Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 179039 dokumen yang sesuai dengan query
cover
Miguel Bintang Samuel
"Pengembangan teknologi energi terbarukan di Indonesia memiliki potensi besar dengan kapasitas teknis energi angin sebesar 60,6 GW. Namun, kecepatan angin yang relatif rendah menjadi tantangan. Skripsi ini bertujuan untuk merancang dan menganalisis kinerja turbin angin vertikal Aeromine, yang sudah dipatenkan pada paper, menggunakan pemodelan matematika dari teori cakram aktuator pada kecepatan angin rendah (2-5 m/s) dengan menggunakan Computational Fluid Dynamics (CFD) dan pengujian terowongan angin dengan prototipe hasil 3D Print. Dua profil airfoil, S1210 dan S1223, serta dua modifikasi inlet, yaitu wind concentrator Invelox dan nozzle yang di isolasi dari aliran freestream, dievaluasi untuk meningkatkan efisiensi turbin. Hasil simulasi menunjukkan bahwa airfoil S1223 memiliki koefisien lift yang lebih tinggi, tetapi hasil eksperimen menunjukan peningkatan drag yang signifikan menghambat kinerja keseluruhan. Desain inlet dengan wind concentrator meningkatkan laju aliran udara, sementara isolasi dari freestream meningkatkan tekanan statis pada inlet. Pada kecepatan rendah, turbin Aeromine mencapai efisiensi terbaik sebesar 1,5% dari total energi angin yang tersedia, menghasilkan 2,17 Watt pada kecepatan 5 m/s. Efisiensi rotor dalam sistem Aeromine juga meningkat sebesar 205,4% dari batas Betz pada 5 m/s dibandingkan konfigurasi HWAT, dimana konfigurasi terbaik adalah airfoil S1210 dengan inlet nozzle terisolasi. Strategi peningkatan terbaik berfokus pada peningkatan daya hisap dengan mengurangi kecepatan di sekitar inlet untuk meningkatkan tekanan statis sesuai prinsip Bernoulli dan menggunakan airfoil dengan efisiensi lift yang baik. Dengan desain airfoil dan inlet yang dioptimalkan, turbin Aeromine terbukti lebih efektif di area dengan kecepatan angin rendah, meskipun efisiensi konversi total energi angin masih rendah dimana pengembangan lebih lanjut bisa dilakukan.

The development of renewable energy technology in Indonesia holds significant potential, with a technical wind energy capacity of 60.6 GW. However, the relatively low wind speeds present a challenge. This thesis aims to design and analyze the performance of a paper patented Aeromine wind turbine using mathematical modeling from actuator disk theory at low wind speeds (2-5 m/s) using Computational Fluid Dynamics (CFD) and wind tunnel testing with a 3D-printed prototype. Two airfoil profiles, S1210 and S1223, and two inlet modifications, wind concentrator invelox and nozzle with freestream isolation, were evaluated to improve turbine efficiency. Simulation results showed that the S1223 airfoil had a higher lift coefficient, but experimental results indicated that the significant increase in drag hindered overall performance. The inlet design with a wind concentrator increased the airflow rate, while freestream isolation increased static pressure at the inlet. At low wind speeds, the Aeromine turbine achieved its best efficiency of 1.5% of the total available wind energy, generating 2.17 Watts at 5 m/s. The rotor efficiency in the Aeromine system also increased by 205.4% from the Betz limit at 5 m/s compared to HWAT configuration, with the best configuration being the S1210 airfoil with isolated nozzle inlet. The best improvement strategy focuses on increasing suction by reducing the velocity around the inlet to boost static pressure according to Bernoulli's principle and using airfoils with good lift efficiency. With optimized airfoil and inlet designs, the Aeromine turbine proves to be more effective in areas with low wind speeds, although the overall conversion efficiency of the total available wind energy remains low where future improvement can be focused."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fery Hermawan
"Semakin berkurangnya energi yang tidak dapat diperbaharui membuat orang berpikir untuk mencari solusi energi alternatif. Di antaranya adalah pemanfaatan energi yang dapat diperbaharui yang terdapat di lingkungan sekitar, atau pemanfaatan bentuk energi yang terbuang menjadi bentuk energi lainnya, sesuai dengan tujuan Zero Energy Building (ZEB). Salah satu pemanfaatan energi yang terdapat di lingkungan adalah turbin angin yang memanfaatkan energi angin.
