Energi listrik adalah salah satu energi yang sangat dibutuhkan demi keberlangsungan hidup manusia dengan peningkatan penggunaan setiap tahunnya. Di Indonesia sendiri, sebagian besar sumber energi pembangkitan listrik masih berasal dari batu bara, sehingga pemerintah menargetkan pengembangan PLTS atap hingga 3,6 GW pada tahun 2025. Demi mendukung program tersebut, PLTS eksisting tetap harus dijaga kinerjanya, di mana salah satu cara untuk menguji keandalan sistem tersebut adalah dengan melakukan evaluasi kinerja mengacu pada standar IEC 61724, yaitu standar untuk mengukur kinerja fotovoltaik. Penelitian ini melakukan studi mengenai implementasi PLTS Atap On-Grid 90 kWp di Gedung Energi 625 Pusat Penelitian Ilmu Penerapan dan Teknologi (Puspiptek), Serpong, Tangerang Selatan. Gedung ini merupakan pusat pengembangan dan penerapan ilmu pengetahuan dan teknologi berbasis penelitian. Sebagai data acuan, akan dilakukan simulasi data seharusnya menggunakan perangkat lunak PVsyst. Berdasarkan simulasi, dihasilkan energi keluaran PLTS tahunan sebesar 130.451 kWh dengan performance ratio sebesar 81,30% dan capacity factor sebesar 16,21%. Sedangkan, hasil pengukuran menghasilkan energi keluaran tahunan sebesar 102.491 kWh dengan rasio performa sebesar 73,51% dan capacity factor sebesar 13%. Rata-rata penurunan produksi energi tahunan sebesar 6,32% dengan energy performance index yang diperoleh adalah 80,21%.
Indonesia sedang berusaha untuk meningkatkan penetrasi pembangkit listrik Energi Baru Terbarukan (EBT) dengan tujuan untuk menekan emisi karbon yang dihasilkan oleh pembangkit listrik berbahan bakar fosil yang saat ini masih menjadi pemeran utama dalam pembangkitan tenaga listrik di Indonesia. Pembangkit Listrik Tenaga Surya (PLTS) menjadi salah satu pembangkit listrik EBT yang mengalami tren positif dalam beberapa tahun terakhir, khususnya di negara beriklim tropis seperti Indonesia. Berdasarkan Rencana Umum Energi Nasional (RUEN), Indonesia telah memasang target penggunaan pembangkit EBT sebesar 23% pada tahun 2025 dan 31% pada tahun 2050. Pertumbuhan penduduk yang diikuti dengan masalah keterbatasan lahan menjadi salah satu tantangan tersendiri bagi ketercapaian target tersebut. Salah satu upaya yang dapat dilakukan untuk mengatasi polemik tersebut adalah dengan menerapkan sistem PLTS atap yang terinterkoneksi dengan jaringan distribusi. Namun, penetrasi PLTS atap pada jaringan distribusi dapat menimbulkan masalah krusial terkait kestabilan sistem akibat sifat intermitensi PLTS serta karakteristik PLTS yang tidak memiliki nilai inersia. Battery Energy Storage System (BESS) dapat digunakan sebagai ancillary services untuk mempertahankan kestabilan frekuensi dan tegangan pada jaringan distribusi dengan angka penetrasi PLTS atap yang tinggi. Penelitian ini bertujuan untuk menentukan konfigurasi kapasitas dan pengaturan droop pada BESS yang paling optimal agar suatu jaringan distribusi tegangan menengah, yang di dalamnya terdapat penetrasi PLTS atap, dapat mempertahankan kestabilannya saat terjadi gangguan peralihan berupa hilangnya seluruh daya pembangkitan dari PLTS atap. Penelitian ini dilakukan menggunakan kombinasi perangkat lunak DIgSILENT PowerFactory untuk menjalankan simulasi kestabilan (RMS/EMT) dan MATLAB untuk mengolah data hasil simulasi. Hasil yang diperoleh dari penelitian ini menunjukkan bahwa semakin besar angka penetrasi PLTS atap pada suatu jaringan distribusi tegangan menengah, akan membutuhkan kapasitas BESS optimum yang lebih besar untuk mempertahankan kestabilan saat terjadi gangguan peralihan, sedangkan BESS dengan nilai pengaturan droop yang lebih kecil, BESS dapat mempertahankan kestabilan pada sistem dan skenario yang sama, namun dengan kapasitas optimum yang lebih kecil.