Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 160514 dokumen yang sesuai dengan query
cover
Saskia Oktavia Zarfa
"Kematian balita merupakan indikator utama kesehatan anak dan pembangunan bangsa secara keseluruhan, karena mencerminkan kondisi sosial, ekonomi, dan lingkungan. Angka kematian balita sebagai barometer sosial ekonomi dan kesehatan telah dimasukkan dalam Sustainable Development Goals (SDGs) dengan target baru untuk menurunkan angka kematian balita di dunia secara keseluruhan menjadi kurang dari 25 per 1000 kelahiran hidup di tahun 2030. Tujuan penelitian ini adalah untuk mengetahui faktor apa yang memengaruhi jumlah kasus kematian balita di Pulau Jawa. Variabel respon penelitian ini adalah jumlah kasus kematian balita yang merupakan data diskrit  dengan kondisi overdispersi. Penelitian ini menggunakan model Geographically Weighted Negative Binomial Regression (GWNBR) yang merupakan pengembangan regresi Binomial Negatif dengan memperhitungkan pengaruh spasial. Data yang digunakan pada penelitian ini mengandung missing value sehingga dilakukan penanganan dengan imputasi data menggunakan Classification and Regression Tree (CART). Model yang digunakan untuk menganalisis jumlah kasus kematian balita adalah model GWNBR dengan fungsi pembobot kernel Adaptive Gaussian. Hasil dari analisis tersebut menunjukkan bahwa terdapat 5 variabel prediktor yang secara signifikan memengaruhi jumlah kasus kematian balita di seluruh Kabupaten/Kota di pulau Jawa yaitu variabel kecukupan air bersih (AIRB), proporsi diare pada balita (DIARE), kecukupan jumlah dokter (DOK), cakupan penimbangan balita (CPB) dan cakupan Imunisasi Dasar Lengkap (IDL).

Under-five mortality is the main indicator of child health and the development of the nation as a whole, because it reflects social, economic and environmental conditions. The under-five mortality rate as a socio-economic and health barometer has been included in the Sustainable Development Goals (SDGs) with a new target to reduce the world under-five mortality rate as a whole to less than 25 per 1000 live births in 2030. The purpose of this study was to determine what factors which affects the number of under-five mortality cases in Java. The response variable of this research is the number of under-five mortality cases which are discrete data with overdispersion conditions. This study uses a Geographically Weighted Negative Binomial Regression (GWNBR) model which is the development of Negative Binomial regression by taking into account the spatial effect. The data used in this study contains missing values ​​so that it is handled by imputing data using the Classification and Regression Tree (CART). The model used to analyze the number of under-five mortality cases is the GWNBR model with the Adaptive Gaussian kernel weighting function. The results of the analysis show that there are 5 predictor variables that significantly affect the number of cases of under-five mortality in all districts/cities on the island of Java, namely the clean water adequacy variable (AIRB), the proportion of diarrhea in children under five (DIARE), the adequacy of the number of doctors (DOK), coverage of under-five weighing (CPB) and coverage of Complete Basic Immunization (IDL)."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Yemima Kathleen Monica
"Diare merupakan salah satu infeksi saluran pencernaan berupa keluarnya tinja encer atau cair tiga kali atau lebih setiap hari. Penyakit ini umum terjadi di Indonesia dan potensial menjadi Kejadian Luar Biasa (KLB) yang sering menyebabkan kematian. Tujuan penelitian ini adalah memodelkan dan mengidentifikasi variabel yang dapat menjelaskan jumlah kejadian penyakit diare di Provinsi Jawa Barat. Jumlah kejadian diare sebagai variabel respons merupakan data berbentuk diskrit yang umumnya dimodelkan menggunakan regresi Poisson. Namun, adanya asumsi equidispersi yang harus dipenuhi dalam regresi Poisson membuat regresi Binomial Negatif digunakan apabila terjadi overdispersi. Aspek spasial juga diperhatikan sehingga model yang digunakan dalam penelitian ini adalah Geographically Weighted Negative Binomial Regression (GWNBR). Penaksiran parameter dilakukan menggunakan metode Maximum Likelihood Estimation dengan iterasi Newton-Raphson. Model GWNBR memberikan bobot tertentu pada setiap lokasi pengamatan sehingga menghasilkan taksiran parameter model yang berbeda untuk setiap lokasi pengamatan. Fungsi pembobot kernel yang digunakan adalah Fixed Bisquare dan bandwidth optimum ditentukan menggunakan cross validation (CV). Prediktor yang digunakan dalam penelitian ini adalah persentase rumah tangga yang memiliki akses terhadap sanitasi layak, persentase penduduk miskin, jumlah puskesmas, kepadatan penduduk, jumlah dokter umum, dan indeks pendidikan. Hasil dari analisis menunjukkan bahwa dalam model GWNBR diperoleh 5 kelompok berdasarkan prediktor yang signifikan. Sebanyak 3 prediktor secara signifikan menjelaskan jumlah kejadian diare di seluruh kabupaten/kota di Provinsi Jawa Barat tahun 2022, yaitu persentase penduduk miskin, kepadatan penduduk, dan indeks pendidikan.