Dalam penelitian ini, dilakukan simulasi pengaruh bentuk eksentrisitas dan bentuk terhadap karakterisitik savonius itu sendiri, yang berupa meshing, tekanan, dan kecepatan udara. Simulasi menggunakan metode CFD berbasiskan perangkat komputasi. Model yang disimulasikan adalah yang memiliki gap 48 mm, 60 mm, 76 mm, 89 mm, 114 mm, 140 mm, 165 mm, dan 216 mm. Kemudian model yang mendapat nilai error terendah dimodifikasi bentuknya dengan menambah luas permukaan menjadi tiga kalinya. Bentuk yang pertama dengan sudut serang sudu linear, dan kedua dengan sudut serang sudu berbeda 60o pada tiap lapisannya.
Hasil simulasi menunjukkan bahwa semakin besar luas permukaan akan meningkatkan daya pada turbin itu sendiri. Turbin savonius tanpa penambahan luas yang memiliki error rendah terdapat pada gap 114 mm yang memiliki daya tertinggi secara simulasi 0,110360406 Watt pada putaran -20 rpm, torsi -0,052719939 N.m, dan error-nya sebesar 79,084%. Sedangkan dengan penambahan luas permukaan, maka bentuk turbin dengan sudut serang sudu 60o memiliki error terendah dengan nilai 57,87% dan daya menurut simulasi 0,666869687 Watt. Sedangkan error turbin savonius model sudut serang sudu linear tertinggi adalah 64,373% dengan daya 0,563935102 Watt.

The non-renewable energy that on the wane make the people think to look for alternative energy solutions. Among them is the utilization of renewable energy contained in the environment, or the utilization of wasted energy into other energy forms, in accordance with the purpose of Zero Energy Building (ZEB). One of the utilization of energy contained in the environment is the use of wind energy for wind turbines.
In this study, carried out simulations of the effects of eccentricity and form to characteristic savonius of itself, like meshing, pressure, and air velocity. Simulations using CFD method based on computing devices. The model is simulated with a gap 48 mm, 60 mm, 76 mm, 89 mm, 114 mm, 140 mm, 165 mm and 216 mm. Later models had the lowest error value is modified form, by adding surface area thrice. The first form an blade angle of attack mean linear, and the second with a different blade angle of attack 60o on each pad.
Simulation results show that the greater the surface area will increase the power of the turbine itself. Savonius turbine without the addition of a large low error are the 114 mm gap that has supreme power in a simulation 0.110360406 Watt on rotation -20 rpm, -0.052719939 Nm of torque, and error of 79,084%. Meanwhile, with the addition of surface area, the form of turbine blade angle 60o attack has the lowest error with a value of 57,87% and power by simulation 0.666869687 Watt. While error savonius turbine blade model point of attack is the lowest linear with 64,373%, 0.563935102 Watt power.
"
Depok: Fakultas Teknik Universitas Indonesia, 2009
S50781
UI - Skripsi Open  Universitas Indonesia Library
cover
Aditya Indra Bayu
"ABSTRAK
Turbin angin tipe Savonius adalah turbin angin sumbu vertikal (VAWT) yang memiliki kelebihan di konstruksinya yang sederhana, kemampuan untuk menerima angin dari segala arah, kemudahan dalam perawatan dan tidak menghasilkan suara yang bising. Karakteristik ini membuatnya cocok diterapkan untuk daerah perkotaan ataupun perumahan. Yang menjadi kendala utama adalah lokasi penempatan yang cenderung berkecepatan angin rendah. Penelitian ini bertujuan untuk menentukan konfigurasi yang tepat untuk turbin angin Savonius agar mampu memberikan performa yang baik pada kecepatan angin rendah. Hasil penelitian dan studi kasus menunjukkan bahwa untuk setiap variasi parameter geometrik Savonius turut serta mempengaruhi performa secara keseluruhan. Nilai Overlap Ratio antara 0.15 dan 0.25 memberikan performa yang optimal bagi nilai Cp. Dengan desain dan
konfigurasi Overlap R atio yang tepat diharapkan mampu menambah performa untuk kecepatan angin rendah.

