Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 133578 dokumen yang sesuai dengan query
cover
Rionaldi Dwipurna Wongsoputra
"Peningkatan jumlah kendaraan beserta pelanggaran lalu lintas setiap tahunnya membuat semakin sulit bagi pihak berwenang untuk mendeteksi dan menindak pelanggaran tersebut. Salah satu pelanggaran yang menantang untuk dideteksi adalah penggunaan plat palsu pada mobil. Implementasi Intelligent Transportation System (ITS) dalam sistem lalu lintas dapat memberikan kontribusi signifikan dalam mendeteksi jenis pelanggaran ini. Beberapa studi sebelumnya telah sukses menerapkan ITS untuk mendeteksi dan mengklasifikasikan kendaraan menggunakan deep learning, memberikan solusi dalam penanganan pelanggaran lalu lintas. Penerapan teknologi ini dapat memberikan dukungan yang efektif bagi pihak berwenang dalam mengambil tindakan yang tepat. Penelitian ini bertujuan untuk mengembangkan sistem deteksi tipe mobil dan plat nomornya. Dalam pendekatan ini, model deep learning YOLO-NAS dan EfficientNet digunakan untuk mendeteksi dan mengklasifikasikan jenis mobil serta plat nomornya. Sebagai pendukung, model SRGAN digunakan untuk meningkatkan resolusi citra plat mobil. Untuk tujuan mendeteksi penggunaan plat palsu pada kendaraan, maka selanjutnya hasil dari sistem ini dapat diintegrasikan dengan database plat dan jenis kendaraan untuk mendeteksi plat yang palsu. Performa terbaik pada masing-masing model adalah 92% untuk akurasi validasi model EfficientNet dengan menggunakan layer dense sebesar 1024 dan dropout sebesar 0.2, 93% pada nilai mAP dan 1.24 pada nilai validasi loss untuk model YOLO-NAS dengan melakukan training sebanyak 30 epoch, serta nilai PSNR sebesar 19.5 dan nilai validasi loss sebesar 2.8 untuk model SRGAN dengan learning rate generator sebesar 0.001 dan learning rate discriminator sebesar 0.0001. Dibutuhkan pengembangan lebih lanjut pada model ini agar dapat dipakai secara real-time.

The increasing number of vehicles and traffic violations each year makes it increasingly challenging for authorities to detect and address these violations. One of the challenging offenses to detect is the use of fake license plates on cars. The implementation of Intelligent Transportation Systems (ITS) in traffic can significantly contribute to detecting such violations. Several studies have successfully applied ITS for vehicle detection and classification using deep learning, providing a solution for handling traffic violations. The adoption of this technology can effectively support authorities in taking appropriate actions. Based on existing literature, this research aims to develop a system for detecting the type and license plates of vehicles. In this approach, deep learning models, YOLO-NAS, and EfficientNet are used to detect and classify the type of vehicles and their license plates. As a supportive model, SRGAN is utilized to enhance the resolution of license plate images. This research is expected to contribute to improving the effectiveness of traffic violation detection, particularly concerning the use of fake plates on vehicles. Furthermore, the results from this system can be integrated with license plate and vehicle type databases to detect fake plates. The best performance of each model is 92% for the validation accuracy of the EfficientNet model using a dense layer of 1024 and a dropout of 0.2, 93% for the mAP value and 1.24 for the validation loss value for the YOLO-NAS model after training for 30 epochs, and a PSNR value of 19.5 and a validation loss value of 2.8 for the SRGAN model with a generator learning rate of 0.001 and a discriminator learning rate of 0.0001. Further development of this model is needed for real-time application."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Lunnardo Soekarno Lukias
"

