Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 104422 dokumen yang sesuai dengan query
cover
Valentino Herdyan Permadi
"Perkembangan teknologi saat ini sudah mampu menunjang kegiatan belajar mengajar secara daring. Salah satu metode yang digunakan untuk melakukan kegiatan tersebut adalah secara asinkronus. Umumnya, materi yang disampaikan secara asinkronus menggunakan video pemelajaran. Pengajar mengunggah video pemelajaran pada sebuah layanan Learning Management System (LMS) dan siswa menggunakan video tersebut sebagai bahan belajar. Siswa tunarungu mengalami kesulitan mengikuti kegiatan pemelajaran dengan media tersebut karena kurangnya fitur aksesibilitas pada LMS yang digunakan. Fasilkom UI sebelumnya sudah mengembangkan modul pengubah suara menjadi teks dengan Automatic Speech Recognition (ASR) dan pengubah teks menjadi animasi bahasa isyarat (Text-to-Gesture). LMS yang digunakan adalah Moodle. Pada penelitian ini, dikembangkan suatu layanan yang bisa mengintegrasikan modul ASR dengan aplikasi Text-to-Gesture. Penelitian ini mengembangkan sebuah Application Programming Interface (API) yang bisa menerima hasil ASR dan mengirimkannya ke aplikasi Text-to-Gesture. Animasi dibangkitkan dengan aplikasi Text-to-Gesture yang di saat bersamaan direkam dan kemudian diproses menggunakan FFmpeg. Hasil prosesnya kemudian dikirimkan kembali ke Moodle untuk disajikan sebagai bahan ajar. Pada penelitian ini disimpulkan pengembang dapat membuat sebuah API yang bisa menghubungkan modul ASR pada Moodle dengan aplikasi Text-to-Gesture. API yang dibuat juga bisa dihubungkan dengan aplikasi lain selain Moodle selama mengikuti format yang sama dengan modul ASR.

The current technology development has been able to support online learning activities. One of the methods used for such activities is asynchronous learning. Typically, asynchronous learning materials utilize instructional videos. Educators upload instructional videos to a Learning Management System (LMS), and students use these videos as learning materials. Deaf students face difficulties in following the learning activities with these media due to the lack of accessibility features in the LMS being used. Previously, Fasilkom UI has developed modules to convert speech into text using Automatic Speech Recognition (ASR) and to convert text into sign language animations (Text-to-Gesture). The LMS used in this research is Moodle. In this study, a service was developed to integrate the ASR module with the Text-to-Gesture application. An Application Programming Interface (API) was developed to receive ASR results and send them to the Text-to-Gesture application. The animations that are generated using the Text-to-Gesture application are recorded and then processed using FFmpeg. The processed results are then sent back to Moodle to be presented as teaching materials. This research concludes that developers can create an API to connect the ASR module in Moodle with the Text-to-Gesture application. The created API can also be connected to other applications as long as they follow the same format as the ASR module."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Evando Wihalim
"Dengan berkembangnya pengetahuan di bidang teknologi, kegiatan belajar mengajar tidak hanya dapat dilakukan secara tatap muka. Kegiatan belajar mengajar ini dapat didukung dengan memanfaatkan suatu learning management system (LMS) berbasis web. LMS biasanya mampu untuk menyimpan video pemelajaran baik itu rekaman kelas maupun rekaman materi yang disampaikan oleh pengajar. Video pemelajaran pada LMS ini dapat diakses oleh semua orang termasuk para pelajar tunarungu. Video pemelajaran biasanya terdiri atas kumpulan gambar dan suara. Suara ini sulit didengar oleh penyandang tunarungu sehingga mereka mengalami kesulitan dalam memahami isi video pemelajaran. Untuk melawan keterbatasan pendengaran, penyandang tunarungu kerap menggunakan komunikasi total dalam keseharian mereka. Komunikasi total adalah komunikasi yang tidak hanya melibatkan mulut dan telinga namun juga mata, gerakan bibir, gerakan tangan, dan lain-lain. Untuk menghadirkan komunikasi total pada video pemelajaran, dibutuhkan suatu sistem yang dapat mengubah video menjadi gerakan animasi bahasa isyarat. Fasilkom UI telah mengembangkan modul untuk mengubah teks menjadi animasi bahasa isyarat. Dengan demikian, diperlukan suatu sistem yang dapat mengubah video menjadi teks. Pada penelitian ini, dikembangkan sistem pengubah video menjadi teks yang dapat diintegrasikan dengan LMS khususnya Moodle. Pada penelitian ini juga dibahas mengenai perbandingan dua model Automatic Speech Recogniton (ASR), yakni: Google Speech-to-Text dan Wav2Vec2-Large-XLSRIndonesian. Pada penelitian ini didapatkan kesimpulan bahwa pengembang dapat membuat sebuah modul aktivitas Moodle yang dapat diintegrasikan dengan LMS Moodle dan layanan lain di luar LMS. Tak hanya itu, berdasarkan hasil analisis yang dilakukan pada penelitian ini, model Google Speech-to-Text terbukti mampu memberikan rata-rata hasil transkripsi video pemelajaran yang lebih akurat dan lebih cepat daripada model Wav2Vec2-Large-XLSR-Indonesian.