Diarrhea is an intestinal infection characterized by the excretion of loose or watery stools three or more times a day. This disease is common in Indonesia and has the potential to become an outbreak (KLB) that often leads to death. The aim of this study is to model and identify variables that can explain the number of diarrhea cases in West Java Province. The number of diarrhea cases as the response variable is discrete data, which is generally modeled using Poisson regression. However, due to the equidispersion assumption required in Poisson regression, Negative Binomial regression is used if overdispersion occurs. Spatial aspects are also considered, so the model used in this study is Geographically Weighted Negative Binomial Regression (GWNBR). Parameter estimation is done using the Maximum Likelihood Estimation method with Newton-Raphson iteration. The GWNBR model assign specific weights to each observation location, resulting in different parameter estimates for each location. The kernel weighting function used is Fixed Bisquare, and the optimal bandwidth is determined using cross-validation (CV). The predictors used in this study are the percentage of households with access to adequate sanitation, the percentage of poor population, the number of health centers, population density, the number of general practitioners, and the education index. The results of the analysis show that the GWNBR model identified 5 groups based on significant predictors. Three predictors significantly explain the number of diarrhea cases in all districts/cities in West Java Province in 2022: the percentage of the poor population, population density, and education index."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Taruga Runadi
"Menganalisis hubungan antara jumlah tindak kejahatan dan faktor-faktor yang mempengaruhinya menjadi topik penelitian yang menarik karena jumlah tindak kejahatan di Indonesia dalam sepuluh tahun terakhir cenderung meningkat. Untuk meningkatkan kualitas keamanan masyarakat maka pemerintah perlu memahami faktor-faktor apa saja yang dapat memicu tindakan kejahatan. Dibandingkan dengan metode analisis regresi klasik, metode Geographically Weighted Regression GWR lebih diunggulkan karena dapat menangani masalah ketidak stasioneran spasial yang biasanya terjadi pada data fenomena-fenomena sosial. Ketidakstasioneran spasial adalah situasi dimana hubungan antar peubah berbeda-beda secara signifikan disetiap lokasi observasi. Hal tersebut mengakibatkan hasil analisis regresi klasik menjadi tidak akurat di beberapa lokasi. GWR menangani masalah tersebut dengan membangun model regresi di setiap titik observasi sehingga memungkinkan parameter regresi menjadi berbeda di setiap lokasi observasi. Penelitian ini menggunakan jumlah tindak kejahatan y sebagai peubah terikat dan peubah bebasnya adalah jumlah penduduk buta huruf x1, jumlah pengangguran x2, jumlah penduduk miskin x3, kepadatan penduduk x4, dan jumlah korban NAPZA x5. Penelitian ini menggunakan data sekunder yang dihimpun oleh POLRI, BPS, dan Dinsos di Jawa Tengah pada tahun 2015. Terdapat dua fungsi pembobot spasial GWR yang akan dibandingkan yaitu Kernel Gaussian dan Kernel Bisquare. Hasil penelitian menunjukkan fungsi Kernel Gaussian lebih baik dibanding Kernel Bisquare berdasarkan skor AIC dan R2. Hasil analisis menggunakan GWR menghasilkan model untuk 35 kabupaten/kota di Jawa Tengah.