Dalam kehidupan kita sehari-hari umumnya banyak barang yang kita butuhkan dan gunakan dalam rumah tangga kita. Mulai dari bahan pangan, minuman, barang untuk membersihkan rumah, barang untuk mencuci pakaian, kudapan, dan lain sebagainya, Pada masyarakat kini banyak barang keperluan sehari-hari tersebut kita beli dan jumpai di berbagai tempat mulai dari warung di dekat rumah, supermarket, toko sembako, dan lain sebagainya. Akhir-akhir ini jumlah supermarket dan minimarket mulai menjamur. Pada tahun 2021 jumlah minimarket di Indonesia mencapai 38.323 gerai yang merupakan peningkatan sebanyak 21,7% dibandingkan pada tahun 2017 yakni hanya sebanyak 31.488 gerai saja. Dengan jumlah gerai yang semakin banyak, banyak masyarakat yang semakin banyak menggunakan jasanya untuk mendapatkan barang-barang kebutuhan sehari-hari mereka. Apalagi bila barang yang dibeli juga cukup banyak sehingga akan sulit untuk mendata barang-barang apa saja yang telah dibeli. Untuk memudahkan hal tersebut, penulis mengajukan sebuah solusi untuk membuat sebuah rancangan sistem yang akan memanfaatkan teknologi Deep Learning untuk mendeteksi tulisan pada struk belanja dari hasil pembelian barang pada minimarket. Hasilnya dari pengujian yang sudah dilakukan pada penelitian ini, masing-masing model Deep Learning memiliki tingkat akurasi mAP50 99,4% dan mAP50:95 72,9% untuk YOLOv5, tingkat akurasi mAP50 99,61% dan mAP50:95 65,19% untuk Faster R-CNN, dan tingkat akurasi mAP50 61,77% dan mAP50:95 98,09% untuk RetinaNet. Dimana YOLOv5 memiliki tingkat akurasi mAP50:95 tertinggi yakni 72,9% dan Faster R-CNN memiliki tingkat akurasi mAP50 tertinggi yakni 99,61%. Dimana pada proses implementasi sistem YOLOv5 dan Faster R-CNN berhasil melakukan proses pengenalan sedangkan RetinaNet gagal untuk melakukannya.


In our daily lives, we generally need and use many items in our households. Starting from food ingredients, drinks, household cleaning items, laundry items, snacks, and so on. Nowadays, many of these daily necessities are bought and found in various places such as small shops near our homes, supermarkets, grocery stores, and so on. Recently, the number of supermarkets and minimarkets has increased. In 2021, the number of minimarkets in Indonesia reached 38,323 branches which is an increase of 21.7% compared to 2017 which was only 31,488 branches. With the increasing number of branches, many people are using their services to obtain their daily necessities. Especially when the purchased items are quite a lot so it will be difficult to record what items have been purchased. To facilitate this matter, the author proposes a solution to create a system design that will utilize Deep Learning technology to detect writing on receipts from purchasing items at minimarkets. The results of testing that have been carried out in this study show that each Deep Learning model has an mAP50 accuracy level of 99.4% and mAP50:95 72.9% for YOLOv5, an mAP50 accuracy level of 99.61% and mAP50:95 65.19% for Faster R-CNN, and an mAP50 accuracy level of 61.77% and mAP50:95 98.09% for RetinaNet. YOLOv5 has the highest mAP50:95 accuracy rate at 72.9%, while Faster R-CNN has the highest mAP50 accuracy rate at 99.61%. Where in the implementation process, YOLOv5 and Faster R-CNN systems were able to perform recognition processes while RetinaNet failed to do so."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Josh Frederich
"Diagnosis otomatis kanker kulit dari lesi kulit dengan menggunakan gambar dermoskopi masih merupakan tugas yang menantang bagi kecerdasan buatan khususnya pada Artificial Neural Network dengan menggunakan deep learning. Penggunaan arsitektur yang tepat pada klasifikasi merupakan faktor penting dalam membuat diagnosis otomatis yang akurat. Meski demikian, model-model klasifikasi yang sudah terbuat tersebut masih belum dapat sempurna melakukan kategorisasi pada penyakit lesi kulit. Pada riset ini dilakukan penggantian arsitektur model klasifikasi yang digunakan dengan menggunakan arsitektur terbaru seperti EfficientNet B0 dan B1. Model EfficientNet B0 terbaik dengan menggunakan augmentasi saja memiliki akurasi, presisi, recall, dan f1-score sebesar 91%, 76%, 68%, dan 71% sedangkan EfficientNet B1 terbaik dengan menggunakan augmentasi dan class weight memiliki akurasi, presisi, recall, dan f1-score sebesar masing-masing 89%, 78%, 73%, dan 73%. Model EfficientNet B1 terbaik tersebut dapat mengungguli model state of the art yang ada dengan kenaikan recall dan f1-score sebesar 2% dan 12% dari model semi-supervised. Model juga dapat diimplementasikan dengan graphical user interface sehingga dapat digunakan oleh dokter spesialis kulit dalam pemeriksaan dermoskopi.
