbesar.

Telemedicine is the ideal solution to become a healthcare service in COVID-19 era. Halodoc is one of the best telemedicine applications in Indonesia. Since 2022, Halodoc has more than 15.000.000 users, so they need to change its business focus from product oriented to customer oriented. Halodoc needs to do customer segmentation analysis to find out more about user’s characteristics. This analysis uses one of data mining techniques which is K-Prototypes Clustering. Voucher usage, total transaction, doctor specialist, insurance provider, age group, mobile phones’s brand, and location are used in this study. Halodoc’s users who make transactions at least 1 time during November 2021 to January total 193.000 users will be segmented. The results is Halodoc’s users can be segmented into 4 social classes such as working class, petty bourgeoise, middle class, and high class. Social status that has the largest size is the middle class with the proportion of 46.69% of the total users. The most potential users for Halodoc are those from High Class social status because they have the highest transaction frequency and the largest nominal spending."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rosalia Deviana Cahyaningrum
"Penelitian ini bertujuan untuk mengimplementasikan spectral clustering-PAM dengan menggunakan algoritma similaritas serial dan mengimplementasikan algoritma similaritas paralel berbasis CUDA dalam metode spectral clustering pada data microarray gen karsinoma. Implementasi dibantu dengan perangkat lunak R berbasis open source yang digunakan pada algoritma spectral clustering-PAM dengan algoritma similaritas serial dan CUDA yang digunakan pada algoritma similaritas paralel. Pengelompokan data microarray gen karsinoma diawali dengan menormalisasi data menggunakan normalisasi min-max. Pada algoritma spectral clustering-PAM, pertama-tama similaritas antar gen karsinoma dihitung. Selanjutnya, membentuk matriks Laplacian ternormalisasi dari matriks diagonal dan matriks Laplacian tak ternormalisasi. Langkah berikutnya yaitu menghitung eigenvalue dari matriks Laplacian ternormalisasi dan menentukan eigenvector dari eigenvalue terkecil matriks Laplacian ternormalisasi yang disusun menjadi dataset baru untuk dipartisi setiap barisnya menggunakan metode PAM. Berdasarkan running time, waktu yang dibutuhkan untuk menghitung nilai similaritas secara paralel di CUDA 378 kali lebih cepat daripada secara serial di R. Hasil penelitian menunjukkan bahwa spectral clustering-PAM mengelompokkan data microarray gen karsinoma menjadi dua cluster dengan nilai rata-rata silhouette yaitu 0,6458276.

This research aims to implement the spectral clustering PAM using serial similarity algorithm and implement parallel similarity algorithm based on CUDA in spectral clustering method on microarray data of carcinoma genes. Implementation assisted with software based on open source R used in spectral clustering algorithm PAM with serial similarity algorithm and CUDA used to parallel similarity algorithm. Clustering microarray data of carcinoma genes preceded by normalizing the data using min max normalization. In the spectral clustering PAM algorithm, first of all, similarity between genes of carcinoma calculated. Furthermore, forming the normalized Laplacian matrix from diagonal matrix and unnormalized Laplacian matrix. The next step is to calculate the eigenvalues of normalized Laplacian matrix and determine the eigenvectors of k smallest eigenvalues of normalized Laplacian matrix is organized into a new dataset to be partitioned each line using PAM. Based on the running time, the time required to calculate the value of parallel similarity in CUDA is 378 times faster than a serial in R. The results showed that spectral clustering PAM classify microarray data of carcinoma genes into two clusters with an average silhouette value is 0,6458276."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2017
T47172
UI - Tesis Membership  Universitas Indonesia Library
cover
Pandapotan, Adolf
"Tujuan Tugas Akhir ini adalah mengimplementasikan algoritma clustering (sebagai bagian dari Data Mining Algorithms Collection) menggunakan bahasa pemrograman C++. Ada 2 algoritma clustering yang diimplementasikan yaitu Cobweb dan Iterate. Uji coba dilakukan dengan membandingkan kecepatan eksekusi dari implementasi Cobweb dengan Cobweb pada WEKA dan implementasi Iterate, serta membandingkan kualitas partisi implementasi Cobweb dengan Cobweb pada WEKA dan implementasi Iterate. Ada 2 jenis data uji coba yaitu dataset kecil dan dataset besar. Hasil uji coba menunjukan algoritma Cobweb pada WEKA bukan algoritma Cobweb murni, waktu eksekusi Cobweb implementasi lebih cepat dari WEKA namun lebih lambat dari Iterate implementasi, urutan data berpengaruh terhadap hasil Cobweb, dan kualitas Iterate lebih baik dari Cobweb. Kata kunci: clustering, Cobweb, data mining, dataset, Iterate.