With the growth of technology, teaching and learning activities are no longer limited to classroom. Now teaching and learning activities can be supported by utilizing Learning Management System (LMS). LMS often have the feature to store recordings, be it class session recordings or learning materials video. These recordings could be accessed by anyone, from normal students to students with hearing impairment. These learning videos are composed of images and sounds. Students with hearing impairment would have trouble with hearing those sounds. To combat their hearing problems, students with hearing impairment would use total communication in their everyday lives. Total communication is a communication that not only involves the mouth and the ears, but also eyes, lips, hand movements, and so on. To bring this total communication into the video, a system that could convert the video into sign language animation is needed. Fasilkom UI have developed a system that could convert text into a sign language animation. And so, a system that could convert the video into a text. In this research a system that could convert video into text that could be integrated with LMS, especially Moodle, will be developed. This research also discusses the comparison between two Automatic Speech Recognition (ASR) models, one from Google, and one being a community-developed open-source project. This research managed to develop a Moodle activity module that could be integrated with the LMS itself and other remote services. And also, this research founds that, based on our analysis, the Google Speech-to-text model could give better and faster transcription results of the learning videos compared to Wav2Vec2-Large-XLSR-Indonesian model."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Evando Wihalim
"

Dengan berkembangnya pengetahuan di bidang teknologi, kegiatan belajar mengajar tidak hanya dapat dilakukan secara tatap muka. Kegiatan belajar mengajar ini dapat didukung dengan memanfaatkan suatu learning management system (LMS) berbasis web. LMS biasanya mampu untuk menyimpan video pemelajaran baik itu rekaman kelas maupun rekaman materi yang disampaikan oleh pengajar. Video pemelajaran pada LMS ini dapat diakses oleh semua orang termasuk para pelajar tunarungu. Video pemelajaran biasanya terdiri atas kumpulan gambar dan suara. Suara ini sulit didengar oleh penyandang tunarungu sehingga mereka mengalami kesulitan dalam memahami isi video pemelajaran. Untuk melawan keterbatasan pendengaran, penyandang tunarungu kerap menggunakan komunikasi total dalam keseharian mereka. Komunikasi total adalah komunikasi yang tidak hanya melibatkan mulut dan telinga namun juga mata, gerakan bibir, gerakan tangan, dan lain-lain. Untuk menghadirkan komunikasi total pada video pemelajaran, dibutuhkan suatu sistem yang dapat mengubah video menjadi gerakan animasi bahasa isyarat. Fasilkom UI telah mengembangkan modul untuk mengubah teks menjadi animasi bahasa isyarat. Dengan demikian, diperlukan suatu sistem yang dapat mengubah video menjadi teks. Pada penelitian ini, dikembangkan sistem pengubah video menjadi teks yang dapat diintegrasikan dengan LMS khususnya Moodle. Pada penelitian ini juga dibahas mengenai perbandingan dua model Automatic Speech Recogniton (ASR), yakni: Google Speech-to-Text dan Wav2Vec2-Large-XLSRIndonesian. Pada penelitian ini didapatkan kesimpulan bahwa pengembang dapat membuat sebuah modul aktivitas Moodle yang dapat diintegrasikan dengan LMS Moodle dan layanan lain di luar LMS. Tak hanya itu, berdasarkan hasil analisis yang dilakukan pada penelitian ini, model Google Speech-to-Text terbukti mampu memberikan rata-rata hasil transkripsi video pemelajaran yang lebih akurat dan lebih cepat daripada model Wav2Vec2-Large-XLSR-Indonesian.