Automatic diagnosis of skin cancer from skin lesions using dermoscopy images is still a challenging task for artificial intelligence, especially in Artificial Neural Networks using deep learning. The use of the correct architecture in the classification is an important factor in making an accurate automatic diagnosis. However, the classification models that have been made are still not able to perfectly categorize skin lesions. In this research, a replacement of the classification model architecture used by using the latest architectures such as the EfficientNet B0 and B1 was conducted. The best EfficientNet B0 model that only used augmentation has the accuracy, precision, recall, and f1-scores of 91%, 76%, 68%, and 71% while the best EfficientNet B1 that used augmentation and class weights has the accuracy, precision, recall, and f1-score of 89%, 78%, 73%, and 73%, respectively. The best EfficientNet B1 model can outperform the existing state of the art model with an increase in recall and f1-score by 2% and 12% from the semi-supervised model, respectively. The model can also be implemented with a graphical user interface so that dermatologist can use it in dermoscopy examinations."
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hajar Indah Fitriasari
"Pencitraan 'X-ray' dapat digunakan sebagai alternatif penunjang diagnostik klinis untuk mendeteksi penyakit COVID-19 pada paru-paru pasien. 'Machine learning' atau 'Deep Learning' akan disematkan pada 'computer-aided-diagnosis' (CAD) untuk meningkatkan efisiensi dan akurasi dalam menangani permasalahan membedakan COVID-19 dengan penyakit lain yang memiliki karakteristik yang serupa. Beberapa sistem kecerdasan buatan berbasis 'Convolutional Neural Network' (CNN) pada penelitian sebelumnya, memiliki akurasi yang menjanjikan dalam mendeteksi COVID-19 menggunakan citra 'X-ray' rongga dada. Dalam penelitian ini, dikembangkan 'classifier' berbasis CNN dengan teknik 'transfer learning', yakni memanfaatkan model CNN pra-terlatih dari ImageNet bernama Xception dan ResNet50V2 yang dikombinasikan agar sistem menjadi lebih akurat dalam kemampuan ekstraksi fitur untuk mendeteksi COVID-19 melalui citra 'X-ray' rongga dada. 'Classifier' yang dikembangkan terdiri dari 2 jenis, yakni 'classifier' yang disusun secara serial dan paralel. Pengujian dilakukan dalam 2 skenario berbeda. Pada skenario 1, digunakan 'dataset' dan pengaturan parameter yang mengacu pada penelitian sebelumnya, sedangkan skenario 2 dilakukan dengan menambahkan sejumlah citra kedalam 'dataset' baru serta pengaturan parameter yang berbeda untuk memperoleh peningkatan akurasi. Dari pengujian untuk kelas COVID-19 pada skenario 1, diperoleh 'classifier' paralel berhasil menggungguli 'classifier' lain dengan mencapai akurasi rata-rata 93,412% serta memperoleh 'precision', 'recall,' dan 'f1-score' masing – masing mencapai 96.8%, 99.6% dan 98%. Pada skenario 2, 'classifier' paralel mencapai akurasi rata-rata yang lebih tinggi, yakni mencapai 96,678% serta memperoleh 'precision', 'recall,' dan 'f1-score' yang cukup tinggi pula, yakni masing – masing mencapai 98.8%, 99.8% dan 99.4% untuk kelas COVID-19. Adanya penambahan jumlah 'dataset' pada skenario 2 dapat meningkatkan akurasi dari 'classifier' yang dikembangkan. Secara keseluruhan, 'classifier' paralel yang dikembangkan dapat direkomendasikan menjadi alat yang dapat membantu praktisi klinis dan ahli radiologi untuk membantu mereka dalam diagnosis, kuantifikasi, dan tindak lanjut kasus COVID-19.