The purpose of this mini thesis is to implement clustering algorithms (as part of Data Mining Algorithms Collection) using C++. There are two clustering algorithms that are implemented, that are Cobweb and Iterate. The experiment is done by comparing the execution speed of Cobweb implementation with Cobweb in WEKA and Iterate implementation, also comparing the partition quality of Cobweb implementation with Cobweb in WEKA and Iterate implementation. There are two kinds of experiment data, which are small dataset and large dataset. The test results show that Cobweb algorithm in WEKA is not pure Cobweb algorithm, the execution time of Cobweb implementation is faster than WEKA but slower than Iterate implemetation, the data sorted affected to the Cobweb result and the quality of Iterate is better than Cobweb."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2008
S-Pdf
UI - Skripsi Open  Universitas Indonesia Library
cover
Fahrezal Zubedi
"Pada penelitian ini mengimplementasikan algoritma Similarity Based Biclustering dengan menggunakan PAM clustering pada tiga dataset ekspresi gen microarray. Penelitian ini bertujuan untuk mengetahui ekspresi regulasi dari masing-masing bicluster yang diperoleh dan mengetahui kinerja algoritma Similarity Based Biclustering-PAM clustering berdasarkan hasil analisis kelompok kondisi. Similarity based biclustering-PAM clustering secara teoritis terdiri dari empat tahap utama yaitu: mentransformasi data, membangun matriks similaritas, proses clustering khususnya dalam tesis ini menggunakan metode partisi PAM dan mengekstrak bicluster. Algoritma similarity based biclustering-PAM clustering dapat mengetahui ekspresi regulasi dari tiap bicluster pada tiga dataset yaitu: Diabetes Melitus tipe II, Diabetes Retinopati, dan Limfoma. Akurasi yang diperoleh dari algoritma Similarity Based Biclustering untuk masing-masing dataset yaitu Diabetes Melitus tipe II sebesar 0.55, Diabetes Retinopati sebesar 0.80 dan Limfoma sebesar 0.83.

In this research implements Similarity Based Biclustering algorithm by using PAM Clustering method in three dataset of microarray gene expression. Aim of this research is to know the regulated expression of each obtained bicluster and to know the performance of Similarity Based Biclustering PAM Clustering algorithm based on the result of group condition analysis. Similarity Based Biclustering is theoretically composed of four main stages transforming data, constructing matrix similarity, clustering process, especially in this thesis using PAM partition algorithm and extracting bicluster. Similarity Based Biclustering PAM is able to know the regulatory expression of each bicluster in three datasets Diabetes Mellitus type 2, Diabetes Retinopathy, and Lymphoma. Accuracy obtained from Similarity Based Biclustering algorithm for each dataset is 0.55 in data of type 2 diabetes mellitus, 0.80 in diabetic retinopathy data and 0.83 in lymphoma data.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
T49505
UI - Tesis Membership  Universitas Indonesia Library
cover
Nadhira Riska Maulina
"Dengan adanya teknologi, pelaku usaha dapat memanfaatkannya sebagai salah satu faktor pendorong peningkatan operasional bisnis menjadi lebih efisien. Peningkatan jumlah pengguna yang beralih ke mesin kasir modern mengakibatkan kemunculan perusahaan penyedia dengan layanan dan harga yang tidak jauh berbeda. Di Indonesia perusahaan penyedia meisn kasir modern bersaing untuk dapat mempertahankan pelanggannya. Penelitian ini bertujuan untuk mendapatkan informasi mengenai karakteristik pelanggan dengan membuat segmentasi pelanggan berdasarkan perilaku penggunaan mesin kasir pada usaha yang dikelolanya. Setelah diketahui kelompok pelanggan dengan karakteristiknya, setiap kelompok akan diklasifikasikan berdasarkan status pelanggan (Aktif dan Tidak Aktif). Data untuk penelitian ini didapatkan dari salah satu perusahaan penyedia yang menjadi pelopor mesin kasir modern di Indonesia. Atribut yang dipilih yaitu Length, Recency, Frequency, dan Monetary (LRFM). Data Mining merupakan metode yang dapat digunakan untuk mengidentifikasi informasi yang berada pada set data untuk Customer Relationship Management. Metode yang digunakan untuk segmentasi pelanggan adalah metode K-Means Clustering sedangkan untuk klasifikasi status pelanggan adalah metode Decision Tree C4.5. Hasil dari penelitian ini berupa karakteristik setiap kelompok pelanggan dan model prediksi status pelanggan yang dapat digunakan sebagai dasar pembuatan usulan strategi untuk membantu perusahaan dalam penyusunan strategi retensi pelanggan.

