Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 181006 dokumen yang sesuai dengan query
cover
Dwi Cahya Agung Saputra
"Pemerintah Indonesia menargetkan dapat mencapai Net-Zero Emission (NZE) di sektor energi pada tahun 2060 atau lebih cepat dengan mengoptimalkan pemanfaatan sumber daya energi baru dan terbarukan (EBT), terutama yang berasal dari variable renewable energy (VRE). Kondisi sistem tenaga listrik Jawa, Madura, Bali (Jamali) yang saat ini masih didominasi oleh pembangkit listrik berbasis fosil telah memberikan tantangan dalam upaya transisi ke energi bersih. Di samping itu, karakteristik intermittency yang dimiliki oleh pembangkit VRE berpotensi meningkatkan ketidakpastian di sisi pasokan energi dan tekanan pada pengoperasian pembangkit termal. Salah satu solusi untuk mengatasi kendala intermittency dari pembangkit VRE adalah sistem Jamali harus dibuat fleksibel. Pada penelitian ini, dilakukan analisis terhadap fleksibilitas sistem Jamali untuk tahun 2030, 2040, dan 2050 dengan bantuan perangkat lunak IRENA Flextool, dengan tujuan mengevaluasi kemampuan sistem JAMALI dalam mengakomodasi integrasi pembangkit VRE yang masif di tahun 2030, 2040, dan 2050. Perangkat lunak beroperasi dengan prinsip economic load dispatch untuk memperoleh kondisi generation dispatch yang optimum dengan biaya operasi semurah mungkin. Dari hasil analisis, sistem Jamali tahun 2030 diperkirakan memiliki kemampuan fleksibilitas yang memadai untuk mengakomodasi integrasi VRE dengan presentase sebesar 5%. Sistem Jamali tahun 2040 juga diperkirakan memiliki kemampuan fleksibilitas yang cukup memadai untuk mengakomodasi integrasi VRE sebesar 36,97% dari total kapasitas terpasang pembangkit di tahun tersebut. Sedangkan sistem Jamali tahun 2050 diperkirakan memiliki kemampuan fleksibilitas yang tidak memadai untuk mengakomodasi integrasi VRE sebesar 51,95%. Hal ini disebabkan pada tahun 2050, sistem mengalami kehilangan beban sebesar 109,79 TWh dan pembatasan kapasitas VRE sebesar 706,69 MW.

The integration of variable renewable energy (VRE) into the JAMALI power system, characterized by intermittency and high uncertainty, has the potential to disrupt reliability and increase the operational complexity of the power system. These challenges can be mitigated if the power systems possess adequate flexibility. An analysis of the flexibility of the JAMALI power system is carried out to assess power system flexibility due to the increasing share of VRE in the JAMALI power system, phased as follows 5% in 2030, 37% in 2040, and 52% in 2050. The analysis is performed with the assistance of the IRENA FlexTool, running on the principle of economic dispatch. Based on the analysis results, it is observed that the greater the share of VRE in the JAMALI power system the lower the power system’s flexibility. This is evidenced by a VRE curtailment of 706.62 MW and a loss of load of 109.79 TWh in the JAMALI power system in 2050."