X-ray imaging can be used as an alternative support clinical diagnostics to detect COVID-19 in the patient's lungs. Machine learning or Deep Learning will be embedded in computer-aided diagnosis (CAD) to increase efficiency and accuracy in dealing with problems distinguishing COVID-19 from other diseases that have similar characteristics. Several artificial intelligence systems based on the Convolutional Neural Network (CNN) in previous studies have promising accuracy in detecting COVID-19 using Chest X-ray images. In this study, a CNN-based classifier with transfer learning techniques was developed, which utilizes a pre-trained CNN model from ImageNet named Xception and ResNet50V2 combined that makes the system powerful using multiple feature extraction capabilities to detect COVID-19 through Chest X-ray images. There are 2 types of classifiers developed, classifiers arranged in serial and parallel. The testing in this study was carried out in two different scenarios. In the scenario 1, the dataset and parameter settings are used referring to previous studies, while the scenario 2 was carried out by adding several images to the new dataset and setting different parameters to obtain increased accuracy. From testing of the COVID-19 class in the scenario 1, the parallel classifier succeeded in outperforming other classifiers by achieving an average accuracy in 93.412% and also obtains precision, recall and f1-score, which reached 96.8%, 99.6%, and 98% respectively. In the scenario 2, the parallel classifier achieved a higher average accuracy of 96.678%, and also obtained quite high precision, recall and f1-score, which reached 98.8%, 99.8% and 99.4% for the COVID-19 class, respectively. The addition of the number of datasets in scenario 2 can increase the accuracy of the developed classifier. Overall, the developed parallel classifier can be recommended as a tool that can help clinical practitioners and radiologists to aid them in diagnosis, quantification, and follow-up of COVID-19 cases."
Depok: Fakultas Teknik Universitas Indonesia, 2021
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Hasnan Fiqih
"Hampir separuh dunia bergantung pada makanan yang berasal dari laut sebagai sumber protein utama. Di Pasifik Barat dan Tengah 60% dari ikan tuna ditangkap secara illegal, tidak dilaporkan, dan tidak diatur dengan regulasi dapat mengancam ekosistem laut, pasokan ikan global, dan mata pencaharian lokal. Salah satu solusi yang dapat dilakukan adalah dengan menggunakan kamera keamanan untuk menangkap gambar aktivitas kapal. Pada penelitian ini akan dibuat sistem untuk mengklasifikasi jenis ikan yang ditangkap dari gambar kamera keamanan kapal tersebut. Sistem ini menggunakan model transfer learning yang sudah dilakukan fine tuning dan dilatih menggunakan dataset yang disediakan oleh The Nature Conservancy. Dari penelitian ini didapatkan performa terbaik dengan akurasi 98.19% menggunakan model EfficientNetV2L dan optimizer Stochastic Gradient Descent (SGD) dengan learning rate 1e-4, momentum 0.9, weight decay 1e-6, dan split ratio training testing 80/20. Dengan sistem ini pengolahan data untuk menghitung jumlah penangkapan ikan berdasarkan spesies akan lebih efisien.

Almost half of the world depends on food that comes from the sea as the main source of protein. In the West and Central Pacific 60% of tuna fish are caught illegally, unreported and unregulated, threatening marine ecosystems, global fish supplies and local livelihoods. One possible solution is to use a security camera to capture images of ship activity. In this study a system will be created to classify the types of fish caught from the ship's security camera images. This system uses a transfer learning model that has been fine tuned and trained using the dataset provided by The Nature Conservancy. From this study, the best performance was obtained with an accuracy of 98.19% using the EfficientNetV2L model and the Stochastic Gradient Descent (SGD) optimizer with a learning rate of 1e-4, momentum of 0.9, weight decay of 1e-6, and split ratio training testing of 80/20. With this system, data processing to calculate the amount of fish caught by species will be more efficient.