As the development of technology becomes advanced, businessmen can utilize it as one of the factors to drive the improvement or growth of their business operations to be more efficient. The increasing number of users who switch to use the modern cash register machines has resulted in the emergence of company with services and price that are not much different. In Indonesia, modern cash register companies compete to be able to retain their customers. This study aims to get information about the characteristics of customers through customer segmentation based on the behavior. After knowing the customer segments with their characteristics, each segment will be classified based on customer status (Active and Inactive). The data for this study was obtained from one of the provider companies that became the pioneer of the modern cash register in Indonesia. The selected attributes are Length, Recency, Frequency, and Monetary (LRFM). Data Mining is a method that can be used to identify information that is in a data set for Customer Relationship Management. The method used for customer segmentation is the K-Means Clustering while the classification of customer status is the Decision Tree C4.5. The results of this study are in the form of characteristics of each customer group and customer status prediction models that can be used as the basis for making strategies to assist companies in preparing customer retention strategies."
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
"This book highlights the state of the art and recent advances in Big Data clustering methods and their innovative applications in contemporary AI-driven systems. The book chapters discuss Deep Learning for Clustering, Blockchain data clustering, Cybersecurity applications such as insider threat detection, scalable distributed clustering methods for massive volumes of data; clustering Big Data Streams such as streams generated by the confluence of Internet of Things, digital and mobile health, human-robot interaction, and social networks; Spark-based Big Data clustering using Particle Swarm Optimization; and Tensor-based clustering for Web graphs, sensor streams, and social networks. The chapters in the book include a balanced coverage of big data clustering theory, methods, tools, frameworks, applications, representation, visualization, and clustering validation. "
Switzerland: Springer Nature, 2019
e20507207
eBooks  Universitas Indonesia Library
cover
Bambang Novianto
"Pertumbuhan pemanfaatan internet telah meningkatkan perhatian terhadap keamanan data. Pada tahun 2014, Projek SHINE (SHodan Intelligence Extraction) telah menerbitkan laporan penilaian keamanan skala besar untuk perangkat yang terhubung ke Internet. Namun, berdasarkan laporan tersebut, jumlah informasi mengenai IP address Indonesia yang berhasil didapatkan masih sedikit. Terdapat sebanyak 7.182 IP address dari Indonesia, yaitu sekitar 0,0032% dari total 2.186.971 IP address yang berhasil dikumpulkan oleh Projek SHINE. Dalam penulisan tesis ini, penulis mengajukan inisiatif untuk melakukan analisis kerentanan semua informasi Autonomous System Number (AS Number) di Indonesia dari Shodan. Penulis telah menyusun dataset semua informasi AS Number di Indonesia antara lain 12.787 port, 79 sistem operasi, 409 produk, 3.634 domain, 145.543 IP address, dan 790 organisasi. Penulis menggunakan algoritma K-Means clustering untuk mengelompokkan AS Number ke dalam beberapa kelas sesuai dengan tingkat paparan di shodan. Berdasarkan hasil pengelompokan, penulis mendapatkan 4 kelas AS Number antara lain 1.075 AS Number di kelas: 0 (belum terdapat informasi mengenai AS Number tersebut di Shodan), 614 AS Number di kelas: 1 (tingkat paparan rendah), 9 AS Number di kelas: 2 (tingkat paparan sedang), dan 1 AS Number di kelas: 3 (tingkat paparan tinggi). Informasi ini dapat dimanfaatkan oleh Kementerian yang menangani bidang Teknologi Informasi dan Komunikasi dan Badan yang menangani Keamanan Siber di Indonesia untuk menghimbau organisasi pengelola AS Number agar mewaspadai potensi kerentanan yang dinformasikan oleh Shodan dan dimanfaatkan oleh hacker.