Analyzing the relationship between number of crime cases and factors defined became an interesting research topic over the last ten years. The total number of crime in Indonesia didn rsquo t show a consistent decrease. In order to upgrade people safeness quality, the government need to know the factors influence people committing crime acts. Rather than using classical regression analysis, Geographically Weighted Regression GWR was preferable since it gave a better representative model by effectively resolve spatial non stationary problem which is generally exist in spatial data of social phenomenon. Spatial non stationary is a situation when the relationship between variables are significantly different in each location of observation point, so that classic regression analysis will result a misleading interpretation in some location. GWR handled the spatial non stationary problem by generating a single model in each observation point which allow different relationship to exist at different point in space. This study used number of crime cases y as the dependent variable and the factors which affect the number of crime cases as independent variables that consist of the number of illiterates x1 , the number of unemployed x2, the number of poor population x3, population density x4, the number of victims of drug x5. This study used secondary data collected by POLRI, BPS, and Social ministry of Indonesia in Central Java during 2015. Two spatial weighting functions were compared i.e. Kernel Gaussian and Kernel Bisquare and the study result indicated that Kernel Gaussian was batter according to score of R2 and AIC. GWR generated model for 35 city regency in Central Java. "
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2017
T48305
UI - Tesis Membership  Universitas Indonesia Library
cover
Natasha Latifatu Soliha
"AIDS merupakan fase infeksi dari virus HIV yang paling kronis yang dapat melemahkan kekebalan tubuh. AIDS disebabkan oleh virus HIV yang menyerang dan menghancurkan sel CD4 atau yang biasa disebutk dengan sel T. Pada tahun 2020, Provinsi Jawa Timur merupakan provinsi dengan jumlah infeksi HIV terbanyak dan urutan ketiga terbanyak untuk total kasus AIDS di Indonesia. Tujuan penelitian ini untuk memodelkan data tingkat proporsi kasus AIDS Provinsi Jawa Timur menggunakan Geographically Weighted Logistic Regression (GWLR) dan melihat hasil pengelompokan kabupaten/kota menggunakan analisis klaster. Variabel yang digunakan untuk penelitian ini adalah Gini Rasio, Indeks L Pengeluaran Per Kapita, Rasio Jenis Kelamin, Rasio Ketergantungan, Indeks Pembangunan Gender (IPG), dan Jumlah Pos Pelayanan KB Desa. Tingkat proporsi kasus AIDS dikategorikan menjadi 2 kategori berdasarkan cut point yang telah ditentukan, dengan kategori 0 sebagai tingkat rendah dengan proporsi kasus AIDS kurang dari 0,0006 dan kategori 1 sebagai tingkat tinggi dengan proporsi kasus AIDS lebih dari atau sama dengan 0,0006. Penaksiran parameter untuk model Geographically Weighted Logistic Regression (GWLR) menggunakan metode Maximum Likelihood Estimation (MLE) dengan fungsi pembobot kernel Fixed Gaussian dan bandwidth optimum ditentukan menggunakan Akaike’s Information Criterion corrected (AICc). Nilai Z hitung dari parameter model yang paling sesuai akan dikelompokan menggunakan analisis klaster k-means, dengan Z hitung adalah nilai estimasi parameter dibagi dengan standar error. Hasil pengelompokan menunjukkan bahwa anggota klaster 1 memiliki kecenderungan merupakan kabupaten/kota yang memiliki variabel signifikan yaitu rasio jenis kelamin dan rasio ketergantungan yang merupakan perbandingan jumlah penduduk bukan angkatan kerja dengan jumlah penduduk angkatan kerja, sementara anggota klaster 2 memiliki kecenderungan merupakan kabupaten/kota yang memiliki variabel signifikan rasio ketergantungan.