ABSTRACT
Savonius wind turbine is a vertical axis wind turbine which has many advantages such as simple construction, capabilites to accepting wind in omni directional, easiness in maintenance and low noise pollution. These characteristic make it ecspecially suited as an alternative electricity source in cities and urban area. The only problem lies in
the low wind velocity which resulting in low torque and power output. This research aimed to decide the best configuration for Savonius wind turbine si it give the best performance possible. Research and various studies shows that for every geometric parameters give a boost in performance. An Overlap Ratio value of 0.15 and 0.25
gives the optimum Cp value according to various sources. With the right design and optimum configurations of Overlap Ratio, hopefully could increase the performance significantly in low wind velocity.
"
Fakultas Teknik Universitas Indonesia, 2012
S42797
UI - Skripsi Open  Universitas Indonesia Library
cover
Maulana Akbar
"Saat ini turbin angin kecepatan rendah sedang mengalami banyak modifikasi guna memaksimalkan kinerja generator sesuai dengan keadaan geografis di Indonesia. Banyak model generator yang dicoba dalam menghasilkan listrik. Pada pembahasaan skripsi ini digunakan generator axial karena cocok dengan keadaan angin kecepatan rendah. Model dan modifikasi dari generator ini pun sangat memegang peranan penting terhadap kinerja generator. Desain dari generator ini menggunakan arus 3 phasa dengan stator tanpa inti besi, serta rotor ganda yang mengapit stator. Disamping itu menggunakan 9 magnet permanen jenis strontium ferrite Br 0.8 T dan 9 kumparan pada stator. Desain ini dibuat berbeda dengan generator axial kecepatan rendah lainnya. Oleh karena itu hasil uji dari generator ini akan di analisa sehingga kita dapat mengetahui nilai efisiensi dari generator yang dibuat sesusai desain yang ditentukan.

Nowdays the low speed wind turbine is modifying to optimize the perfomance of generator appropriate with geographic conditions in Indonesia. Various types of generator which used to producing power. In this thesis author uses an axial generator due to appropriate with low speed wind conditions. The model and the modification of this generator hand the important role of generator performance. The design of this generator use 3 phase coreless stator, and the stator is placed between double rotor. In addition, this generator use 9 strontium ferrite Br 0.8 T permanent magnet and 9 coil in the stator. This design is made different from other low speed axial generator. Therefore, assay results from these generators will be analyzed so that we can know the value of the efficiency of the generator which is made according to the specified design."
Depok: Fakultas Teknik Universitas Indonesia, 2012
S42464
UI - Skripsi Open  Universitas Indonesia Library
cover
Bubi Maura Nilendra
"Generator fluks aksial magnet permanen merupakan salah satu jenis pembangkit energi listrik yang dapat digunakan dalam aplikasi pembangkitan energi listrik tenaga angin. Generator fluks aksial magnet permanen sangat cocok untuk digunakan dalam aplikasi pembangkitan energi listrik di Indonesia dikarenakan kecepatan angin yang ada di Indonesia termasuk ke dalam jenis angin dengan kecepatan rendah. Oleh karena itu, perancangan desain model generator fluks aksial magnet permanen perlu untuk dilakukan, sehingga dapat diciptakan pembangkit energi listrik tenaga angin yang efisien dan cocok dengan kondisi angin yang ada di Indonesia.

Axial Flux Permanent Magnet Generator is a kind of electrical energy generator that can be used in the wind energy electrical power generation. Axial Flux Permanent Magnet is very suittable in the application of wind energy electrical power generation in Indonesia because Indonesia has winds which speed is low classified. So, axial flux permanent magnet design and modelling is required to be realized in order to produce an efficient and suittable for wind energy electrical power generation condition in Indonesia."