Depok: Fakultas Teknik Universitas Indonesia, 2024
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Munthe, Jeriko Hasian
"Indonesia merupakan salah satu negara kepulauan terbesar di dunia, sehingga memiliki tantangan yang signifikan dalam menyediakan energi berkelanjutan, terutama di wilayah 3T (terdepan, terluar, tertinggal) yang masih bergantung pada Pembangkit Listrik Tenaga Diesel (PLTD). Ketergantungan ini meningkatkan emisi karbon, yang bertentangan dengan target Net Zero Emission (NZE) pada tahun 2060. Salah satu solusi potensial adalah penerapan sistem Pembangkit Listrik Tenaga Hibrid (PLT-Hibrid), yang mengintegrasikan Pembangkit Listrik Tenaga Surya (PLTS) dan Battery Energy Storage System (BESS). Sistem PLT-Hibrid dirancang untuk mengurangi penggunaan diesel dengan memanfaatkan energi terbarukan secara optimal. Penelitian ini bertujuan untuk mengoptimalkan kapasitas PLTS dan BESS dalam meningkatkan penetrasi energi terbarukan serta mengefisiensikan Biaya Pokok Penyediaan (BPP) PLTD dengan prioritas BPP PLTS dan BESS dengan nilai yang tak jauh berbeda. Program optimasi berbasis MATLAB dikembangkan sebagai alternatif perangkat lunak HOMER untuk membantu menentukan kapasitas PLTS dan BESS yang optimal sesuai target keekonomian, nilai Renewable Energy Fraction (REF) yang optimal, serta keekonomian seluruh sistem. Penelitian dilakukan dengan 6 lokasi berbeda di Indonesia. Program yang dikembangkan tervalidasi memiliki tingkat akurasi tinggi dengan error validasi 0.02%-0.35%, sehingga program dapat diimplementasikan ke optimalisasi. Hasil penelitian menunjukkan bahwa REF optimal bervariasi antara 44.931% hingga 85.671%, dengan BPP hibrid mencapai rentang 0.296 USD/kWh hingga 0.426 USD/kWh. Penelitian ini membuktikan bahwa sistem PLT-Hibrid tidak hanya menekan biaya energi tetapi juga mendukung transisi energi bersih yang berkelanjutan, khususnya di wilayah terpencil Indonesia.

Indonesia is one of the largest archipelagic countries in the world, facing significant challenges in providing sustainable energy, particularly in 3T (frontier, outermost, and underdeveloped) regions that still rely heavily on Diesel Power Plants (PLTD). This dependency increases carbon emissions, which contradict Indonesia's target of achieving Net Zero Emissions (NZE) by 2060. One potential solution is the implementation of a Hybrid Power Plant (PLT-Hybrid) system, which integrates Solar Power Plants (PLTS) and Battery Energy Storage Systems (BESS). The PLT-Hybrid system is designed to reduce diesel consumption by optimizing the use of renewable energy. This research aims to optimize PLTS and BESS capacities to enhance renewable energy penetration and reduce the Cost of Electricity Production (BPP) of PLTD, prioritizing PLTS and BESS BPP values that are economically competitive. A MATLAB-based optimization program was developed as an alternative to HOMER software to determine the optimal PLTS and BESS capacities, the optimal Renewable Energy Fraction (REF), and the overall system's economic performance. The study was conducted across six different locations in Indonesia. The developed program was validated to have a high accuracy level with a validation error of 0.02%-0.35%, ensuring its feasibility for optimization applications. The results showed that the optimal REF ranged from 44.931% to 85.671%, with hybrid BPP values between 0.296 USD/kWh and 0.426 USD/kWh. This research demonstrates that the PLT-Hybrid system not only reduces energy costs but also supports the transition to sustainable clean energy, particularly in remote regions of Indonesia. "
Depok: Fakultas Teknik Universitas Indonesia, 2025
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Eka Nurdiana
"Buruknya pencemaran lingkungan sebagai dampak pemanfaatan energi fosil, membuat dunia bertransformasi pada pemanfaatan energi ramah lingkungan yaitu energi terbarukan, khususnya energi surya photovoltaic (PV). Bagian terpenting dari sistem PV adalah performansinya dalam menghasilkan energi. IEC 61724 menetapkan parameter performansi sistem PV antara lain produksi energi, array yield, final yield, reference yield, performance ratio, capacity factor, efisiensi energi dan losses. Pada penelitian ini, kinerja sistem PV atap berkapasitas 10,6 kWp di Gedung Energi, Puspiptek dievaluasi untuk mengetahui nilai parameter performansinya menurut IEC 61724 sebagai tolok ukur kinerja sistem PV. Evaluasi dilakukan berdasarkan pemantauan