Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 160245 dokumen yang sesuai dengan query
cover
Widi Nugroho
"Bayi prematur adalah bayi yang lahir dengan usia kehamilan kurang dari 37 minggu yang memiliki sistem saraf dan organ-organ yang belum sempurna sehingga lebih beresiko mengalami berbagai masalah kesehatan. Salah satu masalah kesehatan yang dapat terjadi adalah pada organ mata yang merupakan organ penting dalam perkembangan bayi. Retinopathy of Prematurity (ROP) merupakan salah satu penyakit mata yang terjadi pada bayi prematur yang disebabkan oleh pembentukan pembuluh darah retina yang tidak normal. Proses diagnosis yang dilakukan oleh dokter mata belum bisa mengatasi kenaikan jumlah kasus ROP, sehingga disini penulis menggunakan pendekatan deep learning untuk melakukan klasifikasi tingkat keparahan ROP pada citra fundus retina. Metode deep learning yang digunakan adalah Convolutional Neural Network (CNN) dengan arsitektur ResNet50. Data yang digunakan pada penelitian ini merupakan data sekunder yang diperoleh dari online database Kaggle berupa 90 data citra fundus retina yang terbagi atas 38 citra bukan penderita ROP, 19 citra penderita ROP Stage 1, 22 citra penderita ROP Stage 2, dan 11 citra penderita ROP Stage 3. Pada tahap persiapan data, dilakukan perbaikan kontras citra menggunakan Contrast Limited Adaptive Histogram (CLAHE) dan image masking. Kemudian dilakukan resize citra menjadi ukuran 224×224. Data kemudian diaugmentasi menggunakan teknik flip horizontal dan rotation agar data menjadi lebih banyak yang kemudian dibagi menjadi 80% data training dan 20% data testing. Dari 80% data training, diambil 20% untuk data validation. Training model dilakukan menggunakan model dengan arsitektur ResNet50 dengan hyerparameter model yaitu batch size 64, learning rate 0.001, dan epoch sebanyak 30, fungsi optimasi Adam (Adaptive moment estimation), dan fungsi loss categorical cross entropy. Proses modelling dilakukan sebanyak 5 kali percobaan dan berhasil memperoleh nilai rata-rata kinerja training model sebesar 99.714% dan 92.85% pada akurasi training dan akurasi validation-nya, selain itu diperoleh nilai 0.01864 dan 0.18434 pada loss training dan loss validation. Sedangkan rata-rata kinerja testing model berhasil memperoleh akurasi testing sebesar 97.352%, testing loss sebesar 0.0986374, dan AUROC sebesar 0.0955. Selain melakukan evaluasi kinerja, peneliti juga akan menggunakan GradCAM untuk menampilkan visualisasi ciri-ciri yang dianggap penting untuk nantinya membantu dokter dalam mengevaluasi ROP.

Premature infants are babies born with a gestational age of less than 37 weeks, and they have underdeveloped nervous systems and organs, making them more susceptible to various health issues. One of the health problems that can occur involves the eye, which plays a crucial role in the baby's development. Retinopathy of Prematurity (ROP) is one of the eye diseases that affects premature infants and is caused by abnormal blood vessel formation in the retina. The current diagnostic processes performed by ophthalmologists have not been effective in addressing the increase in ROP cases. Therefore, in this study, the author employs a deep learning approach to classify the severity of ROP in retinal fundus images. The deep learning method utilized is the Convolutional Neural Network (CNN) with the ResNet50 architecture. The research data consists of 90 retinal fundus images obtained from the online database Kaggle, comprising 38 images of non-ROP cases, 19 images of ROP Stage 1, 22 images of ROP Stage 2, and 11 images of ROP Stage 3. In the data preparation phase, the image contrast is enhanced using Contrast Limited Adaptive Histogram (CLAHE) and image masking techniques. Subsequently, the images are resized to 224×224 dimensions. Data augmentation is performed using horizontal flip and rotation techniques to increase the dataset, which is then split into 80% training data and 20% testing data. From the 80% training data, 20% is further allocated for validation data. The model is trained using the ResNet50 architecture with hyperparameters set to batch size 64, learning rate 0.001, and 30 epochs. The optimization function used is Adam (Adaptive Moment Estimation), and the loss function is categorical cross-entropy. The modeling process is repeated five times, and the average performance of the training model is achieved at 99.714% for training accuracy and 92.85% for validation accuracy, with training and validation losses of 0.01864 and 0.18434, respectively. As for the average performance of the testing model, the testing accuracy is 97.352%, the testing loss is 0.0986374, and the AUROC (Area Under the Receiver Operating Characteristic) is 0.0955. In addition to evaluating the model's performance, the researcher also employs GradCAM to visualize important features, which can assist doctors in evaluating ROP cases.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ardanareswari Chaerani