The growth of internet-enabled devices has increased interest in cybersecurity. In 2014, Project SHINE (SHodan INtelligence Extraction) published a report of large-scale security assessments for devices connected to the Internet. However, the number of IP addresses harvested from Indonesia in 2014 is very small. There were 7.182 IP address from Indonesia. It was about 0,0032% from the total 2.186.971 IP addresses. In this paper, we propose an initiative to gather all information for all Autonomous System Number (AS Number) from Indonesia in Shodan. We have gathered a dataset about all information of AS Numbers in Indonesia such as 12.787 unique ports, 79 unique operating systems, 409 unique products, 3.634 unique domains, 145.543 unique IP addresses, and 790 unique organizations. We use the K-Means algorithm to cluster all AS Numbers into several classes according to the exposure level in shodan. Based on the result, we have 4 classes of AS Numbers. There are 1.075 AS Numbers in class:0 (no information in Shodan yet), 614 AS Numbers in class:1 (exposure level = low), 9 AS Numbers in class:2 (exposure level = medium), and 1 AS Number in class:3 (exposure level = high). This information can be used to warn the organizations that manage AS Numbers in Indonesia to be aware of the security and the threats to their systems."
Jakarta: Fakultas Teknik Universitas Indonesia, 2020
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Luthfi Azra Aulia
"Kualitas hidup adalah suatu payung yang melingkupi variasi konsep fungsional, status kesehatan, persepsi, kondisi kehidupan, gaya hidup, dan kebahagiaan. Indikator dalam mengukur kualitas hidup terbagi menjadi dua, yakni indikator subjektif dan indikator objektif. Indikator subjektif berkaitan langsung dengan berbagai pengalaman yang seseorang alami dalam hidupnya. Di sisi lain, indikator objektif dikaitkan dengan wujud kepemilikan berbagai material atau faktor eksternal yang mempengaruhi berbagai pengalaman seseorang dalam menjalani kehidupannya. Pada penelitian ini, indikator objektif dipilih sebagai alat ukur kualitas hidup yang mencakup karakteristik sosial, ekonomi, kesehatan, dan lingkungan. Data yang digunakan dalam penelitian terdiri dari dua jenis data, yakni data numerik dan kategorik. Data yang digunakan merupakan data sekunder berisikan indikator objektif kualitas hidup di 82 negara pada tahun 2020. Adapun metode yang digunakan adalah algoritma K-prototypes dan Two Step Cluster (TSC) yang merupakan bagian dari metode pengelompokan nonhierarki dan hierarki serta dapat menangani data bertipe campuran (numerik dan kategorik). Hasil dari penelitian ini menunjukkan bahwa algoritma K-prototypes merupakan metode yang memberikan hasil lebih baik dalam mengelompokkan data penelitian dibandingkan algoritma TSC dengan nilai koefisien Silhouette sebesar 0,577, yang bermakna bahwa kelompok yang terbentuk telah memiliki struktur yang baik. Kelompok optimal yang terbentuk adalah sebanyak 2 kelompok yang disusun oleh 40 negara pada Kelompok 1 dan 42 negara pada Kelompok 2. Kelompok 2 cenderung memiliki profil kualitas hidup yang lebih baik dibandingkan Kelompok 1.