AIDS is the most chronic phase of HIV infection which can weaken the immune system. AIDS is caused by HIV which attacks and destroys CD4 cells or also known as T cells. In 2020, East Java Province is a province which has the most HIV infections and in the third place for the highest total number of AIDS cases in Indonesia. The purpose of this research is to build a model using Geographically Weighted Logistic Regression (GWLR), and to work out the grouping results of regencies/cities using K-means Clustering Analysis. The variables used in this research are Gini Ratio, L Index of Per Capita Expenditure, Gender Ratio, Dependency Ratio, Gender Development Index, and The Number of Post Pelayanan KB Desa. The proportion levels of AIDS cases are categorized into 2 categories based on cut-point which has been specified, which 0 as the category of low level with the proportion of AIDS cases is less than 0.0006 and 1 as the category of high level with the proportion of AIDS cases is more than or equal to 0.0006. Parameter estimation for Geographically Weighted Logistic Regression (GWLR) is using Maximum Likelihood Estimation (MLE) method with Fixed Gaussian as weighted kernel function and optimum bandwidth is determined using Akaike’s Information Criterion Corrected (AICc). Z-Score of the most suitable model will be grouped using K-means Clustering Analysis, with Z-score is parameter estimator divided by standard error. Grouping results indicates cluster 1 members tend to be regencies/cities that have gender ratio and dependency ratio as significant variables, meanwhile cluster 2 members tend to be regencies/cities that have only dependency ratio as significant variable. "
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Natasha Latifatu Soliha
"AIDS merupakan fase infeksi dari virus HIV yang paling kronis yang dapat melemahkan kekebalan tubuh. AIDS disebabkan oleh virus HIV yang menyerang dan menghancurkan sel CD4 atau yang biasa disebutk dengan sel T. Pada tahun 2020, Provinsi Jawa Timur merupakan provinsi dengan jumlah infeksi HIV terbanyak dan urutan ketiga terbanyak untuk total kasus AIDS di Indonesia. Tujuan penelitian ini untuk memodelkan data tingkat proporsi kasus AIDS Provinsi Jawa Timur menggunakan Geographically Weighted Logistic Regression (GWLR) dan melihat hasil pengelompokan kabupaten/kota menggunakan analisis klaster k-means. Variabel yang digunakan untuk penelitian ini adalah Gini Rasio, Indeks L Pengeluaran Per Kapita, Rasio Jenis Kelamin, Rasio Ketergantungan, Indeks Pembangunan Gender (IPG), dan Jumlah Pos Pelayanan KB Desa. Tingkat proporsi kasus AIDS dikategorikan menjadi 2 kategori berdasarkan cut point yang telah ditentukan, dengan kategori 0 sebagai tingkat rendah dengan proporsi kasus AIDS kurang dari 0,0006 dan kategori 1 sebagai tingkat tinggi dengan proporsi kasus AIDS lebih dari atau sama dengan 0,0006. Penaksiran parameter untuk model Geographically Weighted Logistic Regression (GWLR) menggunakan metode Maximum Likelihood Estimation (MLE) dengan fungsi pembobot kernel Fixed Gaussian dan bandwidth optimum ditentukan menggunakan Akaike’s Information Criterion corrected (AICc). Nilai Z hitung dari parameter model yang paling sesuai akan dikelompokan menggunakan analisis klaster k-means, dengan Z hitung adalah nilai estimasi parameter dibagi dengan standar error. Hasil pengelompokan menunjukkan bahwa anggota klaster 1 memiliki kecenderungan merupakan kabupaten/kota yang memiliki variabel signifikan yaitu rasio jenis kelamin dan rasio ketergantungan yang merupakan perbandingan jumlah penduduk bukan angkatan kerja dengan jumlah penduduk angkatan kerja, sementara anggota klaster 2 memiliki kecenderungan merupakan kabupaten/kota yang memiliki variabel signifikan rasio ketergantungan.

AIDS is the most chronic phase of HIV infection which can weaken the immune system. AIDS is caused by HIV which attacks and destroys CD4 cells or also known as T cells. In 2020, East Java Province is a province which has the most HIV infections and in the third place for the highest total number of AIDS cases in Indonesia. The purpose of this research is to build a model using Geographically Weighted Logistic Regression (GWLR), and to work out the grouping results of regencies/cities using K- means Clustering Analysis. The variables used in this research are Gini Ratio, L Index of Per Capita Expenditure, Gender Ratio, Dependency Ratio, Gender Development Index, and The Number of Post Pelayanan KB Desa. The proportion levels of AIDS cases are categorized into 2 categories based on cut-point which has been specified, which 0 as the category of low level with the proportion of AIDS cases is less than 0.0006 and 1 as the category of high level with the proportion of AIDS cases is more than or equal to 0.0006. Parameter estimation for Geographically Weighted Logistic Regression (GWLR) is using Maximum Likelihood Estimation (MLE) method with Fixed Gaussian as weighted kernel function and optimum bandwidth is determined using Akaike’s Information Criterion Corrected (AICc). Z-Score of the most suitable model will be grouped using K-means Clustering Analysis, with Z-score is parameter estimator divided by standard error. Grouping results indicates cluster 1 members tend to be regencies/cities that have gender ratio and dependency ratio as significant variables, meanwhile cluster 2 members tend to be regencies/cities that have only dependency ratio as significant variable."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Manurung, Gavriel Samuel Sindar