"Glaukoma adalah salah satu penyebab kebutaan terbanyak kedua di dunia yang disebabkan oleh tekanan yang meninggi pada bola mata. Dalam proses mendiagnosa glaukoma, dibutuhkan waktu yang lama dikarenakan tidak ada perubahan secara signifikan pada citra fundus. Pada penelitian ini, penulis menggunakan Convolutional Neural Network (CNN) untuk mengekstraksi fitur dan metode klasifikasi Deep Belief Network (DBN) dalam mengklasifikasi glaukoma pada data citra fundus. Hasil pada model CNN-DBN dibandingkan dengan metode ekstraksi fitur CNN dan klasifikasi Support Vector Machine (SVM) yang dinamakan model CNN-SVM. Arsitektur CNN yang digunakan pada penelitian ini adalah ResNet-50. Dataset yang digunakan dalam penelitian ini diperoleh dari 2 online database, yaitu cvblab dan kroy1809. Pada proses ekstraksi fitur, model dilatih dari fully connected layer pada ResNet-50. Kemudian, vektor fitur dari fully connected layer diklasifikasi menggunakan metode klasifikasi DBN dan SVM. Berdasarkan hasil simulasi, CNN-DBN memiliki hasil akurasi, precision, dan recall terbaik dibandingkan dengan metode CNN-SVM dan CNN dengan akurasi 96.46%, precision 95.86%, dan recall 98.05% pada pembagian dataset training dan testing 70:30.

Glaucoma is the second most common factor of blindness in the world caused by the increasing pressure on the eyeball. It takes a long time to diagnose glaucoma due no significant change in the fundus image. In this study, the author used the Convolutional Neural Network (CNN) to extract the features and the Deep Belief Network (DBN) classification method to classify glaucoma in fundus images. The results on the CNN-DBN model will be compared with to the CNN feature extaction method and the Support Vector Machine (SVM) classification method, named the CNN-SVM model. The CNN architecture used in this study is ResNet-50. The dataset used in this study are from 2 online database, cvblab and kroy1809. In the feature extraction process, the model is trained using the CNN method with the ResNet-50 architecture. Afterward, the feature vectors of the fully connected layer are classified using the DBN and SVM classification methods. Based on the simulation results, CNN-DBN has the best results than CNN-SVM and CNN method with the accuracy of 90%, precision of 95%, and recall of 92% with splitting data training and testing of 70:30."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Raven Ginola Imanuel
"Mata merupakan salah satu dari panca indra yang digunakan untuk melihat dan menjadi aset terpenting dalam hidup manusia. Salah satu bagian terpenting dari mata ialah kelopak mata di mana terdapat sebuah kelenjar yang disebut kelenjar meibom. Kelenjar ini berada pada lapisan air mata yang berguna untuk menyekresikan komponen minyak atau lipid dan berperan penting dalam memperlambat proses evaporasi yang menyebabkan terjaganya kelembapan pada mata. Kekurangan kelenjar meibom yang dikenal sebagai Disfungsi Kelenjar Meibom (DKM) merupakan penyebab utama dari penyakit mata kering. Karena proses diagnosis yang dikerjakan oleh tenaga medis terbilang subjektif, maka penelitian ini menggunakan pendekatan deep learning untuk melakukan klasifikasi pada tingkat keparahan dari DKM. Klasifikasi dilakukan dengan membagi tingkat keparahan atau kehilangan kelenjar meibom berdasarkan hasil meiboscore-nya menjadi 4 kelas, yaitu kelas 0 untuk meiboscore ≤ 25%, kelas 1 untuk 25% < meiboscore ≤ 50%, kelas 2 untuk 50% < meiboscore ≤ 75%, dan kelas 3 untuk meiboscore  > 75%. Metode deep learning yang digunakan adalah Convolutional Neural Network (CNN) dengan arsitektur AlexNet. Data yang digunakan pada penelitian ini adalah 139 citra meibography yang bersumber dari Rumah Sakit Ciptomangunkusumo (RSCM) Departemen Kirana dari 