selama delapan bulan dengan data yang diperolah dari SCADA pada sistem PV. Analisis produksi energi menunjukkan bahwa sistem PV mampu menghasilkan energi AC sebesar 36,10 kWh per hari. Analisis array yield, reference yield dan final yield memperlihatkan bahwa sistem PV mampu beroperasi secara penuh rata-rata selama 3,51 jam per hari dengan potensi penyinaran matahari rata-rata selama 4,14 jam per hari dimana produksi energi AC rata-rata selama 3,41 jam per hari. Analisis performance ratio menunjukkan bahwa sistem PV mampu mengubah 82,67% energi matahari yang diterimanya. Analisis capacity factor memberikan hasil 14,19% yang berarti sistem PV beroperasi secara penuh selama 34,62 hari selama periode pemantauan. Analisis efisiensi menunjukkan bahwa array PV bekerja dengan efisiensi 15,31% dan inverter bekerja dengan efisiensi 96,70%. Dari nilai-nilai efisiensi tersebut, dihasilkan bahwa sistem PV secara keseluruhan bekerja dengan efisiensi sistem 14,80%. Hasil analisis array capture losses menunjukkan bahwa pada array PV terjadi losses rata-rata sebesar 0,63 kWh/kWp per hari dan analisis system losses menunjukkan bahwa losses pada inverter PV rata-rata sebesar 0,1 kWh/kWp per hari. Pada akhir penelitian ini dilakukan simulasi menggunakan aplikasi online PVGIS untuk untuk mendapatkan data jumlah produksi energi. Hasil simulasi tersebut dibandingkan dengan hasil perhitungan yang dilakukan sebelumnya. Setelah dilakukan perbandingan, disimpulkan bahwa hasil perhitungan produksi energi dan radiasi matahari global secara umum mendekati hasil simulasi produksi energi dan radiasi matahari global kecuali pada bulan Januari dan Februari 2020. Hasil perhitungan dan simulasi pada bulan-bulan tersebut memilki selisih cukup tinggi. Berdasarkan evaluasi kinerja secara keseluruhan, sistem PV 10,6 kWp di Gedung Energi Puspiptek memiliki kinerja yang baik.

Poor environmental pollution as a result of the use of fossil energy, making the world transform to use renewable energy that is more environmentally friendly, especially photovoltaic (PV) solar energy. The most important issue of a PV system is their performance in producing energy. IEC 61724 establishes the performance parameters of a PV system including energy production, array yields, final yields, reference yields, performance ratios, capacity factors, energy efficiency and losses. In this study, the performance of the 10,6 kWp PV rooftop system in the Energy Building, Puspiptek was evaluated to determine the value of its performance parameters according to IEC 61724 as a benchmark for PV system performance. The evaluation was carried out based on eight months monitored period with the data obtained from the SCADA in the PV system. Analysis of energy production shows that the PV system is able to produce AC energy of 36.10 kWh per day. Analysis of array yields, reference yields, and final yields shows that the PV system is capable to operate for 3.51 hours per day on average with an average solar irradiation potential of 4.14 hours per day and the AC energy production is 3.41 hours per day on average. Performance ratio analysis shows that the PV system is able to convert 82.67% of the concerning solar energy. Capacity factor analysis gives a result of 14.19% which means the PV system has been operated for 34.62 days at its full nominal power during the monitoring period. Analysis of efficiency shows that the PV array works with an efficiency of 15.31% and the inverter works with an efficiency of 96.70%. Based on these efficiency values, the whole PV system works with a system efficiency of 14.80%. The analysis of array capture losses shows that losses on the PV arrays 0.63 kWh/kWp per day on average and system losses analysis shows that losses on PV inverters 0.1 kWh/kWp per day on average. At the end of this study, a simulation by an online PVGIS application is used to obtain data on energy production. The results of the simulation are compared with the results of previous calculations. From the comparison, it was concluded that the results of the calculations of energy production and global solar radiation approached the results of simulations of energy production and global solar radiation except in January and February 2020. The calculation and simulation results of these months show greater differences. Based on an overall performance evaluation, the 10,6 kWp PV system at the Puspiptek Energy Building has good performance."