Depok: Fakultas Teknik Universitas Indonesia, 2012
S42655
UI - Skripsi Open  Universitas Indonesia Library
cover
Raden Muhammad Alif Bryan Riztama
"Indonesia adalah negara kepulauan yang luas, dimana fitur topografinya dapat membatasi suatu area dengan area lainnya. Hal ini menyebabkan distribusi listrik menjadi sangat bervariasi. Oleh Karena itu, dibutuhkan pembangkit listrik yang dapat ditempatkan di daerah sulit terjangkau, yang dapat memenuhi kebutuhan listrik masyarakat setempat. Energi bayu/angin adalah salah satu energi terbarukan yang mempunyai potensi yang bagus. Energi ini cukup melimpah di daerah pesisir khususnya Kampung Bungin, Muara Gembong, dan total 3 kincir angin telah terpasang di daerah ini.
Saat ini, pengambilan data-data terkait kincir angin tersebut menjadi poin penting, terutama setelah pemasangan bilah blade baru. Data yang diambil berupa kecepatan angin, serta data penghasilan listrik, menggunakan Data Logger yang tersedia di lokasi. Pengolahan data tersebut menggunakan software MagdeTech 4 serta Microsoft Excel. Aproksimasi kecepatan angin menggunakan Distribusi Weibull 2-parameter. Hasil perhitungan kecepatan angin untuk menemukan potensi kincir angin akan dibandingkan dengan hasil aktual di lapangan.

Indonesia is a vast country in which the topographical features can separate areas from one another. This causes electricity distribution to be uneven. Therefore, a standalone power plant placed in remote areas that can fulfill the demand for electricity locally is needed. Wind energy, as one of the renewable energy resource, has a great potential to solve this problem. Wind energy is readily available in Bungin Village, Muara Gembong, and three micro wind turbines have been installed in the village.
Today, it is important to obtain the data related to the wind turbines, especially with the new blades installed, which consists of gathering wind speed and power generation data from the data loggers present on the site. Data processing is done by using MadgeTech 4 and Microsoft Excel. A Two parameter Weibull Distribution is used to approximate wind speed in the future. Also, the result from processing the wind speed data to obtain power generation, will be compared with actual power generation data in forms of voltage and current, and an analysis can be made.
"
Depok: Fakultas Teknik Universitas Indonesia, 2017
S67252
UI - Skripsi Membership  Universitas Indonesia Library
cover
Abdur Rouf
"Turbin Angin Sumbu Vertikal (TASV) merupakan jenis turbin angin yang dengan kecepatan angin rendah dapat menghasilkan listrik dan cukup mudah diterapkan pada beban kelistrikan yang terisolasi. Penelitian ini bertujuan untuk mendapatkan desain sistem TASV dan sistem pasokan listrik yang paling optimal baik secara teknis maupun ekonomis untuk memenuhi kebutuhan energi listrik di daerah Tertinggal, Terdepan dan Terluar (3T). Dengan pendekatan statistik Ordinary Kriging, nilai kecepatan rara-rata tahunan di Raja Ampat diestimasikan berdasarkan data historis kecepatan angin yang berasal dari Badan Meteorologi, Klimatologi dan Geofisika 2019 (BMKG) dan data National Oceanic and Atmospheric Administration 2019 (NOAA) sehingga distribusi kecepatan angin dapat diproyeksikan dengan menggunakan pendekatan distribusi Weibull dan Rayleigh. Parameter yang divariasikan meliputi spesifikasi turbin, kapasitas daya dan kecepatan angin. Hasil penelitian menunjukkan bahwa desain TASV yang optimal untuk diimplementasikan di Raja Ampat adalah turbin 10 kW tipe darrieus dengan blade lurus, cut-in speed 1.5 m/s, kecepatan rated 9 m/s dan faktor kapasitas 20.9%. Untuk kebutuhan energi listrik rata-rata 1,074/pelanggan/tahun, Produksi Energi Tahunan sebesar 18,337 kWh/unit/turbin, 1-unit TASV dapat mensuplai energi listrik kepada 12 pelanggan atau 1-unit turbin dalam radius 1 km2 dengan kepadatan penduduk rata-rata 48 Jiwa/km2. Untuk memasok jumlah permintaan di Raja Ampat sebesar 459,797 kWh ditahun 2021, dibutuhkan sebanyak 25-unit TASV dengan LCOE 20.2 Sen USD / kWh / unit atau lebih rendah dari Biaya Produksi yang Diatur (21.34 sen USD / kWh). Hasil ini menunjukkan TASV merupakan alternatif yang tepat secara teknis dan ekonomis untuk beban kelistrikan di negara-negara kepulauan dengan banyak daerah terisolasi seperti Indonesia.