35 pasien mata kering yang sudah mengalami augmentasi dan segmentasi, sehingga data akhir yang digunakan yaitu sebanyak 417 citra segmentasi. Pada tahap pre-processing, dilakukan perhitungan meiboscore dengan bantuan software dan membaginya ke dalam 4 kelas sesuai dengan nilai meiboscore­-nya. Citra yang sudah dilabel ini kemudian dibagi menjadi 80% data training dan 20% data testing. Dari 80% data training, diambil 10% untuk dijadikan data validation, sehingga 417 data tersebut terbagi menjadi 299 data training, 84 data testing, serta 34 data validation. Training model dilakukan menggunakan arsitekur AlexNet dengan hyperparameter berupa epoch sebanyak 100, batch size 32, dan learning rate 0,0001. Pada arsitektur ini juga diterapkan fungsi optimasi yaitu Adam (Adaptive moment estimation) dan fungsi loss categorical cross entropy. Proses modelling dilakukan sebanyak 5 kali percobaan dan memperoleh nilai rata-rata akurasi training dan validation sebesar 99,59% dan 99,41% dan nilai dari loss training dan loss validation sebesar 0,1259 dan 0,0524. Sedangkan rata-rata kinerja testing model berhasil memperoleh akurasi testing sebesar 87,38%; testing loss sebesar 0,5151; dan Area Under Curve (AUC) sebesar 0,9715.

The eye is one of the five senses used to see and is the most important asset in human life. One of the most important parts of the eye is the eyelid where there is a gland called meibomian gland. This gland is located in the tear film which is useful for secreting oil or lipid components and plays an important role in slowing down the evaporation process which leads to maintaining moisture in the eye. Meibomian gland deficiency, known as Meibomian Gland Dysfunction (MGD), is a major cause of dry eye disease. Since the diagnosis process carried out by medical personnel is subjective, this study uses a deep learning approach to classify the severity of MGD. Classification is done by dividing the severity or loss of meibomian glands based on meiboscore results into 4 classes, namely class 0 for meiboscore ≤ 25%, class 1 for 25% < meiboscore ≤ 50%, class 2 for 50% < meiboscore ≤ 75%, and class 3 for meiboscore > 75%. The deep learning method used is Convolutional Neural Network (CNN) with AlexNet architecture. The data used in this study are 139 meibography images sourced from Ciptomangunkusumo Hospital (RSCM) Kirana Department from 35 dry eye patients that have undergone augmentation and segmentation, so that the final data used is 417 segmentation images. In the pre-processing stage, meiboscore was calculated with the help of software and divided into 4 classes according to the meiboscore value. The labeled images were then divided into 80% training data and 20% testing data. From 80% of the training data, 10% is taken to be used as validation data, so that the 417 data is divided into 299 training data, 84 testing data, and 34 validation data. The training model is carried out using the AlexNet architecture with hyperparameters in the form of epochs of 100, batch size 32, and learning rate 0,0001. In this architecture, the optimization function Adam (Adaptive moment estimation) and categorical cross entropy loss function are also applied. The modeling process was carried out 5 times and obtained an average training and validation accuracy value of 99,59% and 99,41% and the value of training loss and validation loss of 0,1259 and 0,0524. While the average performance of the testing model successfully obtained a testing accuracy of 87,38%; testing loss of 0,5151; and Area Under Curve (AUC) of 0,9715.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rezki Hadiansah
"Pesatnya perkembangan teknologi saat ini menjadi salah satu faktor berkembangnya media sosial. Pengguna media sosial khususnya di Indonesia sudah tidak diragukan lagi jumlahnya. Dari tingginya tingkat penggunaan media sosial, penelitian terkait data pada media sosial kerap dilakukan. Penelitian yang populer dilakukan adalah analisis sentimen. Analisis sentimen adalah kegiatan untuk mengklasifikasikan sentimen data tekstual ke dalam kelas positif atau negatif. Metode yang kerap digunakan adalah metode berbasis machine learning yaitu Convolutional Neural Network (CNN) dan Long-short Term Memory (LSTM). Metode CNN sudah terbukti baik digunakan untuk data tekstual. Adapun model gabungan yaitu LSTM-CNN yang sudah terbukti memberikan