Depok: Fakultas Teknik Universitas Indonesia, 2020
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Ade Firmansyah
"Negara kesatuan Republik Indonesia memiliki tujuh wilayah besar dengan karakteristik yang berbeda dalam system kelistrikan, perkembangan kebijakan kelistrikan di Indonesia dimulai pada abad ke-19 dan mulai berkembang dengan adanya pemberian hak konsesi oleh Pemerintah kolonial Hindia Belanda kepada swasta di beberapa daerah, kemudian ketika Jepang menguasai Indonesia, sektor kelistrikan berubah fungsi sebagai alat pertahanan dalam peperangan. Indonesia memperoleh kemerdekaan pada tahun 1945 dibarengi dengan proses nasionalisasi aset-aset yang dimiliki oleh Hindia-Belanda dan Jepang, kemudian sektor kelistrikan dikuasai sepenuhnya oleh Negara yang diamanahkan melalui Badan Usaha Milik Negara yaitu PLN. Pada tahun 1966, sektor ketenagalistrikan merupakan bagian dari proses pembangunan yang digaungkan dalam RPLT (Rencana Pembangunan Lima Tahun), di era tahun 1998 terjadilah pergolakan reformasi, yang berdampak pada kebijakan ketenagalistrikan, dimana porsi swasta/Independent Power Producer (IPP) meningkat signifikan menjadi 3.169 MW pada tahun 2003, rentan waktu era reformasi kebijakan sektor ketenagalistrikan mengalami 2 kali perubahan, konsepnya masih sama yaitu demonopolisasi, namun ada beberapa konsep yang diluruskan oleh Mahkamah Konstitusi, sehingga sektor ketenagalistrikan tetap menjadi bagian dari kontrol negara. Indonesia telah meratifikasi Paris Agreement, dimana konsep perencanaan kelistrikan akan berbasis pada energi baru terbarukan, berbagai skenario telah dipersiapkan pemerintah namun baru bersifat pemenuhan kebutuhan supply-demand dengan mengoptimalkan pemanfataan energi terbarukan untuk kebutuhan pembangkit listrik, belum ada kebijakan yang mengatur terkait agregasi energi terbarukan sehingga diperlukan proyeksi kebutuhan energi dengan alat bantu perangkat lunak Powersim dan Arena untuk menghitung kebutuhan energi secara skenario BAU (Business As Usual) dan skenario penambahan supply dari 20% dari PLTS Atap dan variabel lainnya dari PLT Energi Terbarukan sebesar 10 s.d 15 TWh dan penambahan demand dari adanya peningkatan penggunaan electric vehicle, kompor induksi dan ekspor listrik ke Singapura dan Timor Leste.

The unitary state of the Republic of Indonesia has seven large regions with different characteristics in the electricity system, the development of electricity policy in Indonesia began in the 19th century and began to develop with the granting of concession rights by the Dutch East Indies colonial government to the private sector in some areas, then when Japan controlled Indonesia, the electricity sector changed its function as a means of defense in warfare. Indonesia gained independence in 1945 coupled with the process of nationalization of assets owned by the Dutch East Indies and Japan, then the electricity sector was fully controlled by the State mandated through state-owned enterprises, namely PLN. In 1966, the electricity sector was part of the development process echoed in the RPLT (Five-Year Development Plan), in the era of 1998 there was a reform upheaval, which had an impact on electricity policy, where the portion of private / Independent Power Producer (IPP) increased significantly to 3,169 MW in 2003, vulnerable when the era of electricity sector policy reform experienced 2 changes,  The concept is still the same as demonopolisation, but there are several concepts straightened out by the Constitutional Court, so that the electricity sector remains part of state control. Indonesia has ratified the Paris Agreement, where the concept of electricity planning will be based on new renewable energy, various scenarios have been prepared by the government but only meet the needs of supply-demand by optimizing the utilization of renewable energy for electricity generation needs, there is no policy that regulates the aggregation of renewable energy so that it requires the projection of energy needs with Powersim and Arena software tools for electricity generation.  Calculate the energy needs in the BAU (Business As Usual) scenario and the scenario of increasing supply from 20% of roofing power plants and other variables of renewable energy power plants of 10 to 15 TWh and the addition of demand from the increased use of electric vehicles, induction stoves and electricity exports to Singapore and Timor Leste."