Vertical Axis Wind Turbine (VAWT) can generate electricity just by low wind speed and simply able to apply for isolated demands. This study aims to obtain the most optimal VAWT system design and power supply system both techno-economic to meet the demands in disadvantaged, frontier and outermost (3T) areas. By Ordinary Kriging method, the annual average velocity in Raja Ampat was estimated based on historical wind speed data from the 2019 Meteorology, Climatology and Geophysics Agency (BMKG) and the 2019 National Oceanic and Atmospheric Administration (NOAA) so that the wind speed distribution can be projected using the Weibull and Rayleigh distribution. The varied parameters include turbine specifications, power capacity and wind speed. The results showed that the optimal VAWT design was the 10 kW straight blade Darrieus turbine, with a cut-in speed of 1.5 m/s, an rated speed of 9 m/s and a capacity factor of 20.9%. For demands an average of 1,074/customer/year, Annual Energy Production of 18,337 kWh turbine unit, then 1 unit can supply the demand for 12 customers or 1 units within a radius of 1 km2, with an average population density of 48 people/ km2. To supply the total demand in Raja Ampat of 459,797 kWh in 2021, 25-unit VAWT with a LCOE of 20.2 Cents USD/kWh or lower than the Regulated Production Cost (21.34 cents USD / kWh) were required. These results suggest that VAWT is a techno-economic viable alternative for electricity demand in archipelagic countries with many isolated areas such as Indonesia."
Depok: Fakultas Teknik Universitas Indonesia, 2021
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Lazarus Stefan
"Pemodelan generator turbin angin skala kecil yang terdiri dari generator magnet permanen, rectifier, dan DC-DC boost converter, serta algoritma pengendalian yang daya maksimum direpresentasikan dalam buku skripsi ini. Pemodelan model turbin angin dilakukan berdasarkan rangkaian pengganti gabungan permanent magnet synchronous generator PMSG, rectifier, dan boost konveter. Pemodelan rectifier boost converter dibagi menjadi 12 kondisi berdasarkan keadaan switching diode dan rectifier akibat tegangan stator tiga fasa keluaran generator.
Algoritma Maximum Power Pint Tracking MPPT yang dibangun menggabungkan algoritma MPPT Perturb and Observe dan Optimum Relation Based ORB. Keluaran MPPT akan memberikan set point arus. Pengendali PI akan memberikan pengendalian arus beban untuk mencapai daya maksimal. Model turbin angin yang dibangun mampu memodelkan sistem generator turbin angin dengan akurat, dan algoritma MPPT yang dibangun dapat mengoperasikan turbin angin pada daya maksimummnya pada sistem riil.

Modeling a small scale turbine generator generator consisting of a permanent magnet generator, rectifier, and DC DC boost converter, as well as the maximum power control algorithm represented in this book. The modeling of the wind turbine model is performed based on permanent magnet synchronous generator PMSG equivalent circuit, rectifier, and convower boost. Modeling rectifier boost converter is divided into twelve 12 conditions based on switching diode and rectifier conditions due to three phase stator voltage of generator as the input.
The Maximum Power Pint Tracking MPPT algorithm constructed incorporates the Perturb and Observe and Optimum Relation Based ORB algorithms. The MPPT output will provide the current set point. PI controller will provide load current control to achieve maximum power. The simulation of wind turbine model is capable of modeling an accurate wind turbine generator system, and the presented MPPT algorithm can operate the wind turbine at maximum power in the real system.