hasil lebih baik dibanding model CNN. Selanjutnya akan dilakukan analisis sentimen menggunakan model LSTM-CNN. Namun, metode berbasis machine learning hanya efektif digunakan pada satu domain saja. Berdasarkan hal tersebut, dikembangkanlah lifelong learning. Lifelong learning adalah metode dalam machine learning yang menerapkan pembelajaran berkelanjutan terhadap lebih dari satu domain. Lifelong learning pada machine learning meniru bagaimana manusia mempelajari sesuatu berdasarkan apa yang sudah dipelajari selanjutnya. Pada skripsi ini, akan dilakukan penelitian model LSTM-CNN untuk permasalahan lifelong learning analisis sentimen terhadap lima data berbahasa Indonesia. Lima data set tersebut akan digunakan sebagai data pembelajaran secara berkelanjutan terhadap suatu model LSTM-CNN. Evaluasi model akan dilakukan pada setiap proses pembelajaran yang dilakukan. Hasil yang diperoleh adalah perkembangan akurasi pada setiap proses pembelajaran terhadap suatu data set.

The rapid development of technology is currently one of the factors in the development of social media. There are no doubt about the number of social media users, especially in Indonesia. From the high level of use of social media, research related to data on social media is often done. Popular research is sentiment analysis. Sentiment analysis is an activity to classify textual data sentiments into positive or negative classes. The method often used is machine learning-based methods, namely Convolutional Neural Network (CNN) and Long-short Term Memory (LSTM). The CNN method has been proven good for textual data. The combined model is LSTM-CNN which has been proven to provide better results than the CNN model. Then sentiment analysis will be performed using the LSTM-CNN model. However, machine learning based methods are only effective in one domain. Based on this, lifelong learning was developed. Lifelong learning is a method in machine learning that applies continuous learning to more than one domain. Lifelong learning in machine learning mimics how humans learn something based on what has been learned next. In this thesis, LSTM-CNN model research will be conducted for the problem of lifelong learning sentiment analysis of five Indonesian-language data. The five data sets will be used as continuous learning data on an LSTM-CNN model. Evaluation of the model will be carried out in each learning process that is carried out. The results obtained are the development of accuracy in each learning process of a data set."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Amin Nur Ambarwati
"Katarak merupakan keadaan di mana lensa mata yang biasanya terlihat jernih dan bening menjadi keruh yang disebabkan oleh sebuah kumpulan protein yang terletak di depan retina. Hal ini menyebabkan jaringan lensa mata mulai rusak dan menggumpal, sehingga berkurangnya cahaya yang masuk ke retina dan pandangan akan terlihat buram, kurang berwarna, serta dapat menyebabkan kebutaan yang permanen. Mendiagnosis penyakit katarak pada seseorang dapat menggunakan proses pemeriksaan citra fundus, hasil dari citra fundus kemudian dideteksi menggunakan salah satu pendekatan deep learning. Dalam penelitian ini, digunakan pendekatan deep learning yaitu metode Convolutional Neural Networks (CNN) classic dan CNN LeNet-5 pada fungsi aktivasi ReLU dan Mish dalam mendeteksi katarak. Data yang digunakan dalam penelitian ini yaitu data ODR yang merupakan online database yang berisi citra fundus dengan bervariasi ukuran citra. Dataset kemudian memasuki tahap preprocessing dalam meningkatkan performa model seperti mengkonversikan citra RGB menjadi grayscale dari intensitas green channel, kemudian menerapkan proses binerisasi citra menggunakan thresholding untuk menyesuaikan target atau label berdasarkan diagnosis dokter dan mengetahui tingkat kerusakan bagian mata dalam mendeteksi mata mengalami katarak atau tidak. Hasil performa pada penelitian ini menunjukkan bahwa model CNN LeNet-5 dengan fungsi aktivasi Mish lebih baik dibandingkan model CNN clasic dengan fungsi aktivasi Mish dalam mendeteksi penyakit katarak. Hasil performa keseluruhan yang optimal pada penelitian ini berdasarkan nilai accuracy, precision, recall, dan F1- score secara berturutturut yaitu 87%, 87,5%, 89,3%, 86,7%, dengan running time yang dibutuhkan pada training 95,67 detik dan testing 0,1859 detik.