Depok: Fakultas Teknik Universitas Indonesia, 2021
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Adrian Wasistoadi Budiarto
"In 2020, renewable energy sources contribution in Indonesia’s energy production mix had only reached 14,71%. The percentage was still far from Indonesia’s renewable energy mix target of 23% in 2025 and 31% in 2050 according to their own national energy plan. To enhance their progress in reaching those targets, one way that can be done is to benefit promising renewable energy potential in many areas, including coastal area such as Muara Bungin Beach located in Pantai Bakti Village, Bekasi. The village mentioned before have an average of 3,26-5,41 m/s wind speed and solar radiation of 5-5,4 kWh/m2/day. To utilize the area’s potential, three units of The Sky Dancer TSD-500 wind turbine and two monocrystalline solar panels with a total capacity of 1800 Watt peak have been installed in that area since 2014, making Muara Bungin Village mostly known as Bungin Techno Village to public. Sadly, the wind turbines have been removed recently in October 2021 due to poor physical condition, and the solar panels rarely being used and maintenanced. A revitalization plan can be done to keep Bungin Techno Village’s existance in utilizing their renewable energy potential alive.

The revitalization plan will create huge project, which is to install renewable energy power plants that can serve Desa Pantai Bakti’s electricity demand. A modelling result by LEAP shows that Desa Pantai Bakti’s electricity demand will reach 1.965,1 kWh/day in 2031. The planned renewable energy power plants will handle electricity load of 1.021,85 kWh/day or 51,6% from the village’s total electricity demand. A solar power plant consisting 104 units of Monocrystalline Maysun Solar Cell 500 Wp Peak Power with a lifetime of 25 years, a wind power plant consisting 24 units of 2000 W/220 V capacity wind turbines with a lifetime of 20 years, and a waste-to-energy power plant consisting a TG30 gasification machine and a 200 kVa/160 kW capacity diesel genset Caterpillar with a lifetime of 20 years. The total cost for lifetime operation of the planned solar, wind, and waste-to-energy power plant is estimated to be around Rp1.519.049.423; Rp3.238.231.499; and Rp859.733.884 respectively. The investment for the renewable energy technology revitalization plan can be considered economically worthy, judging by the NPV and ROR of every single planned power plants showing positive values or greater than zero."
2021: Fakultas Teknik Universitas Indonesia, 2021
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Alif Putra Alikha
"Berdasarkan laporan Badan Pusat Statistik (BPS), Indonesia terdiri dari puluhan ribu pulau yang tersebar di 34 provinsi, dan total jumlah penduduk di negara tersebut mencapai 278 juta jiwa. Populasi yang terus bertambah dan kemajuan teknologi mendorong tuntutan akan pemerataan akses terhadap listrik. Pemerintah masih berupaya menyediakan listrik yang merata bagi seluruh wilayah penduduk selama satu dekade terakhir, dan rasio elektrifikasi nasional saat ini mencapai 99,2%. Di sisi lain, pemanfaatan energi terbarukan masih belum optimal karena berpotensi meningkatkan angka rasio elektrifikasi nasional. Energi terbarukan juga merupakan salah satu solusi utama untuk memenuhi permintaan sekaligus memenuhi Target Nol Emisi Bersih Indonesia pada tahun 2060. Skripsi ini menggunakan HOMER Pro untuk menilai usulan solusi kinerja keuangan dan kelistrikan di salah satu wilayah 3T di Indonesia. Analisis tekno-ekonomi akan dilakukan untuk mengevaluasi sistem tenaga energi terbarukan berbasis angin. Dalam analisis ini, perbandingan utama dibuat mengenai keseluruhan biaya, ketergantungan, kelayakan, dan efektivitas. Berdasarkan hasil simulasi, konfigurasi hybrid terbukti menjadi solusi paling efektif dengan menghasilkan biaya produksi energi yang lebih rendah.