Quality of life is a phrase that covers a variety of functional concepts, health status, perception, living conditions, lifestyle, and happiness. Indicators in measuring quality of life are divided into two, namely subjective indicators and objective indicators. Subjective indicators are measured based on various experiences that people went through in life. On the other hand, objective indicators are measured based on various materials or external factors that affect a person's experiences in everyday life. In this study, objective indicators were chosen as quality measurement tools based on social, economic, health, and environmental characteristics. The data used in the study consisted of two types of data, namely numerical and categorical data. The data is secondary data containing objective indicators of quality of life in 82 countries in 2020. The method used in this research is the K-prototypes and Two Step Cluster (TSC) algorithm which is part of the non-hierarchical and hierarchical grouping method and can handle mixed-type data. The results of this study indicate that the K-prototypes algorithm is a method that gives better results than the TSC algorithm with a silhouette coefficient value of 0.577, which means that the formed group already has a good structure. The optimal groups formed are 2 groups composed of 40 countries in Group 1 and 42 countries in Group 2. Group 2 tends to have a better quality of life profile than Group 1."
Jakarta: Fakultas Kedokteran Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Frisca
"Spectral clustering adalah salah satu algoritma clustering modern yang paling terkenal. Sebagai teknik clustering yang efektif, metode spectral clustering muncul dari konsep teori graf spektral. Metode spectral clustering membutuhkan algoritma partisi. Ada beberapa metode partisi termasuk PAM, SOM, Fuzzy c-means, dan k-means. Berdasarkan penelitian yang telah dilakukan oleh Capital dan Choudhury pada 2013, ketika menggunakan Euclidian distance, k-means memberikan akurasi yang lebih baik dibandingkan dengan algoritma PAM. sehingga, makalah ini menggunakan algoritma k-means. Keuntungan utama dari spectral clustering adalah mengurangi dimensi data, terutama dalam hal ini untuk mengurangi dimensi yang besar dari data microarray.
Microarray data adalah chip berukuran kecil yang terbuat dari slide kaca yang berisi ribuan bahkan puluhan ribu jenis gen dalam fragmen DNA yang berasal dari cDNA. Aplikasi data microarray secara luas digunakan untuk mendeteksi kanker, misalnya adalah karsinoma, di mana sel-sel kanker mengekspresikan kelainan pada gen-nya. Proses spectral clustering dimulai dengan pengumpulan data microarray gen karsinoma, preprocessing, menghitung similaritas, menghitung , menghitung nilai eigen dari , membentuk matriks , dan clustering dengan menggunakan k-means. Dari hasil pengelompokan gen karsinoma pada penelitian ini diperoleh dua kelompok dengan nilai rata-rata Silhouette maksimal adalah 0.6336247. Proses clustering pada penelitian ini menggunakan program open source R.

Spectral clustering is one of the most famous modern clustering algorithms. As an effective clustering technique, spectral clustering method emerged from the concepts of spectral graph theory. Spectral clustering method needs partitioning algorithm. There are some partitioning methods including PAM, SOM, Fuzzy c means, and k means. Based on the research that has been done by Capital and Choudhury in 2013, when using Euclidian distance k means algorithm provide better accuracy than PAM algorithm. So in this paper we use k means as our partition algorithm. The major advantage of spectral clustering is in reducing data dimension, especially in this case to reduce the dimension of large microarray dataset.