"
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Shafira Nur Amalia
"Dalam suatu penelitian, dibutuhkan data yang dikumpulkan dan diolah untuk memecahkan permasalahan dan membuktikan hipotesis dalam penelitian. Namun, seringkali data yang diperoleh tidak menyimpan nilai untuk suatu variabel pada observasi yang diharapkan. Data yang tidak tersimpan menyebabkan data penelitian kosong dan berdampak pada penelitian. Jika peristiwa ini terjadi, maka penelitian terindikasi memiliki missing data atau missing values. Salah satu cara untuk mengatasi missing values yaitu dengan imputasi. Imputasi bekerja dengan mengisi nilai pada missing values dengan suatu nilai estimasi yang telah dianalisis dan diputuskan untuk membuat suatu dataset lengkap. Dalam proses imputasi, seringkali ditemukan bahwa data yang digunakan untuk imputasi terkadang memiliki karakteristik yang tidak jelas atau tidak konsisten, maka salah satu solusinya adalah dengan menggunakan metode Fuzzy C-Means (FCM). Estimasi nilai-nilai missing values menggunakan model FCM menghasilkan model prediksi dengan variasi parameter yang beragam sehingga dibutuhkan pendekatan lain untuk menghasilkan model terbaik dengan parameter yang optimal. Hal inilah yang mendasari diperlukannya suatu pendekatan hybrid, yaitu dengan menggabungkan beberapa model machine learning untuk memperoleh hasil estimasi missing values terbaik. Pada penelitian ini, dilakukan implementasi Hybrid Fuzzy C-Means dan Majority Vote (Hybrid FCMMV) pada data Penyakit Paru Obstruktif Kronik (PPOK) tahun 2012-2017 yang diperoleh dari Rumah Sakit Cipto Mangunkusumo (RSCM) untuk memberikan performa imputasi yang lebih baik berdasarkan akurasi, presisi, recall, dan F-Score melalui klasifikasi metode ensemble Random Forest.

In a research study, collected and processed data are needed to solve problems and prove hypotheses. However, the obtained data often do not store the value for a variable in the expected observation. Data that are not stored contribute to the emptying of research data which has an impact on the research itself. If the phenomenon occurs, it indicates that the research has missing data or missing values. One way to overcome missing values ​​is using imputation techniques. The technique works by filling in the missing values with an estimated value that has been analyzed and decided to create a complete dataset. In the process, it is often found that the data being used for imputation have unclear or inconsistent characteristics, which can be solved by implementing Fuzzy C-Means (FCM) method. The estimation of missing values ​​using the FCM model produces predictive models with a variety of parameters, hence another approach to produce the best model with optimal parameters is needed. This underlies the need for a hybrid approach, which is acquired through combining or integrating different machine learning models to earn the best estimation result of missing values. In this study, the implementation of Hybrid Fuzzy C-Means and Majority Vote (Hybrid FCMMV) was conducted on Chronic Obstructive Pulmonary Disease (COPD) data in 2012-2017 from Cipto Mangunkusumo Hospital (RSCM) ) to provide better imputation performance based on accuracy, precision, recall, and F-Score through the classification of the Random Forest ensemble method."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Naura Asyifa
"Sistem Penilaian Esai Otomatis (SIMPLE-O) merupakan teknologi deep learning yang dikembangkan oleh Departemen Teknik Elektro, Fakultas Teknik Universitas Indonesia. SIMPLE-O dikembangkan untuk menilai ujian esai Bahasa Indonesia menggunakan gabungan algoritma CNN dengan Bidirectional LSTM. Dokumen yang menjadi input untuk sistem berupa jawaban mahasiswa dan kunci jawaban dosen. Keduanya akan melalui proses pre-processing yang dilanjut menuju proses embedding dan masuk ke dalam model deep learning. Selanjutnya akan dilakukan perhitungan dengan metrik penilaian yaitu Manhattan Distance dan Cosine Similarity. Pengujian dilakukan dengan mencari hyperparameter terbaik dari enam skenario yang dijalankan. Hasil pengujian skenario akhir fase training dan testing pengukuran Manhattan Distance mendapatkan nilai rata-rata selisih sebesar 0,72 dan 15,19. Untuk pengujian akhir pengukuran Cosine Similarity didapatkan nilai sebesar 1,07 dan 15,43.