Cataract is a condition in which the normally clear lens of the eye becomes cloudy due to a collection of proteins located in front of the retina. This causes the tissue of the eye's lens to begin to break down and clot, resulting in less light entering the retina and blurred vision, lack of color, and can lead to permanent blindness. Diagnosing cataracts in a person can use the process of examining the fundus image, the results of the fundus image are then detected using one of the deep learning approaches. In this study, a deep learning approach was used, namely Convolutional Neural Networks (CNN) classic and CNN LeNet-5 method on the ReLU and Mish activation functions in detecting cataracts. The data used in this study is ODR data which is an online database containing fundus images with varying image sizes. The dataset then enters the preprocessing stage to improve model performance, such as converting the RGB image to grayscale from the intensity of the green channel, then applying a binary image process using thresholding to adjust the target or label based on the doctor's diagnosis and determine the level of eye damage to detect cataracts or not. The performance results in this study indicate that the CNN LeNet- 5 model with Mish activation function is better than the CNN classic model with Mish activation function in detecting cataract disease. Optimal overall performance results in this study are based on the values of accuracy, precision, recall, and F1-score, respectively, namely 87%, 87,5%, 89,3%, 86,7%, with the running time required for training 95,67 seconds and testing 0,1859 seconds."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Amin Nur Ambarwati
"Katarak merupakan keadaan di mana lensa mata yang biasanya terlihat jernih dan bening menjadi keruh yang disebabkan oleh sebuah kumpulan protein yang terletak di depan retina. Hal ini menyebabkan jaringan lensa mata mulai rusak dan menggumpal, sehingga berkurangnya cahaya yang masuk ke retina dan pandangan akan terlihat buram, kurang berwarna, serta dapat menyebabkan kebutaan yang permanen. Mendiagnosis penyakit katarak pada seseorang dapat menggunakan proses pemeriksaan citra fundus, hasil dari citra fundus kemudian dideteksi menggunakan salah satu pendekatan deep learning. Dalam penelitian ini, digunakan pendekatan deep learning yaitu metode Convolutional Neural Networks (CNN) classic dan CNN LeNet-5 pada fungsi aktivasi ReLU dan Mish dalam mendeteksi katarak. Data yang digunakan dalam penelitian ini yaitu data ODR yang merupakan online database yang berisi citra fundus dengan bervariasi ukuran citra. Dataset kemudian memasuki tahap preprocessing dalam meningkatkan performa model seperti mengkonversikan citra RGB menjadi grayscale dari intensitas green channel, kemudian menerapkan proses binerisasi citra menggunakan thresholding untuk menyesuaikan target atau label berdasarkan diagnosis dokter dan mengetahui tingkat kerusakan bagian mata dalam mendeteksi mata mengalami katarak atau tidak. Hasil performa pada penelitian ini menunjukkan bahwa model CNN LeNet-5 dengan fungsi aktivasi Mish lebih baik dibandingkan model CNN clasic dengan fungsi aktivasi Mish dalam mendeteksi penyakit katarak. Hasil performa keseluruhan yang optimal pada penelitian ini berdasarkan nilai accuracy, precision, recall, dan F1- score secara berturut- turut yaitu 87%, 87,5%, 89,3%, 86,7%, dengan running time yang dibutuhkan pada training 95,67 detik dan testing 0,1859 detik.