"Sebagai negara dengan sumber daya yang melimpah, Indonesia memiliki kekayaan yang sangat besar. Kekayaan sumber daya tersebut digunakan seluas-luasnya dan seadil-adilnya untuk kemakmuran seluruh masyarakat Indonesia. Pada faktanya, masyarakat Indonesia memiliki ketimpangan ekonomi yang cukup tinggi. Oleh karena itu, penelitian ini dilakukan untuk menganalisis faktor-faktor apa saja yang dapat menjelaskan derajat ekonomi pada salah satu provinsi di Indonesia, yaitu Provinsi Jawa Tengah. Variabel independen yang digunakan dalam penelitian ini adalah Angka Kesakitan (AK), Usia Harapan Hidup (UHH), Pendapatan per Kapita (PPK), Indeks Kejahatan Terselesaikan (IKS), Angka Partisipasi Kasar tingkat Sekolah Dasar (APK) dan Kepadatan Penduduk (KP). Variabel dependen yang digunakan adalah Indeks Pembangunan Ekonomi Inklusif (IPEI) dan Persentase Penduduk Miskin (PPM). Model yang digunakan pada penelitian ini adalah Multivariate Geographically Weighted Regression. Model ini adalah model yang menggunakan lebih dari satu variabel dependen serta mempertimbangkan faktor spasial pada data. Model MGWR memberikan estimasi parameter yang berbeda untuk setiap lokasinya karena pembobotan yang dilakukan berdasarkan jarak Euclidean antar suatu lokasi terhadap lokasi lainnya. Fungsi kernel yang digunakan dalam memberikan bobot spasial adalah Fixed Tricube. Hasil dari analisis yang telah dilakukan adalah keseluruhan variabel independen memiliki variasi dalam menjelaskan kedua variabel dependen pada setiap lokasi.

As a country with abundant resources, Indonesia has a tremendous wealth. The utilization of these resources is extensive and fair to ensure the prosperity of all Indonesian people. However, the reality is that Indonesia has significant economic inequality. Therefore, this research aims to analyze the factors that can explain the level of economic development in one of Indonesia's provinces, Central Java Province. Independent variables used in this study are Disease Incidence Rate (AK), Life Expectancy (UHH), Income per Capita (PPK), Crime Solved Index (IKS), Gross Enrollment Rate at the Primary School (APK) and Population Density (KP). Dependent variables used are Inclusive Economic Development Index (IPEI) and Percentage of Poor Population (PPM). The model used in this research is called Multivariate Geographically Weighted Regression (MGWR). This model uses more than one dependent and takes spatial factors into model. The MGWR model provides different parameter estimates for each location, considering the weighting based on the Euclidean distance between locations. The spatial weighting is determined by the Fixed Tricube kernel function. The analysis result is that all independent variables have variations in explaining the two dependent variables at each location."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Zalfa Alifah Budiawan
"Tuberkulosis adalah penyakit menular yang termasuk kedalam sepuluh peringkat penyebab kematian tertinggi di dunia, sebagai contoh di Indonesia. Oleh karena itu, perlu diketahui faktor-faktor apa saja yang memengaruhi jumlah kasus tuberkulosis. Jumlah kasus tuberkulosis sebagai variabel dependen merupakan data cacah yang umumnya dianalisis menggunakan Regresi Poisson. Namun, adanya asumsi equidispersi yang harus dipenuhi pada Regresi Poisson maka Regresi Generalized Poisson dan Regresi binomial negatif dapat digunakan sebagai alternatif apabila asumsi equidispersi tidak terpenuhi. Aspek spasial dapat diperhatikan, sehingga pemodelan Geographically Weighted Generalized Poisson Regression dan Geographically Weighted Negative Binomial Regression juga dilakukan. Keempat model itu dibangun untuk mengetahui apakah ada hubungan jumlah kasus tuberkulosis di Pulau Jawa pada tahun 2020 dengan faktor-faktor yang diperkirakan memengaruhinya. Variabel independen yang digunakan adalah kepadatan penduduk, persentase balita diberikan imunisasi BCG, persentase penduduk miskin, persentase sarana air minum memenuhi syarat, persentase kartu keluarga dengan akses sanitasi layak, persentase tempat-tempat umum yang memenuhi syarat kesehatan, dan persentase tempat pengelolaan makanan yang memenuhi syarat higienis. Dari penelitian ini, diketahui bahwa model terbaik untuk memodelkan data adalah GWNBR dengan diperoleh 2 kelompok variabel independen signifikan. Sebanyak 7 variabel independen signifikan secara statistik di 88 kabupaten/Kota dan 6 variabel independen signifikan secara statistik di 12 kabupaten/Kota.