Based on the Central Statistics Agency (BPS) report, Indonesia consists of tens of thousands of islands spread across 34 provinces, and the total number of citizens in the country has reached up to 278 million people. This ever-growing population and the advancement of technology push the demand for equal access to electricity. The government is still trying to provide equal electricity to all populated areas over the last decade, and the national electrification ratio is currently summed up to 99.2%. On the other hand, the utilization of renewable energy is still not yet optimal knowing it has the potential to increase the number of national electrification ratios. Renewable energy is also one of the primary solutions to keep up with the demand while following Indonesia's Net Zero Emission Target by 2060. This thesis utilizes HOMER Pro to assess the proposed financial and electrical performance solutions in one of Indonesia's 3T areas. The techno-economic analysis will be carried out to evaluate the wind-based renewable energy power system. In this analysis, the primary comparisons are made regarding overall cost, dependability, feasibility, and effectiveness. According to the simulation results, hybrid configuration proved to be the most effective solution by resulting in a lower Cost of Energy."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ane Prasetyowati R.
"Meningkatnya kebutuhan akan energi terbarukan di mana salah satunya adalah tenaga angin, menimbulkan masalah baru, yaitu terjadinya fluktuasi dalam produksi energi angin tersebut. Untuk mengembangkan potensi energi angin, persiapan untuk pembangkitan ke jaringan memerlukan model prediksi potensi daya angin pada PLTBayu yang akan dihasilkan dari ladang angin. Dalam kondisi seperti ini, dibutuhkan model prediksi yang dapat memprediksi pola intermittent pada hasil prediksi daya angin yang dihasilkan. Metode prediksi daya angin yang akan dikembangkan dalam penelitian ini menggunakan metode statistik, metode-metode mesin pembelajaran dan proses pembelajaran lebih lanjut (deep learning). Di dalam penelitian ini dikembangkan model prediksi output daya angin menggunakan metode Triple Exponential Smoothing (TES) dengan mengadaptasi parameter α, β dan γ. Parameter-parameter ini dapat beradaptasi terhadap pola intermittent yang terbaca dengan variasi berbeda untuk setiap set data deret waktu pada tiga lokasi pengamatan. Dalam model prediksi daya angin di PLTBayu ini, metode Adaptive Parameters Triple Exponential Smoothing (APTES) digunakan untuk memproses penghalusan data deret waktu kecepaan angin historis, sementara Multiplicative Long Short Term Memory (MLSTM) digunakan untuk menentukan nilai prediksi tenaga angin dengan mengikuti pola intermittent yang terjadi pada area pengamatan. Setelah dilakukan pengujian dan analisa, model prediksi APTES-MLSTM mampu membaca sangat baik pola intermittent dengan pola yang berubah-ubah dan memiliki banyak variasi. Dengan pola intermittent yang sering terjadi, model ini mampu memprediksi dalam waktu jangka pendek dengan beberapa step ke depan. Hasil analisa menunjukkan MAPE untuk dua lokasi luaran daya angin: Pandansimo dan Ciemas, masing-masing dengan rata-rata sebesar 12,93% dan 7,70%. Dari hasil pengujian model di lahan Harjobinangun tanpa melakukan training pada MLSTM menunjukkan pada tahun 2011 nilai MSE sebesar 0,11453, pada tahun 2012 nilai MSE sebesar 0,10509 dan pada tahun 2013 nilai MSE sebesar 0,0449. Akurasi prediksi yang dihasilkan dengan model ini cenderung memiliki MSE semakin mengecil di setiap term dibandingkan dengan model dengan kombinasi metode-metode konvensional seperti Kalman Filter, Wavelet Decomposition, Bayesian Hierarchy, dikombinasikan dengan pembelajaran Support Vector Machine dan Neural Network.