Cataract is a condition in which the normally clear lens of the eye becomes cloudy due to a collection of proteins located in front of the retina. This causes the tissue of the eye's lens to begin to break down and clot, resulting in less light entering the retina and blurred vision, lack of color, and can lead to permanent blindness. Diagnosing cataracts in a person can use the process of examining the fundus image, the results of the fundus image are then detected using one of the deep learning approaches. In this study, a deep learning approach was used, namely Convolutional Neural Networks (CNN) classic and CNN LeNet-5 method on the ReLU and Mish activation functions in detecting cataracts. The data used in this study is ODR data which is an online database containing fundus images with varying image sizes. The dataset then enters the preprocessing stage to improve model performance, such as converting the RGB image to grayscale from the intensity of the green channel, then applying a binary image process using thresholding to adjust the target or label based on the doctor's diagnosis and determine the level of eye damage to detect cataracts or not. The performance results in this study indicate that the CNN LeNet- 5 model with Mish activation function is better than the CNN classic model with Mish activation function in detecting cataract disease. Optimal overall performance results in this study are based on the values of accuracy, precision, recall, and F1-score, respectively, namely 87%, 87,5%, 89,3%, 86,7%, with the running time required for training 95,67 seconds and testing 0,1859 seconds."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Lista Kurniawati
"Pendeteksian topik merupakan masalah komputasi yang menganalisis kata-kata dari suatu data teks untuk menemukan topik yang ada di dalam teks tersebut. Pada data yang besar, pendeteksian topik lebih efektif dan efisien dilakukan dengan metode machine learning. Data teks harus diubah ke dalam bentuk representasi vektor numeriknya sebelum dimasukkan ke model machine learning. Metode representasi teks yang umum digunakan adalah TF-IDF. Namun, metode ini menghasilkan representasi data teks yang tidak memperhatikan konteksnya. BERT (Bidirectional Encoder Representation from Transformer) merupakan metode representasi teks yang memperhatikan konteks dari suatu kata dalam dokumen. Penelitian ini membandingkan kinerja model BERT dengan model TF-IDF dalam melakukan pendeteksian topik. Representasi data teks yang diperoleh kemudian dimasukkan ke model machine learning. Salah satu metode machine learning yang dapat digunakan untuk menyelesaikan masalah pendeteksian topik adalah clustering. Metode clustering yang populer digunakan adalah Fuzzy C-Means. Namun, metode Fuzzy C-Means tidak efektif pada data berdimensi tinggi. Karena data teks berita biasanya memiliki ukuran dimensi yang cukup tinggi, maka perlu dilakukan proses reduksi dimensi. Saat ini, terdapat metode clustering yang melakukan reduksi dimensi berbasis deep learning, yaitu Deep Embedded Clustering (DEC). Pada penelitan ini digunakan model DEC untuk melakukan pendeteksian topik. Eksperimen pendeteksian topik menggunakan model DEC (member) dengan metode representasi teks BERT pada data teks berita menunjukkan nilai coherence yang sedikit lebih baik dibandingkan dengan menggunakan metode representasi teks TF-IDF.