Tuberculosis is an infectious disease and one of the world's top 10 highest causes of mortality, for example, in Indonesia. Based on this fact, it’s necessary to know what factors influence number of tuberculosis cases. The number of tuberculosis cases as dependent variable is a count data that generally analyzed using Poisson regression. However, equidispersion assumption must be met, so Generalized Poisson Regression and Negative Binomial Regression are applied if the assumption is not met. Spatial aspects can be considered so Geographically Weighted Generalized Poisson Regression and Geographically Weighted Negative Binomial Regression were also conducted. Four models were built to evaluate relationship between number of tuberculosis cases and factors affecting it in Java in 2020. The explanatory variables are population density, percentage of children receiving BCG immunization, percentage of poor people, percentage of eligible drinking water facilities, percentage of family cards with access to proper sanitation, percentage of public places meet health requirements, and percentage of food management places meet hygienic requirements. This study shows that the best model for modeling the data is GWNBR with 2 groups of significant explanatory variables. Seven explanatory variables are statistically significant in 88 districts and six explanatory variables statistically significant in 12 districts."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Eslim Suyangsu Rohmanullah
"Perkembangan era globalisasi dapat menyebabkan terjadinya persaingan didalamnya yang akan mendorong beberapa individu atau kelompok untuk terlibat dalam tindak kejahatan dengan metode ilegal dalam upaya untuk mencapai keunggulan atau mengalahkan pesaing. Tidak dapat dipungkiri jika tindak kejahatan di Indonesia semakin marak diberitakan melalui media elektronik ataupun media lainnya. Peristiwa ini didukung dengan peningkatan jumlah tindak pidana di Indonesia dalam tiga tahun terakhir. Demi mengurangi dampak negatif persaingan yang dapat memicu tindak kejahatan dan mencapai tujuan ke-16 SDGs untuk menciptakan lingkungan yang lebih aman bagi masyarakat, khususnya di era globalisasi, maka penting untuk memahami faktor-faktor yang dapat menjelaskan tingkat kriminalitas. Tujuan dari penelitian ini adalah menganalisis faktor-faktor yang menjelaskan tingkat kriminalitas di Sumatera Utara menggunakan metode Geographically and Temporally Weighted Regression (GTWR) dengan fungsi pembobot adaptive kernel Bisquare. Metode GTWR merupakan pengembangan dari metode Geographically Weighted Regression (GWR) yang tidak hanya mempertimbangkan heterogenitas spasial, tetapi juga heterogenitas temporal. Penelitian ini menggunakan variabel penjelas Kepadatan Penduduk (KPn), Jumlah Penduduk Miskin (JPM), Garis Kemiskinan (GKm), Rata-rata Lama Sekolah (RLS), Tingkat Pengangguran Terbuka (TPT), dan Pengeluaran Perkapita Disesuaikan (PKD). Hasil dari penelitian ini diperoleh 10 kelompok area berdasarkan perbedaan signifikansi variabel penjelas setiap tahunnya. Terdiri dari 3 kelompok area pada tahun 2019, 4 kelompok area pada tahun 2020, dan 3 kelompok area pada tahun 2021.