The Automated Essay Assessment System (SIMPLE-O) is a deep learning technology developed by the Department of Electrical Engineering, Faculty of Engineering, University of Indonesia. SIMPLE-O was developed to assess Indonesian essay exams using the CNN algorithm and the Bidirectional LSTM. Documents that become input for the system are student answers and lecturer answer keys. Both of them will go through a pre-processing process, leading to the embedding process and entering the deep learning model. Next, calculations will be done with assessment metrics: Manhattan Distance and Cosine Similarity. Testing is done by looking for the best hyperparameters from the six-run scenarios. The results of testing the scenario at the end of the training and testing phase of the Manhattan Distance measurement obtained an average difference of 0.72 and 15.19. For the final test of the Cosine Similarity measurement, values were obtained of 1.07 and 15.43."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hartina Hiromi Satyanegara
"Serangan MitM ini memiliki dampak yang cukup besar dan dapat membuka jalan untuk serangan selanjutnya, seperti Phishing. Penelitian ini membahas tentang pendekatan metode hybrid deep learning yang dapat membantu pendeteksian serangan MitM secara efektif. Metode hybrid deep learning yang digunakan dalam penelitian ini adalah CNN-MLP dan CNN-LSTM, yaitu merupakan gabungan dari CNN, MLP, dan LSTM. Selain itu, dalam skenario eksperimennya menggunakan berbagai metode feature scaling (StandardScaler, MinMaxScaler, dan MaxAbsScaler) dan tanpa menggunakan metode feature scaling sebelum melakukan pemodelan, yang kemudian akan ditentukan metode hybrid deep learning yang terbaik untuk mendeteksi serangan MitM dengan baik. Dataset yang digunakan dalam penelitian ini yaitu Kitsune Network Attack Dataset (ARP MitM Ettercap). Hasil dari penelitian ini yaitu metode CNN-MLP dengan 10 epoch menggunakan MaxAbsScaler memiliki nilai accuracy tertinggi, yaitu 99.93%. Pada urutan kedua, CNN-MLP dengan 10 epoch menggunakan StandardScaler memiliki nilai accuracy sebesar 99.89%.

Man in the Middle (MitM) has a sizeable impact because it could make the attackers will do another attacks, such as Phishing. This research is discussing about hybrid deep learning methods-approach on detecting MitM attacks effectively. We were used 2 (two) combinations of the Deep Learning methods (CNN, MLP, and LSTM), which are CNN-MLP and CNN-LSTM. Besides that, in the experiment scenarios, we also used various Feature Scaling methods (StandardScaler, MinMaxScaler, and MaxAbsScaler) and without using any Feature Scaling methods before building the models and will determine the better hybrid Deep Learning methods for detecting MitM attack. Kitsune Network Attack Dataset (ARP MitM Ettercap) is the dataset used in this study. The results of this research proves that CNN-MLP that with 10 epoch using MaxAbsScaler has the highest accuracy rate of 99.93%. In second place, CNN-MLP with 10 epoch using StandardScaler has the accuracy rate of 99.89%."