"
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ni Luh Gayatri Dharmaraditya
"Seiring dengan pengalihan penggunaan minyak bumi sebagai sumber energi listrik, energi terbarukan menjadi sumber energi menjanjikan salah satunya adalah pembangkit listrik tenaga angin. Namun tenaga angin memiliki kekurang dikarenakan sumber angin yang berubah ubah membuat sistem tidak linear. Permanent Magnet Synchronous Generator digunakan sebagai generator dikarenakan sangat cocok untuk turbin angin kecil sedangkan untuk konversi sinyal AC ke DC kali ini menggunakan rangkaian rectifier aktif dengan menggunakan metode kendali yang dikenal dengan voltage oriented control. Untuk membuat daya yang didapatkan dapat maksimal, turbin angin menggunakan MPPT maximum power point tracking untuk mencari tegangan referensi DC maksimum sehingga dapat berada pada daya maksimal. Hasil simulasi membuktikan bahwa menggunakan recitfier aktif dengan pengendali beroritentasi tegangan dapat dilakukan.

Due to the change of using crude oil as an energy source, renewable energi became a future souce energy for example wind energy. However, wind energy has a drawback because the source is change easily making a system non linear. Permanent Magnet Synchronous Generator is used to be a generator because it it iss suitable for small wind turbine. Meanwhile, for AC to DC signal conversion, this reseach using active rectifier circuit with a control metode called voltage oriented control For generate the maximum power, wind turbine use MPPT maximum power point tracking for searching the optimum of voltage reference thus the power can be steady in maximum value. The result of this simulation is wind turbine using active rectifier and use voltage oriented control can be implemented."
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Reza Ardhyatama
"ABSTRAK
Penelitian ini membahas mengenai metode perhitungan downwash dari hasil data terowongan angin pada pesawat N-219. Salah satu karakteristik aliran yang mempengaruhi kualitas kestabilan dan pengendalian pesawat adalah fenomena downwash. Dalam pengujian terowongan angin harga momen tukik pesawat tanpa ekor dan dengan ekor horizontal dibandingkan untuk mendapatkan harga downwash yang efektif mempengaruhi ekor dan kestabilan statik longitudinal pesawat itu sendiri. Cara mendapatkan nilai-nilai downwash yang efektif sendiri adalah dengan menurunkan data terowongan angin menggunakan perhitungan matematis polynomial curve fitting. Penggunaan metode ini nantinya akan menghasilkan satu nilai karakteristik downwash dari beberapa nilai karakteristik downwash yang dihasilkan dari perhitungan dengan menggunakan rumus standar yang dipakai oleh PTDI. Setelah itu akan dilakukan perhitungan balik untuk membandingkan apakah hasil perhitungan dengan metode polynomial curve fitting sesuai dengan hasil perhitungan dengan menggunakan rumus standar yang dipakai di PTDI, dan membandingkan pula dengan data awal terowongan angin. Nilai-nilai yang didapat dalam perhitungan downwash antara lain α , , , , ε, , . Perbandingan hasil perhitungan dengan menggunakan metode polynomial curve fitting dengan data awal terowongan angin menunjukkan bahwa nilai-nilai yang dihasilkan menunjukkan tren yang serupa, sehingga dapat dikatakan metode perhitungan yang dilakukan adalah benar adanya.

ABSTRACT
This research discusses the calculation method downwash of wind tunnel data results on the N-219 aircraft. One flow characteristics that affect the quality of the stability and control of aircraft is a downwash phenomenon. In wind tunnel testing pitching moments without and with horizontal tails compared to getting an effective downwash characteristics that affect tail and static longitudinal stability of the aircraft itself. How to get the values ​​of downwash characteristics is calculate the wind tunnel the data using mathematical calculations polynomial curve fitting. Using this method will produce a characteristic value of some value of downwash downwash characteristics resulting from the calculation by using a standard formula used by PTDI. After that, it will be calculated back to compare whether the results of the calculation method of polynomial curve fitting according to calculations using the standard formula used in PTDI, and compares it with wind tunnel testing data. The values ​​obtained in the calculation of downwash include α , , , , ε, , . Comparison of the results of calculations using polynomial curve fitting with initial data of the wind tunnel showed that the resulting values ​​showed a similar trend, so we can say the method of calculation made is true.
;"
2016
S65269
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>