With the growth of technology, teaching and learning activities are no longer limited to classroom. Now teaching and learning activities can be supported by utilizing Learning Management System (LMS). LMS often have the feature to store recordings, be it class session recordings or learning materials video. These recordings could be accessed by anyone, from normal students to students with hearing impairment. These learning videos are composed of images and sounds. Students with hearing impairment would have trouble with hearing those sounds. To combat their hearing problems, students with hearing impairment would use total communication in their everyday lives. Total communication is a communication that not only involves the mouth and the ears, but also eyes, lips, hand movements, and so on. To bring this total communication into the video, a system that could convert the video into sign language animation is needed. Fasilkom UI have developed a system that could convert text into a sign language animation. And so, a system that could convert the video into a text. In this research a system that could convert video into text that could be integrated with LMS, especially Moodle, will be developed. This research also discusses the comparison between two Automatic Speech Recognition (ASR) models, one from Google, and one being a community-developed open-source project. This research managed to develop a Moodle activity module that could be integrated with the LMS itself and other remote services. And also, this research founds that, based on our analysis, the Google Speech-to-text model could give better and faster transcription results of the learning videos compared to Wav2Vec2-Large-XLSR-Indonesian model.

"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Andhira Henrisen Sikoko
"Di era kemajuan teknologi yang pesat, pembelajaran daring semakin populer terutama setelah COVID-19. Namun, tunarungu sering menghadapi kesenjangan dalam memahami video pembelajaran. Salah satu solusi yang dapat membantu adalah dengan menyediakan subtitle dalam bahasa isyarat, khususnya Sistem Isyarat Bahasa Indonesia (SIBI). Untuk mengembangkan subtitle ini, diperlukan teks input dari video pembelajaran. Namun, teks input seringkali terlalu panjang dan mengandung banyak kata yang tidak ada dalam kamus bahasa isyarat SIBI. Metode yang ada sekarang pun menghasilkan animasi SIBI secara kata demi kata, yang mengakibatkan animasi bergerak cepat dan sulit diikuti oleh pengguna tunarungu. Penelitian ini membahas integrasi translasi teks dalam pengembangan subtitle animasi isyarat SIBI untuk aplikasi Moodle, menggunakan machine learning. Penelitian ini bertujuan untuk mengembangkan solusi yang lebih efektif dengan menerapkan terjemahan teks. Penelitian ini mengusulkan penggunaan dua model pretrained, yaitu mBART50 dan NLLB200 sebagai baseline model dan model yang akan di-finetuning. Eksperimen ini menggunakan dataset yang dikumpulkan dari 12 video pembelajaran. Kemudian data ini diproses, dianotasi oleh guru Sekolah Luar Biasa (SLB), dan digunakan untuk training, validation, serta testing dan dataset ini dinamakan SIBIVID-MP12. Eksperimen dilakukan dengan membandingkan model baseline dengan model yang sudah di-finetuning. Finetuning dilakukan dengan dan tanpa custom loss function yang merupakan inovasi pada penelitian ini. Custom loss function menambahkan SIBIDictLoss pada total loss model, sehingga akan memaksa model untuk hanya menggunakan kata yang ada pada kamus SIBI. Hasil eksperimen menunjukkan bahwa dengan adanya finetuning, model mBART50 dan NLLB200 mengalami peningkatan performa dibandingkan model baseline-nya tanpa finetuning dalam melakukan terjemahan teks Bahasa Indonesia ke dalam SIBI. Model NLLB200 FT+CL dengan varian batch size 4, penggunaan weighting varian kedua, ukuran weight 0,2, dan besaran penalti 0,1 menjadi varian dengan nilai evaluasi tertinggi dengan peningkatan nilai sacreBLEU sebesar 71% , nilai chrF++ sebesar 9,79% , nilai METEOR 22,92% , dan nilai ROUGE-L 14,55% dibandingkan dengan model baseline. Ini menunjukkan bahwa mengintegrasikan model terjemahan teks dapat meningkatkan inklusivitas dan aksesibilitas platform pembelajaran daring bagi komunitas tunarungu di Indonesia.