Depok: Fakultas Teknik Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Bijak Rabbani
"Diabetik retinopati adalah komplikasi dari penyakit diabetes yang dapat mengakibatkan gangguan penglihatan bahkan kebutaan. Penyakit ini menjadi tidak dapat disembuhkan jika telah melewati fase tertentu, sehingga diagnosa sedini mungkin menjadi sangat penting. Namun, diagnosa oleh dokter mata memerlukan biaya dan waktu yang cukup besar. Oleh karena itu, telah dilakukan upaya untuk meningkatkan efisiensi kerja dokter mata dengan bantuan komputer. Deep learning merupakan sebuah metode yang banyak digunakan untuk menyelesaikan masalah ini. Salah satu arsitektur deep learning yang memiliki performa terbaik adalah residual network. Metode ini memiliki kelebihan dalam menghindari masalah degradasi akurasi, sehingga memungkinkan penggunaan jaringan yang dalam. Di sisi lain, metode persistent homology juga telah banyak berkembang dan diaplikasikan pada berbagai masalah. Metode ini berfokus pada informasi topologi yang terdapat pada data. Informasi topologi ini berbeda dengan representasi data yang didapatkan dari model residual network. Penelitian ini melakukan analisis terhadap penerapan persistent homology pada kerangka kerja residual network dalam permasalahan klasifikasi diabetik retinopati. Dalam studi ini, dilakukan eksperimen berkaitan dengan informasi topologi dan proses pengolahannya. Informasi topologi ini direpresentasikan dengan betti curve atau persistence image. Sementara itu, pada proses pengolahannya dilakukan ujicoba pada kanal citra, metode normalisasi, dan layer tambahan. Hasil eksperimen yang telah dilakukan adalah penerapan persistent homology pada kerangka kerja residual network dapat meningkatkan hasil klasifikasi penyakit diabetik retinopati. Selain itu, penggunaan betti curve dari kanal merah sebuah citra sebagai representasi informasi topologi memberikan hasil terbaik dengan skor kappa 0.829 pada data test.

Diabetic retinopathy is a complication of diabetes which can result in visual disturbance and even blindness. This disease becomes incurable after reaching certain phases, thus immidiate diagnosis is highly important. However, diagnosis by a professional ophthalmologist requires a great amount of time and cost. Therefore, efforts to increase the work efficiency of ophthalmologists using computer system has been done. Deep learning is a method that widely used to solve this particular problem. Residual network is one of deep learning architecture which has the best performance. The main advantage of residual network is its ability to prevent accuracy degradation, thus enabling the model to go deeper. On the other hand, persistent homology is also rapidly developing and applied in various fields. This method focus on the topological information of the data. This information are different with the data representation that extracted by neural network model. This study analyze the incorporation of persistent homology to residual networks framework for diabetic retinopati classification. In this study, experiments regarding about topological information and its process were carried out. The topological information is represented as betti curve or persistence image. Meanwhile, the experiments are analyzing the impact of image colour channel, normalization method, and additional layer. According to the experiments, application of persistent homology on residual network framework could improve the outcome of diabetic retinopathy classification. Moreover, the application of betti curve from the red channel as a representation of topological information has the best outcome with kappa score of 0.829."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2021
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Muhammad Sabila Haqqi
"Banyak sekali variabel nonlinear didalam sistem kendali untuk quadcopter sehingga cukup rumit untuk mengendalikan dinamika penerbangan dari wahana ini. Salah satu metode yang digunakan untuk membangun model dinamik quadcopter adalah Deep Learning berbasis Long Short-Term Memory. Metode pembelajaran yang umum digunakan dalam melatih model adalah offline learning, dimana pelatihan dilakukan secara akumulatif berdasarkan dataset yang telah dimiliki. Walaupun offline learning memungkinkan model belajar lebih cepat, metode ini menghasilkan model yang kurang baik untuk wahana yang membutuhkan feedback dengan kompleksitas tinggi. Untuk menangani masalah tersebut akan dikembangkan metode online learning, dimana data diperoleh secara sekuensial dan digunakan untuk memperbarui model di setiap timestep. Akan ditunjukkan bahwa metode online learning dapat memperbaiki model yang diperoleh dari metode offline learning berdasarkan Mean Square Error dari setiap jenis data quadcopter.
..... There are so many nonlinear variables in the control system for the quadcopter so it is quite complicated to control the flight dynamics of this vehicle. One of the methods used to build a dynamic quadcopter model is Deep Learning based on Long Short-Term Memory. The learning method commonly used in training the model is offline learning, where training is carried out accumulatively based on the existing dataset. Although offline learning allows for faster learning models, this method results in poor models for vehicles that require high complexity feedback. To deal with this problem, an online learning method will be developed, where data is obtained sequentially and used to update the model at each time step. It will be shown that the online learning method can improve the model obtained from the offline learning method based on the Mean Square Error of each quadcopter data type."
Depok: Fakultas Teknik Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>