The increasing need for renewable energy where one of them is wind power, raises a new problem, namely the occurrence of fluctuations in the production of wind energy. To develop wind energy potential, preparation for generation to the network requires a prediction model of wind power potential on PLTBayu that will be produced from wind farms. Under these conditions, a predictive model is needed that can predict intermittent patterns on the results of the predicted wind power generated. The wind power prediction method that will be developed in this study uses statistical methods, machine learning methods and the process of further learning (deep learning). In this study a wind power output prediction model was developed using the Triple Exponential Smoothing (TES) method by adapting the parameters α, β and γ. These parameters can adapt to intermittent patterns that are read with different variations for each time series data set at the three observation locations. In this wind power prediction model in PLTBayu, the Adaptive Parameters Triple Exponential Smoothing (APTES) method is used to process refinement of historical wind speed data series, while Multiplicative Long Short Term Memory (MLSTM) is used to determine the predicted value of wind power by following intermittent patterns that follow occur in the observation area. After testing and analysis, the APTES-MLSTM prediction model is able to read very well intermittent patterns with changing patterns and has many variations. With intermittent patterns that often occur, this model is able to predict in the short term with several steps ahead (With the intermittent patterns that often occur, this model is able to predict in the short term with several steps ahead). The results of the analysis show MAPE for two locations of wind power output: Pandansimo and Ciemas, respectively with an average of 12.93% and 7.70%. From the results of testing the model in the Harjobinangun field without doing training in MLSTM shows that in 2011 the MSE value was 0.11453, in 2012 the MSE value was 0.10509 and in 2013 the MSE value was 0.0449. The accuracy of the predictions produced by this model tends to have MSE getting smaller in each term compared to the model with a combination of conventional methods such as Kalman Filter, Wavelet Decomposition, Bayesian Hierarchy, combined with learning Support Vector Machine and Neural Network."
Depok: Fakultas Teknik Universitas Indonesia, 2020
D2691
UI - Disertasi Membership  Universitas Indonesia Library
cover
Ananda Husnul Khotimah
"Produksi energi listrik di Indonesia saat ini masih didominasi oleh pembangkit listrik berbahan bakar minyak (energi fosil; energi tak terbarukan), sedangkan ketersediaan bahan bakar tersebut semakin berkurang. Pemanfaatan sumber EBT, seperti energi angin merupakan salah satu solusi untuk membangkitkan energi listrik guna memenuhi permintaan masyarakat yang terus meningkat. Terdapat dua unit PLTB yang telah dibangun dan dioperasikan di Indonesia yaitu PLTB Sidrap dan PLTB Tolo di Sulawesi Selatan. Mengingat, penetrasi kedua PLTB tersebut besar ke dalam sistem tenaga listrik Sulbagsel dan karakteristiknya yang intermittent dipengaruhi oleh kecepatan angin, sehingga dapat berdampak pada kestabilan sistem. Untuk menjaga kestabilan perlu adanya regulasi yang dapat mengendalikan frekuensi sistem. Salah satunya dengan menggunakan regulasi frekuensi primer. Dalam studi ini dipelajari pengaruh kecepatan angin dan penerapan regulasi frekuensi primer terhadap kestabilan frekuensi keluaran kedua PLTB yang terintegrasi dengan sistem Sulbagsel. Metode studi yang dilakukan dengan simulasi berbantuan perangkat lunak DIgSILENT. Hasil simulasi menunjukkan bahwa perubahan frekuensi yang terjadi ketika sistem Sulbagsel terintegrasi PLTB tanpa dan dengan menggunakan regulasi frekuensi primer pada kondisi normal terlihat frekuensi sistem masih cenderung stabil. Sedangkan pada kondisi ketika PLTA Poso lepas dari sistem, saat tanpa dan dengan menggunakan regulasi frekuensi primer terlihat beberapa respon frekuensi yang dihasilkan berada jauh dari batas normal yang diizinkan sehingga menyebabkan ketidakstabilan frekuensi pada sistem.