In the era of rapid technological advancement, online learning has become increasingly popular, particularly following the COVID-19 pandemic. However, the deaf community often faces challenges in comprehending educational videos. One potential solution is to provide subtitles in sign language, specifically the Indonesian Sign Language System (SIBI). Developing these subtitles requires text input from educational videos. However, the input text is often too lengthy and contains many words that do not exist in the SIBI dictionary. Current methods generate SIBI animations word by word, resulting in fast-moving animations that are difficult for deaf users to follow. This research discusses the integration of text translation in the development of SIBI animated subtitles for the Moodle application, using machine learning. The study aims to develop a more effective solution by implementing text translation. The research proposes the use of two pretrained models, mBART50 and NLLB200, as baseline models and models for fine-tuning. The experiment utilizes a dataset collected from 12 educational videos. This data is processed, annotated by Special Education (SLB) teachers, and used for training, validation, and testing, and is named SIBIVID-MP12. Experiments were conducted by comparing the baseline models with the fine-tuned models. Fine-tuning was performed with and without a custom loss function, which is an innovation in this study. The custom loss function adds SIBIDictLoss to the total model loss, thereby compelling the model to use only words present in the SIBI dictionary. The experimental results show that with fine-tuning, both mBART50 and NLLB200 models demonstrated improved performance compared to their baseline models in translating Indonesian text into SIBI. The NLLB200 FT+CL model, with a batch size variant of 4, the second weighting variant, a weight size of 0.2, and a penalty size of 0.1, achieved the highest evaluation scores, with an increase in sacreBLEU score by 71%, chrF++ score by 9.79%, METEOR score by 22.92%, and ROUGE-L score by 14.55% compared to the baseline model. This indicates that integrating text translation models can enhance the inclusivity and accessibility of online learning platforms for the deaf community in Indonesia."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Evan Aurelrius
"Di era kemajuan teknologi yang pesat, pembelajaran daring semakin populer terutama setelah COVID-19. Namun, tunarungu sering menghadapi kesenjangan dalam memahami video pembelajaran. Salah satu solusi yang dapat membantu adalah dengan menyediakan subtitle dalam bahasa isyarat, khususnya Sistem Isyarat Bahasa Indonesia (SIBI). Untuk mengembangkan subtitle ini, diperlukan teks input dari video pembelajaran. Namun, teks input seringkali terlalu panjang dan mengandung banyak kata yang tidak ada dalam kamus bahasa isyarat SIBI. Metode yang ada sekarang pun menghasilkan animasi SIBI secara kata demi kata, yang mengakibatkan animasi bergerak cepat dan sulit diikuti oleh pengguna tunarungu. Penelitian ini membahas integrasi translasi teks dalam pengembangan subtitle animasi isyarat SIBI untuk aplikasi Moodle, menggunakan machine learning. Penelitian ini bertujuan untuk mengembangkan solusi yang lebih efektif dengan menerapkan terjemahan teks. Penelitian ini mengusulkan penggunaan dua model pretrained, yaitu mBART50 dan NLLB200 sebagai baseline model dan model yang akan di-finetuning. Eksperimen ini menggunakan dataset yang dikumpulkan dari 12 video pembelajaran. Kemudian data ini diproses, dianotasi oleh guru Sekolah Luar Biasa (SLB), dan digunakan untuk training, validation, serta testing dan dataset ini dinamakan SIBIVID-MP12. Eksperimen dilakukan dengan membandingkan model baseline dengan model yang sudah di-finetuning. Finetuning dilakukan dengan dan tanpa custom loss function yang merupakan inovasi pada penelitian ini. Custom loss function menambahkan SIBIDictLoss pada total loss model, sehingga akan memaksa model untuk hanya menggunakan kata yang ada pada kamus SIBI. Hasil eksperimen menunjukkan bahwa dengan adanya finetuning, model mBART50 dan NLLB200 mengalami peningkatan performa dibandingkan model baseline-nya tanpa finetuning dalam melakukan terjemahan teks Bahasa Indonesia ke dalam SIBI. Model NLLB200 FT+CL dengan varian batch size 4, penggunaan weighting varian kedua, ukuran weight 0,2, dan besaran penalti 0,1 menjadi varian dengan nilai evaluasi tertinggi dengan peningkatan nilai sacreBLEU sebesar 71%, nilai chrF++ sebesar 9,79%, nilai METEOR 22,92%, dan nilai ROUGE-L 14,55% dibandingkan dengan model baseline. Ini menunjukkan bahwa mengintegrasikan model terjemahan teks dapat meningkatkan inklusivitas dan aksesibilitas platform pembelajaran daring bagi komunitas tunarungu di Indonesia.