The development of era of globalization can lead to competition that may drive individuals or groups to engage in criminal activities using illegal methods to achieve an advantage or surpass competitors. Crime in Indonesia is inevitably increasing, whether reported by electronic media or other media. This phenomenon has auxiliary data on the increasing number of criminal in Indonesia over the past three years. In order to mitigate the adverse effects of competition that may lead to criminal behavior and accomplish Goal 16 of the Sustainable Development Goals (SDGs), which aims to create a safer environment for society, especially in the era of globalization, it is necessary to understand the factors that can explain the crime rates. The objective of this study is to analyze the factors that explain the crime rates in North Sumatra using the Geographically and Temporally Weighted Regression (GTWR) method with weighting functions adaptive Bisquare kernel. The GTWR method is an extension of the Geographically Weighted Regression (GWR) method, which considers spatial and temporal heterogeneity. This study uses explanatory variables such as Population Density (KPn), Number of Poor People (JPM), Poverty Line (GKm), Average Length of Schooling (RLS), Open Unemployment Rate (TPT), and Adjusted Per Capita Expenditure (PKD). The results of this study obtained 10 areas groups based on the significance of different explanatory variables for each year consisting of 3 broad groups in 2019, 4 broad groups in 2020, and 3 broad groups in 2021."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Michael Mario Bramanthyo Adhi
"Angka Harapan Hidup (AHH) merupakan rata-rata perkiraan banyak tahun yang dapat ditempuh oleh seseorang sejak lahir. Badan Pusat Statistik (BPS) mencatat bahwa AHH penduduk di Provinsi Jawa Barat tahun 2021 mencapai 73,23 tahun dan menempati posisi keempat dengan nilai AHH tertinggi di Indonesia pada 2021. Penelitian ini bertujuan untuk menganalisis variabel-variabel yang menjelaskan AHH di setiap kabupaten/kota di Provinsi Jawa Barat tahun 2021 menggunakan model regresi linear berganda, Geographically Weighted Regression (GWR), dan Mixed Geographically Weighted Regression (MGWR) yang kemudian dievaluasi untuk memeroleh model terbaik. Pada penelitian ini, model regresi linier berganda digunakan untuk mengetahui seberapa besar pengaruh variabel-variabel independen terhadap variabel AHH dimana nilai estimasi parameter regresi sama untuk setiap wilayah penelitian atau disebut dengan model regresi global. Provinsi Jawa Barat terdiri dari 27 kabupaten/kota yang memiliki karakteristik berbeda antarwilayah sehingga memungkinkan adanya heterogenitas spasial. Model GWR bertujuan untuk mengeksplor heterogenitas spasial dengan membentuk model regresi yang berbeda pada setiap lokasi pengamatan atau dapat disebut dengan model regresi lokal. Hal ini akan menimbulkan permasalahan apabila terdapat variabel independen yang tidak bersifat lokal atau tidak mempunyai pengaruh lokasi, tetapi diduga memiliki pengaruh terhadap variabel dependen secara global. Oleh karena itu, dikembangkan lagi menggunakan model MGWR. Model MGWR menghasilkan estimasi parameter yang bersifat global dan lokal sesuai dengan lokasi pengamatan. Variabel yang bersifat global, yaitu Tingkat Pengangguran Terbuka (TPT) dan Pengeluaran Per Kapita (PPK), sedangkan variabel yang bersifat lokal, yaitu Jumlah Penduduk Miskin (JPM), Harapan Lama Sekolah (HLS), dan Persentase Penduduk yang Mempunyai Keluhan Kesehatan Sebulan Terakhir (KK). Hasil penelitian ini menunjukkan bahwa kedua variabel global berpengaruh terhadap AHH, sedangkan variabel lokal yang berpengaruh terhadap AHH berbeda pada setiap wilayahnya, begitu pula dengan model yang terbentuk juga akan berbeda untuk setiap wilayahnya. Selain itu, model terbaik yang diperoleh adalah model GWR dengan fungsi pembobot fixed Gaussian kernel dengan nilai AIC terkecil, adjusted R-squared terbesar, dan RMSE terkecil dibandingkan model regresi linier berganda dan MGWR.