Topic detection is a computational problem that analyzes words of a textual data to find the topics in it. In large data, topic detection is more effective and efficient using machine learning methods. Textual data must be converted into its numerical vector representation before being entered into a machine learning model. The commonly used text representation method is TF-IDF. However, this method produces a representation of text data that does not consider the context. BERT (Bidirectional Encoder Representation from Transformers) is a text representation method that pays attention to the context of a word in a document. This study compares the performance of the BERT model with the TF-IDF model in detecting topics. The representation of the text data obtained is then entered into the machine learning model. One of the machine learning methods that can be used to solve topic detection problems is clustering. The popular clustering method used is Fuzzy CMeans. However, the Fuzzy C-Means method is not effective on high-dimensional data. Because news text data usually has a high dimension, it is necessary to carry out a dimension reduction process. Currently, there is a clustering method that performs deep learning-based dimension reduction, namely Deep Embedded Clustering (DEC). In this research, the DEC model is used to detect topics. The topic detection experiment using the DEC (member) model with the BERT text representation method on news text data shows a slightly better coherence value than using the TF-IDF text representation method.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Tubagus Dhafin Rukmanda
"ABSTRAK
PATCHY-SAN adalah sebuah framework untuk sembarang graf yang diajukan oleh Niepert pada tahun 2016. Pada penelitian ini diajukan modifikasi arsitektur dari convolutional neural network CNNs pada PATCHY-SAN menggunakan beberapa representasi dari graf seperti B^i,L^i,N^i dengan B,L,N, berturut-turut adalah matriks betweeness, matriks Laplacian and matriks normalisasi Laplacian dengan i=1,2,3,4,5. Dilakukan beberapa percobaan dari model CNNs dengan 3 layer dan 2 layer. Penelitian ini menggunakan dropout atau batch normalization untuk mengurangi permasalahan internal covariate shift sebagai regularisasi. Berdasarkan percobaan tersebut disimpulkan, penambahan layer, penggunaan dropout dan batch normalization dapat meningkatkan dan juga menurunkan prediksi akurasi, hal ini tergantung dari dataset dan arsitektur CNNs. Representasi graf yang digunakan dalam penelitian ini masih belum bagus untuk membuat PATCHY-SAN learning, karena peningkatan akurasi hanya sebesar - 9 dari benchmark 50 .

ABSTRACT
PATCHY SAN is a framework for learning Convolutional Neural Network CNNs for arbitrary graph proposed by Niepert in 2016. In this paper we propose to modified architecture of Convolutional Neural Network in PATCHY SAN by using some representation of graph such as B i,L i,N i, with B, L, N, is betweeness matrix, Laplacian matrix and normalize Laplacian matrix with i 1,2,3,4,5. We do some experiment of model with 3 convolutional layer and 2 convolutional layer. This research use dropout and batch normalization to reduce internal covariate shift problem as regularizer. In conclusion adding more convolution layer, and use dropout and batch normalization can increase and reduce accuracy, it depend on the architecture of CNNs. Graph representation used in this research still not good to make PATCHY SAN learning, because the accuration increase by 9 from benchmark 50 ."
2017
S70160
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nur Safana Putri Ramadhini
"Daerah Sipoholon merupakan daerah yang terletak pada zona Sesar Sumatera dimana sekitar wilayah ini ditemukan keberadaan manifestasi panas bumi berupa sumber air panas yang berada di sepanjang zona patahan dan Cekungan Tarutung. Penelitian ini dilakukan untuk mengidentifikasi litologi bawah permukaan wilayah Sipoholon melalui analisis karakter nilai kecepatan grup gelombang Rayleigh yang diperoleh menggunakan metode ambient noise tomography (ANT). Dalam penelitian ini menggunakan data waveform berkomponen vertikal yang berasal 15 jaringan sensor seismik milik BMKG-GFZ yang tersebar luas di sekitar bagian barat Danau Toba hingga Tapanuli Tengah selama rentang bulan Juni – September 2008. Proses pengolahan dilakukan melalui rangkaian single data preparation, korelasi silang & stacking, kurva dispersi, dan tomografi. Hasil tomografi menunjukan variasi zona anomali kecepatan grup gelombang Rayleigh dengan rentang nilai 1.20 km/s - 2.50 km/s. Berdasarkan hasil checkerboard test wilayah bawah permukaan yang mampu dipercaya untuk diinterpretasikan sampai dengan periode 13 detik. Keberadaan kaldera tersembunyi mampu teridentifikasi pada zona anomali kecepatan grup rendah yang berkaitan dengan deformasi dari batuan beku vulkanik yang mengalami pelapukan. Sementara itu, zona anomali kecepatan grup tinggi berasosiasi dengan keberadaan litologi tuffa Toba yang diikuti keberadaan batuan granit sebagai batuan intrusi pada lapisan bawah.