In the era of rapid technological advancement, online learning has become increasingly popular, particularly following the COVID-19 pandemic. However, the deaf community often faces challenges in comprehending educational videos. One potential solution is to provide subtitles in sign language, specifically the Indonesian Sign Language System (SIBI). Developing these subtitles requires text input from educational videos. However, the input text is often too lengthy and contains many words that do not exist in the SIBI dictionary. Current methods generate SIBI animations word by word, resulting in fastmoving animations that are difficult for deaf users to follow. This research discusses the integration of text translation in the development of SIBI animated subtitles for the Moodle application, using machine learning. The study aims to develop a more effective solution by implementing text translation. The research proposes the use of two pretrained models, mBART50 and NLLB200, as baseline models and models for fine-tuning. The experiment utilizes a dataset collected from 12 educational videos. This data is processed, annotated by Special Education (SLB) teachers, and used for training, validation, and testing, and is named SIBIVID-MP12. Experiments were conducted by comparing the baseline models with the fine-tuned models. Fine-tuning was performed with and without a custom loss function, which is an innovation in this study. The custom loss function adds SIBIDictLoss to the total model loss, thereby compelling the model to use only words present in the SIBI dictionary. The experimental results show that with fine-tuning, both mBART50 and NLLB200 models demonstrated improved performance compared to their baseline models in translating Indonesian text into SIBI. The NLLB200 FT+CL model, with a batch size variant of 4, the second weighting variant, a weight size of 0.2, and a penalty size of 0.1, achieved the highest evaluation scores, with an increase in sacreBLEU score by 71%, chrF++ score by 9.79%, METEOR score by 22.92%, and ROUGE-L score by 14.55% compared to the baseline model. This indicates that integrating text translation models can enhance the inclusivity and accessibility of online learning platforms for the deaf community in Indonesia."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Amalia Hanisafitri
"Pada era pandemi COVID-19 seperti ini, sistem pembelajaran dialihkan menjadi pembelajaran jarak jauh yang dilaksanakan secara online, tak terkecuali dengan kegiatan ujian. Sistem pembelajaran jarak jauh membutuhkan berbagai sarana teknologi yang dapat mendukung proses penilaian keseluruhan pembelajaran seperti sistem Computer-Based Test (CBT). Salah satu sarana yang mendukung dalam pengukuran pemahaman siswa yaitu dengan concept map. Penilaian pada concept map biasanya sulit dilakukan karena tidak ada batasan bagaimana concept map harus dibangun. Oleh karena itu, terdapat pendekatan alternatif lain yaitu framework Kit-Build concept map. Saat ini, sudah ada plugin question type pada Moodle untuk jawaban berupa concept map, namun belum terdapat plugin question type pada Moodle berupa concept map yang menerapkan metode Kit-Build. Penelitian ini bertujuan untuk memenuhi kebutuhan dosen dan mahasiswa terkait pelaksanaan ujian online dengan menciptakan plugin question type pada Moodle berupa concept map dengan metode Kit-Build. Penelitian ini menggunakan metode Software Development Life Cycle (SDLC) Waterfall untuk pengembangan dan User-Centered Design untuk perancangan desain antarmuka. Dengan ini, penelitian menghasilkan plugin question type pada Moodle dengan metode Kit-Build untuk dosen dan mahasiswa. Selanjutnya, dilakukan evaluasi untuk menilai usability perancangan desain secara kualitatif dengan usability testing dan kuantitatif melalui kuesioner System Usability Scale. Selain itu, dilakukan functional test untuk melakukan validasi apakah kebutuhan fungsional yang dikembangkan sudah terpenuhi atau tidak. Hasil perhitungan dari evaluasi SUS menunjukkan skor 86.428 dengan predikat A yang artinya sudah cukup baik.