Life Expectancy (AHH) is an estimate of the years that a person will take from birth. Badan Pusat Statistik (BPS) notes that the AHH of the population in West Java Province in 2021 reached 73.23 years and ranked fourth with the highest AHH value in Indonesia in 2021. This study aims to analyze the variables that explain AHH in each district/city in West Java Province in 2021 using multiple linear regression models, Geographically Weighted Regression (GWR) models, and Mixed Geographically Weighted Regression (MGWR) models which are then evaluated to obtain the best model. In this study, the multiple linear regression model is used to determine how much influence the independent variables had on the AHH variable where the estimated values of the regression parameters were the same for each study area or called the global regression model. West Java Province consists of 27 districts/cities which have different characteristics between regions, thus allowing for spatial heterogeneity. The GWR model aims to explore spatial heterogeneity by forming a different regression model at each observation location or it can be called a local regression model. This will cause problems if there are independent variables that are not local in nature or do not have a location effect, but are suspected of having an influence on the dependent variable globally. Therefore, it is further developed using the MGWR model. The MGWR model produces parameter estimates that have global and local characteristics according to the observation location. Global variables are Open Unemployment Rate (TPT) and Per Capita Expenditures (PPK), while local variables are Number of Poor Population (JPM), Expected Years of Schooling (HLS), and Percentage of Population with Health Complaints in the Last Month (KK). The results of this study indicate that both global variables have a significant effect on AHH, while local variables which have a significant effect on AHH are different in each region, as well as the model formed will also be different for each region. In addition, the best model obtained is the GWR model with a fixed Gaussian kernel weighting function with the smallest AIC value, the largest adjusted R-squared, and the smallest RMSE compared to the multiple linear regression model and MGWR model.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Shannisya Noorcintanami
"

Posisi Indonesia sebagai salah satu negara yang masuk ke dalam kategori High Burden Countries untuk penyakit menular Tuberkulosis (TB), menyebabkan TB menjadi masalah kesehatan yang patut diperhatikan oleh Pemerintah. Maka, penting bagi Pemerintah untuk mengidentifikasi faktor-faktor yang mempengaruhi jumlah kasus TB. Pada umumnya, model regresi linear berganda digunakan untuk melihat bagaimana hubungan linear antara faktor-faktor tersebut dengan jumlah kasus TB, namun dengan model ini variasi spasial pada data tidak diperhitungkan. Untuk menutupi kekurangan tersebut, penelitian ini menggunakan model spasial, yaitu model yang memperhitungkan lokasi geografis observasi dalam pembentukan model. Penelitian ini mencakup dua jenis Geographically Weighted Models (GWM), yaitu Geographically Weighted Regression (GWR) dan Mixed Geographically Weighted Regression (MGWR). Jenis model spasial ini akan memberikan bobot tertentu pada observasi-observasi sesuai dengan lokasi geografisnya. Kedua model tersebut dikonstruksi untuk melihat hubungan antara jumlah kasus baru TB dengan faktor-faktor yang diduga mempengaruhinya per Kabupaten/Kota di Pulau Jawa tahun 2017. Faktor-faktor tersebut adalah jumlah penduduk, angka keberhasilan pengobatan TB, persentase balita yang diimunisasi BCG, persentase penderita HIV, persentase rumah sehat, persentase penduduk miskin dan jumlah puskesmas per seratus ribu penduduk. Perbandingan performa kedua model diukur menggunakan Akaike’s Information Criterion (AIC) dan Adjusted R2 untuk menentukan model yang relatif lebih baik. Dari penelitian ini, ditemukan bahwa GWR merupakan model yang relatif lebih baik untuk data. Salah satu penemuan pada penelitian ini adalah bahwa hubungan antara persentase balita yang diimunisasi BCG dan jumlah kasus baru TB adalah negatif dan paling kuat di DKI Jakarta. Hal ini dapat disebabkan oleh tingginya tingkat kesadaran dari pentingnya imunisasi BCG dan sosialisasinya di lokasi tersebut.

 


Indonesia’s position as one of the High Burden Countries for the infectious disease, Tuberculosis (TB), has caused TB to be a major health problem in Indonesia. As means to control the number of TB cases, it becomes important for the government to identify the factors affecting it. Commonly, multiple linear regression models are used to evaluate the linear relationship between the factors and the number of TB cases.  Unfortunately, this model does not have the ability to expose the spatial variation in the data. To improve that, this research uses a spatial model: a model that takes the geographical location into account in the making of the model. This research covers two types of Geographically Weighted Models (GWM), which are Geographically Weighted Regression (GWR) and Mixed Geographically Weighted Regression (MGWR). These spatial models assign weights to the observations based on its’ geographical location. These two models will be constructed to evaluate the relationship between the number of TB cases and the factors affecting it per Regency/City in Java in 2017, namely: population, success rate of TB treatment, percentage of toddlers receiving BCG vaccine, percentage of HIV patient, percentage of healthy homes, percentage of poor people and the number of public health centre per one hundred thousand people. The performance of both models is measured using Akaike’s Information Criterion (AIC) and Adjusted R2 to find out which model is relatively better. The result of this research suggests that the GWR model is the relatively better model for the data. The model suggests that the relationship between percentage of toddlers receiving BCG vaccine and the number of TB cases is negative and is the strongest in Jakarta, which may be caused by the level of awareness and socialization of BCG vaccine that is better in this area.

 

"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>