Microarray data is a small sized chip made of a glass plate containing thousands and even tens of thousands kinds of genes in the DNA fragments derived from doubling cDNA. Application of microarray data is widely used to detect cancer, for the example is carcinoma, in which cancer cells express the abnormalities in his genes. The spectral clustering process is started with collecting microarray data of carcinoma genes, preprocessing, compute similarity matrix, compute , compute eigen value of , compute , clustering using k means algorithm. In this research, Carcinoma microarray data using 7457 genes. The result of partitioning using k means algorithm is two clusters clusters with maximum Silhouette value 0.6336247.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2017
T47117
UI - Tesis Membership  Universitas Indonesia Library
cover
Wanda Puspita Hati
"Kanker menjadi penyebab utama kematian global yang menyebabkan hampir 10 juta kematian atau hampir seperenam kasus kematian pada tahun 2020. Tindakan pencegahan primer yang efektif dapat mencegah setidaknya 40% kasus kanker. Tingkat kematian akibat kanker di negara berkembang lebih tinggi dibandingkan dengan negara maju, mencerminkan kesenjangan dalam menangani faktor risiko, keberhasilan deteksi, dan pengobatan. Wanita di negara berkembang paling sering menderita kanker serviks. Masyarakat terutama wanita memerlukan pengetahuan mengenai faktor risiko kanker serviks. Salah satu solusi potensial untuk masalah ini peran machine learning dalam mempelajari data pasien kanker serviks. Penelitian ini menggunakan algoritma clustering K-Prototypes, yang dapat mengelompokkan data campuran, baik numerik maupun kategorik. Data faktor risiko kanker serviks dari pasien di RSUPN X digunakan dalam penelitian ini. Seleksi fitur dilakukan untuk meningkatkan kinerja algoritma KPrototypes, dengan membandingkan seleksi fitur menggunakan Variance Threshold dan Correlation Coefficient. Kinerja algoritma K-Prototypes terbaik didapatkan dengan menggunakan Correlation Coefficient yang ditinjau berdasarkan Silhouette Coefficient sebesar 0,6; Davies-Bouldin Index sebesar 0,6; dan Callinzki-Harabasz Index sebesar 1.080. Interpretasi cluster yang terbentuk dari simulasi menghasilkan perbedaan utama karakteristik faktor risiko dari dua cluster, yaitu umur, menopause, dan kondisi kesehatan seperti keputihan, pendarahan, nyeri perut bawah, dan penurunan nafsu makan. Sementara, faktor terkait riwayat terdahulu, kesehatan reproduksi, dan masalah gizi tidak menunjukkan perbedaan yang signifikan. Algoritma K-Prototypes diharapkan dapat menjadi solusi dalam mengidentifikasi kelompok berdasarkan faktor risiko kanker serviks untuk membantu tenaga medis dalam mengambil keputusan dan tindakan selanjutnya, serta pengetahuan bagi masyarakat.

Cancer is a leading cause of death worldwide, resulting in nearly 10 million deaths, or almost one-sixth of all deaths, in 2020. Effective primary prevention measures can prevent at least 40% of cancer cases. Cancer mortality rates are higher in developing countries compared to developed countries, reflecting disparities in addressing risk factors, detection success, and available treatments. Women in developing countries most frequently suffer from cervical cancer. It is crucial for communities, especially women, to have knowledge about the risk factors for cervical cancer. One potential solution to this issue is the role of machine learning in analyzing cervical cancer patient data. This study uses the K-Prototypes clustering algorithm, which can cluster mixed data, both numerical and categorical. Cervical cancer risk factor data from patients at X National General Hospital were used in this research. Feature selection was performed to improve the performance of the K-Prototypes algorithm, comparing feature selection using Variance Threshold and Correlation Coefficient. The best performance of the K-Prototypes algorithm was obtained using the Correlation Coefficient, as reviewed based on a Silhouette Coefficient of 0,6; a Davies-Bouldin Index of 0,6; and a Callinzki-Harabasz Index of 1.080. Interpretation of the clusters formed from the simulation revealed major differences in the characteristics of risk factors between two clusters, namely age, menopause, and health conditions such as leukorrhea, bleeding, lower abdominal pain, and loss of appetite. Meanwhile, factors related to previous history, reproductive health, and nutritional issues did not show significant differences. The K-Prototypes algorithm is expected to be a solution in identifying groups based on cervical cancer risk factors to assist medical professionals in decision-making and subsequent actions, as well as to provide knowledge to the public."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>