In the era of the COVID-19 pandemic, the systems of learning that we normally use has shifted towards a more online and distance learning, an example of this is the implementation of online exam activities held through zoom. Distance learning systems require various technological tools that can support the overall learning assessment process such as the Computer-Based Test (CBT) system. One of the tools that supports the measurement of student understanding is the concept map. Assessment of a concept map is usually difficult because there are no limits as to how the concept map should be constructed. However, there is an alternative approach to solve this issue which is through the Kit-Build concept map framework. Currently, there is a question type plugin on Moodle for answers in the form of concept maps, but there is no question type plugin on Moodle in the form of concept maps that apply to the Kit-Build method. This study aims to meet the needs of lecturers and students regarding the implementation of online exams by creating a question type plugin on Moodle in the form of a concept map using the Kit-Build method. This research uses the Waterfall Software Development Life Cycle (SDLC) method for development and User-Centered Design for interface design. With this, the research resulted in a question type plugin on Moodle with the Kit-Build method for lecturers and students. Furthermore, an evaluation was carried out to assess the usability of the design qualitatively through usability testing and quantitatively through the System Usability Scale questionnaire. In addition, a functional test is conducted to validate whether the functional requirements developed have been met or not. Using the SUS evaluation, we also managed to accumulate a score of 86,428 with an A predicate, this number indicates an excellent result."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2022
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Amalia Hanisafitri
"Pada era pandemi COVID-19 seperti ini, sistem pembelajaran dialihkan menjadi pembelajaran jarak jauh yang dilaksanakan secara online, tak terkecuali dengan kegiatan ujian. Sistem pembelajaran jarak jauh membutuhkan berbagai sarana teknologi yang dapat mendukung proses penilaian keseluruhan pembelajaran seperti sistem Computer-Based Test (CBT). Salah satu sarana yang mendukung dalam pengukuran pemahaman siswa yaitu dengan concept map. Penilaian pada concept map biasanya sulit dilakukan karena tidak ada batasan bagaimana concept map harus dibangun. Oleh karena itu, terdapat pendekatan alternatif lain yaitu framework Kit-Build concept map. Saat ini, sudah ada plugin question type pada Moodle untuk jawaban berupa concept map, namun belum terdapat plugin question type pada Moodle berupa concept map yang menerapkan metode Kit-Build. Penelitian ini bertujuan untuk memenuhi kebutuhan dosen dan mahasiswa terkait pelaksanaan ujian online dengan menciptakan plugin question type pada Moodle berupa concept map dengan metode Kit-Build. Penelitian ini menggunakan metode Software Development Life Cycle (SDLC) Waterfall untuk pengembangan dan User-Centered Design untuk perancangan desain antarmuka. Dengan ini, penelitian menghasilkan plugin question type pada Moodle dengan metode Kit-Build untuk dosen dan mahasiswa. Selanjutnya, dilakukan evaluasi untuk menilai usability perancangan desain secara kualitatif dengan usability testing dan kuantitatif melalui kuesioner System Usability Scale. Selain itu, dilakukan functional test untuk melakukan validasi apakah kebutuhan fungsional yang dikembangkan sudah terpenuhi atau tidak. Hasil perhitungan dari evaluasi SUS menunjukkan skor 86.428 dengan predikat A yang artinya sudah cukup baik.

In the era of the COVID-19 pandemic, the systems of learning that we normally use has shifted towards a more online and distance learning, an example of this is the implementation of online exam activities held through zoom. Distance learning systems require various technological tools that can support the overall learning assessment process such as the Computer-Based Test (CBT) system. One of the tools that supports the measurement of student understanding is the concept map. Assessment of a concept map is usually difficult because there are no limits as to how the concept map should be constructed. However, there is an alternative approach to solve this issue which is through the Kit-Build concept map framework. Currently, there is a question type plugin on Moodle for answers in the form of concept maps, but there is no question type plugin on Moodle in the form of concept maps that apply to the Kit-Build method. This study aims to meet the needs of lecturers and students regarding the implementation of online exams by creating a question type plugin on Moodle in the form of a concept map using the Kit-Build method. This research uses the Waterfall Software Development Life Cycle (SDLC) method for development and User-Centered Design for interface design. With this, the research resulted in a question type plugin on Moodle with the Kit-Build method for lecturers and students. Furthermore, an evaluation was carried out to assess the usability of the design qualitatively through usability testing and quantitatively through the System Usability Scale questionnaire. In addition, a functional test is conducted to validate whether the functional requirements developed have been met or not. Using the SUS evaluation, we also managed to accumulate a score of 86,428 with an A predicate, this number indicates an excellent result."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Yusuf Fakhri Aldrian