The Sipoholon area is an area located in the Sumatra Fault zone where around this area there are geothermal manifestations in the form of hot springs located along the fault zone and Tarutung Basin. This study was conducted to identify the subsurface lithology of the Sipoholon area through the Rayleigh wave group velocity value obtained using the ambient noise tomography (ANT) method. In this study, we used vertical waveform data from a network of 15 seismic sensors owned by BMKG-GFZ that were widely distributed around the western part of Lake Toba to Central Tapanuli during June - September 2008. Processing stages are carried out from the single data preparation stage, cross-correlation & stacking, dispersion curves, and tomography. The tomography results show variations in the Rayleigh wave group velocity anomaly zone with a value range of 1.20 km/s - 2.50 km/s. Based on the results of the checkerboard test, subsurface areas that can be reliably interpreted up to a period of 13 seconds. The existence of a hidden caldera can be identified in the low group velocity anomaly zone related to the deformation of volcanic igneous rocks undergoing weathering. Meanwhile, the high group velocity anomaly zone is associated with the presence of Toba tuff lithology followed by the presence of granite rocks as intrusive rocks in the lower layers.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Tiara Ayumi
"Tuberkulosis (TB) merupakan salah satu penyakit menular yang menyebabkan kematian di dunia. TB disebabkan oleh Mycobacterium tuberculosis dan umumnya menyerang paru-paru. Berbagai pendekatan matematika telah dilakukan dalam menganalisis penyebaran TB. Pada skripsi ini, dikonstruksi model matematika penyebaran TB dengan pendekatan sistem persamaan diferensial dimana populasi manusia dibagi menjadi empat kompartemen. Fakta penting yang dipertimbangkan dalam model ini adalah adanya manusia yang terinfeksi TB laten dan intervensi perawatan terpantau. Selanjutnya, model tersebut dikembangkan menjadi masalah kontrol optimal untuk memperoleh strategi intervensi yang optimal dalam mengendalikan sistem dinamik yang digambarkan oleh variabel state (manusia) dan variabel kontrol (intervensi perawatan terpantau). Masalah kontrol optimal dikonstruksi dengan menggunakan prinsip minimum Pontryagin. Kajian analitik meliputi analisis eksistensi dan kestabilan secara lokal dan global dari titik-titik keseimbangan model dan hubungannya dengan bilangan reproduksi dasar (R_0). Selanjutnya, simulasi numerik terhadap model dengan membuat berbagai skenario kontrol dan analisis efektivitas biaya untuk mengetahui strategi yang terbaik. Analisis efektivitas biaya pada skripsi ini menggunakan dua pendekatan, yaitu IAR (Infection Averted Ratio) dan ACER (Average Cost-Effectiveness Ratio). Dari hasil simulasi numerik, diperoleh bahwa skenario terbaik dalam upaya mereduksi kasus infeksi TB dengan biaya yang efektif adalah melakukan intervensi perawatan terpantau sejak awal infeksi dengan kontrol bergantung waktu.

Tuberculosis (TB) is one of the infectious diseases that causes death worldwide. TB is caused by Mycobacterium tuberculosis which commonly attacks the lungs. Various mathematical approaches have been used to analyze the spread of TB. In this thesis, the mathematical model of TB transmission is constructed using the approach of an ordinary differential equation system, where the human population is divided into four subpopulations. Important facts considered in the model are the existence of latent TB and monitored treatment intervention. Furthermore, the model was developed into an optimal control problem to obtain the optimal intervention strategy in controlling the dynamic system described by state variables (humans) and control variables (monitored treatment intervention). The optimal control problem is constructed by using Pontryagin minimum principle. Analytical study including an analysis of the existence of equilibrium points, local and global stability of the equilibrium points, and how they related to the basic reproduction number (R_0). Then, numerical simulations were carried out by making several control scenarios and cost-effectiveness analysis to find out the best strategy. Cost-effectiveness analysis in this thesis used two approaches, namely IAR (Infection Averted Ratio) and ACER (Average Cost-Effectiveness Ratio). From the results of the numerical simulation, the best strategy to reduce TB infection with effective cost is to do the monitored treatment in the early infection with time dependent control.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>