The production of electrical energy in Indonesia is currently still dominated by oil-fueled power plants (fossil energy; non-renewable energy), while the availability of these fuels decreases. The utilization of renewable energy sources, such as wind energy, is one solution to generate electrical energy to meet increasing demand. Two WPP units have been built and operated in Indonesia, namely WPP Sidrap and WPP Tolo in South Sulawesi. Considering that the penetration of the two WPPs is significant into the South Sulawesi power system and their intermittent characteristics because of wind speed, it can impact the system stability. One solution to maintain stability is to apply regulations that can control the frequency system, one of which is primary frequency regulation. In this study, we study the effect of wind speed and the use of primary frequency regulation on the stability of the output frequency of the two WPPs integrated with the Sulbagsel system. This study uses DIgSILENT software-assisted simulation. The simulation results show that the frequency changes that occur when the Sulbagsel system is integrated with WPP without and by using primary frequency regulation under normal conditions, the system frequency tends to be stable. Meanwhile, in the condition when the Poso hydropower plant is separated from the system when without and using primary frequency regulation, it can be seen that some of the resulting frequency responses are far from the allowed normal limits, causing frequency instability in the system."
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Andhika Adiel Insani
"Picogrid adalah jaringan listrik skala kecil yang digunakan untuk memasok beban kecil seperti penerangan, kipas, dan pengisian baterai pada laptop atau smartphone di sebuah ruangan. Picogrid memiliki beberapa kelebihan seperti mengurangi kerugian konversi karena beban terhubung langsung ke sumber daya dan mengurangi biaya dengan sumber daya independen dari jaringan. Picogrid yang kami usulkan dipasok oleh baterai dari kendaraan hibrida yang akan mencapai akhir siklus hidupnya. Baterai kendaraan hibrida akan memiliki beberapa kemampuan untuk menyimpan dan menyediakan energi untuk aplikasi kehidupan kedua.
Dalam tesis ini, penulis menggunakan baterai NiMH untuk picogrid. Karena generasi picogrid berasal dari komponen energi terbarukan seperti sel surya, yang sangat dipengaruhi oleh kondisi lingkungan sehingga produksi listrik yang dihasilkan tidak stabil dan bahkan berhenti sama sekali, sehingga perlu dilengkapi dengan baterai yang berfungsi sebagai penyimpanan energi listrik juga. untuk menjaga catu daya listrik agar beban menjadi kontinyu.
Tesis ini menentukan desain konfigurasi pikogrid yang ideal untuk beban yang membutuhkan daya rendah dan komponen yang akan digunakan dalam pikogrid, apakah komponen tersebut dapat diandalkan atau tidak. Ini juga menentukan kinerja baterai NiMH yang digunakan dalam picogrid melalui tes pengisian dan pemakaian, apakah kinerja baterai masih sama dengan kinerja pada kondisi awalnya atau kinerja telah menurun dan juga menentukan apakah pikogrid tersebut cocok untuk daerah terpencil atau tidak.

Picogrid is a small-scale electricity grid that is used to supply small loads such as lighting, fans, and charging batteries on a laptop or smartphone in a room. Picogrid has some advantages such reduce the conversion losses because the load is connected directly to the power source and reduce cost with independent power source from grid. The picogrid we propose is supplied by the battery from hybrid vehicle which will reach their end of life cycle. Hybrid vehicle battery will have some capability to store and provide energy for second life application.
In this thesis, the author uses NiMH battery for a picogrid. As the picogrid generation is from renewable energy components like solar cells, which is strongly influenced by environmental conditions so that the production of electricity produced is unstable and even stops altogether, so it needs to be equipped with batteries that function as electrical energy storage as well as to maintain electrical power supply to the load become continuous.
The thesis determines the design a picogrid configuration that is ideal for a load that requires low power and the components that will be used in the picogrid, whether the components are reliable or not. It also determines the performance of the NiMH battery used in the picogrid through the charging and discharging test, whether the performance of the battery is still the same as the performance at its initial condition or the perfromance has been degraded and also determines whether the picogrid is suitable for a remote area or not.
"
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
"This book discusses topics related to power electronics, especially electromagnetic transient analysis and control of high-power electronics conversion. It focuses on the re-evaluation of power electronics, transient analysis and modeling, device-based system-safe operating area, and energy balance-based control methods, and presenting, for the first time, numerous experimental results for the transient process of various real-world converters."
Singapore: Springer Nature, 2019
e20508052
eBooks  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>