"Sesuai dengan ketentuan hukum, setiap warga negara berhak atas informasi dan kemudahan akses informasi, termasuk individu dengan disabilitas tunarungu. Bahasa isyarat menjadi sarana komunikasi utama bagi penyandang disabilitas tunarungu. Bahasa isyarat sering dijumpai pada komunitas tunarungu yang melibatkan penerjemah, teman, dan keluarga serta para penyandang tunarungu itu sendiri. Sistem Isyarat Bahasa Indonesia (SIBI) merupakan sistem bahasa isyarat yang dipakai dalam pemelajaran di sekolah luar biasa. Penelitian yang dilakukan penulis merupakan lanjutan dari penelitian sebelumnya yang bertujuan untuk mengintegrasikan plug-in modul pada Moodle dengan pembangkit teks subtitle dari video pemelajaran untuk diteruskan ke layanan pembangkit animasi 3D bahasa isyarat. plug-in yang dibuat secara umum dibangun dengan Moodle, Python, Redis, dan Unity. Aplikasi Moodle memiliki dua laman, yaitu laman utama yang berisi daftar subtitle menerima status pembentukan subtitle dari database di Python serta laman formulir mengirim HTTP Request yang berisi input berisi video untuk pembentukan subtitle ke aplikasi Python. Aplikasi Python akan menerima HTTP Request yang dikirim dari Moodle dan melakukan deretan perintah yang digunakan untuk penambahan subtitle dan menambahkan subtitle yang dijalankan secara asinkronus ke server Redis. Setelah itu, video dan subtitle akan dikirim melalui Redis untuk pengantrian penambahan animasi bahasa isyarat SIBI. Data tersebut dikirim secara asinkronus ke Unity untuk pembentukan animasi bahasa isyarat. Setelah pembuatan animasi bahasa isyarat selesai, video akan dikirim kembali ke Moodle dan statusnya akan ditambahkan ke database di aplikasi Python. Penulis melakukan percobaan untuk menguji performa masing-masing ASR dengan metrik evaluasi durasi dan Word Error Rate. Percobaan membuktikan jenis ASR Wav2Vec memiliki rata-rata Word Error Rate paling besar yaitu 42,64% dan membutuhkan waktu yang paling lama yaitu 32 menit 3 detik untuk membuat transkripsi audio, disusul jauh oleh Google (WER 1,43% dan durasi 2 menit 27 detik) dan Azure (WER 2,57% dan durasi 1 menit 16 detik). Menurut penulis, Wav2Vec memiliki performa yang buruk sehingga tidak bagus untuk digunakan di kasus umumnya, sehingga sebaiknya model ASR yang dipakai adalah Google dan Azure.

In accordance with legal provisions, every citizen has the right to information and ease of access to information, including individuals with hearing disabilities. Sign language is the primary communication method for those with hearing disabilities and is commonly encountered within the deaf community, involving interpreters, friends, family, and the hearing impaired themselves. Sistem Isyarat Bahasa Indonesia (SIBI) is the official sign language used in special educations in Indonesia. The research conducted by the author builds upon a previous study aiming to integrate a module plug-in on Moodle with text subtitle generation from learning videos to be transferred to a 3D sign language animation service. The plug-in was primarily developed using Moodle, Python, Redis, and Unity. The Moodle application contains two main pages: one with a list of subtitles receiving the subtitle creation status from a Python database and another with a form page for sending HTTP requests containing video input for subtitle creation to the Python application. The Python application receives the HTTP requests sent from Moodle and executes a series of commands used for adding subtitles and synchronously adding subtitles to the Redis server. Afterward, the video and subtitles are sent through Redis for queueing and adding SIBI sign language animations. This data is sent asynchronously to Unity for creating sign language animations. Once the sign language animation is complete, the video is sent back to Moodle, and its status is updated in the Python application database. The author conducted experiments to test the performance of each ASR using evaluation metrics such as duration and Word Error Rate. Experiments demonstrated that the Wav2Vec ASR model has the highest Word Error Rate (42,64%) and requires the longest time to create audio transcription (32 minutes 3 seconds), followed by Google (1,43% WER, 2 minutes and 27 seconds) and Azure (2,57% WER, 1 minute and 16 seconds), which performed better. According to the author, Wav2Vec is not suitable for general cases, so the ASR models preferred should be Google and Azure."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Wandi Barasa
"Manfaat yang dirasakan dengan adanya e-learning pada teknologi informasi sekarang ini perlu dirasakan juga dalam pendidikan pesantren. e-Pesantren merupakan bentuk pengembangan e-learning yang dirancang berdasarkan metode pembelajaran yang ada di pesantren yang dibangun dari LMS opensource Moodle sehingga sistem yang dibuat dapat mengakomodasi kebutuhan pesantren. Paltform ini dikembangkan dengan penggunaan dan penambahan modul-modul pada Moodle yang disesuaikan dengan metode pembelajaran pada pesantren, seperti sorogan, hafalan, bandongan dan halaqah. Selain itu, aspek lainnya seperti bahasa, peran, optimalisasi antarmuka dan integrasi komponen pendukung juga mengalami penyesuaian, yang pada akhirnya didapat komposisi baru e-Pesantren yang siap untuk diimplementasikan di pesantren.
Pengujian performa dilakukan dengan metode load testing pada 4 halaman sampel dengan jumlah beban yang divariasikan dan dilakukan dalam jaringan lokal atau LAN. Hasilnya menunjukkan bahwa response time terbesar yang didapat oleh e-Pesantren adalah 4,946 detik untuk halaman kuis. Hasil load testing ini menunjukkan bahwa response time dari aplikasi web e-Pesantren berada dalam taraf nyman. Selain itu, pengujian secara subyektif dengan survei menunjukkan bahwa secara keseluruhan aspek-aspek seperti kemudahan, kelengkapan fitur, antarmuka dan beberapa aspek lainnya dapat dicapai.

The perceived benefits with the existence of e-learning in information technology this day needs to be felt also in the e-learning education. e-Pesantren is a form of e-learning development that is designed based on existing learning methods in pesantren which are built from open source Moodle LMS so that the system created to accommodate the needs of pesantren. This platform was developed with the use and addition of modules in Moodle based on learning methods in pesantren, such as sorogan, hafalan, bandongan and halaqah. Besides, other aspects such as language, role, optimizing the interface and integration of supporting components is also experiencing an adjustment, which eventually built a composition of e-Pesantren that is ready to be implemented at pesantren.
Performance test conducted in Local Area Network using the load testing method on 4 page sample with variation in amount of load. The results show that the largest response time obtained by e-Pesantren is 4.946 seconds for the quiz page. This result show that response time of this web application performance is in the level of comfort. Besides that, test based on subjective using survey indicate that overall aspects such as ease of use, completeness of features, interface and some other aspects can be achieved.
"
Depok: Fakultas Teknik Universitas Indonesia, 2011
S718
UI - Skripsi Open  Universitas Indonesia Library
cover
Misael Jonathan
"Bahasa isyarat menjadi sarana utama bagi penyandang tunarungu untuk berkomunikasi. Kemampuan penyandang tunarungu untuk beradaptasi dengan lingkungannya ditentukan dari seberapa baik komunikasi dua arah dapat dilakukan dengan bahasa isyarat. Adanya smartphone sebagai teknologi yang umum digunakan masyarakat luas dapat menjadi sarana bagi masyarakat untuk berkomunikasi dengan penderita tunarungu. Penelitian ini berfokus pada pengembangan aplikasi yang mampu mengimplementasikan sistem penerjemah SIBI pada smartphone Android. Penelitian ini menggunakan hasil freeze model yang dikembangkan oleh peneliti sebelumnya yaitu MobileNetV2, CRF, dan LSTM. Ketiga model tersebut berjalan sebagai serangkaian proses dan digunakan untuk memproses data video gerakan isyarat. Keluaran dari sistem penerjemah ini adalah terjemahan isyarat dalam bentuk teks. Penelitian ini juga melakukan percobaan untuk meningkatkan kinerja MobileNetV2 dengan menerapkan parallel processing dengan dua hingga empat inference. Berdasarkan hasil percobaan, sistem penerjemah yang dikembangkan mampu menerjemahkan bahasa isyarat dengan akurasi kata 90,560%, akurasi kalimat 64%, dan waktu penerjemahan rata- rata 20 detik. Penggunaan parallel processing dapat meningkatkan kinerja MobileNetV2 sebesar 54%.

Sign language is the main media for deaf people to communicate. The ability of people with hearing impairment to adapt to their environment is determined by how well two-way communication can be done with sign language. The existence of a smartphone as a technology that is commonly used by the wider community can be a means for the community to communicate with people with hearing impairment. This research focuses on developing applications that is able to implement the SIBI translator system on Android smartphones. This study uses the results of the freeze model developed by previous researchers, which are MobileNetV2, CRF, and LSTM. The three models operate as a series of processes and are used to process sign language gesture video. The output of this translator system is sign language translation in text form. This study also conducted an experiment to improve the performance of MobileNetV2 by implementing parallel processing with two to four inferences. Based on the experimental results, the translator system developed was able to translate sign language with an word accuracy of 90.560%, sentence accuracy 64%, and an average translation time of 20 seconds. The use of parallel processing can improve the performance of MobileNetV2 by 54%."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>