Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 109232 dokumen yang sesuai dengan query
cover
Fachri Akbar
"Pelumas merupakan senyawa yang digunakan untuk mengurangi gaya gesek dan keausan antar komponen yang berkontak satu sama lain. Base oil merupakan komponen penting dalam pelumas sehingga pemilihan base oil dapat menentukan sifat dari pelumas tersebut. Kolom distilasi pada proses separasi base oil ester memiliki potensi bahaya yang cukup tinggi sehingga perlu adanya pengendalian pada unit tersebut. Pada penelitian ini, Multivariable Model Predictive Control (MMPC) digunakan sebagai pengendali tingkat lanjut untuk mengendalikan 4 pasangan manipulated variable (MV) dan controlled variable (CV) pada unit distilasi. Penyetelan pengendali dilakukan dengan pemodelan first order plus derivative time (FOPDT) dengan metode Smith, Wade, Lilja, dan Solver yang dilanjutkan dengan penentuan parameter MMPC. Penentuan parameter MMPC dengan metode fine-tuning menghasilkan prediction horizon (P) sebesar 375, control horizon (M) sebesar 245, dan sampling time (T) sebesar 1. Pengendalian dengan MMPC 4×4 hasil fine-tuning mampu mengurangi nilai Integrated Absolute Error (IAE) sebesar 3,31 – 80,40% dan nilai Integrated Squared Error (ISE) sebesar 2,77 – 81,33% dibandingkan hasil pengendalian PI pada pengujian set point tracking. Selain itu, pengendalian MMPC juga dapat mengurangi nilai IAE sebesar 3,17 – 77,48% dan nilai ISE sebesar 23,83 – 88,44% dibandingkan hasil pengendalian PI pada pengujian disturbance rejection.

Lubricants are compounds used to reduce friction and wear between components in contact with each other. Base oil is an important component in lubricants so that the selection of base oil can determine the nature of the lubricant. The distillation column in the ester base oil separation process has a high potential hazard, so it is necessary to control the unit. In this study, Multivariable Model Predictive Control (MMPC) is used as an advanced controller to control 4 pairs of manipulated variables (MV) and controlled variables (CV) in the distillation unit. Controller tuning is done by first order plus derivative time (FOPDT) modeling with Smith, Wade, Lilja, and Solver methods followed by MMPC parameter determination. The determination of MMPC parameters with the fine-tuning method results in a prediction horizon (P) of 375, a control horizon (M) of 245, and a sampling time (T) of 1. Control with MMPC fine-tuning results can reduce the Integrated Absolute Error (IAE) value by 3.31 – 80,40% and the Integrated Squared Error (ISE) value by 2.77 – 81,33% compared to the PI control results in the set point tracking test. In addition, MMPC  control can also reduce the IAE value by 3.17 – 77,48% and the ISE value by 23.83 – 88,44% compared to the PI control results in the disturbance rejection test."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Fachry Arrifqi
"Ester base oil merupakan pelumas alami yang telah diterima secara luas dikarenakan kemampuan pelumasannya yang tinggi, serta keunggulan seperti kinerja suhu rendah, indeks viskositas yang tinggi, pengurangan gesekan yang sangat baik, dan sifat anti aus. Proses sintesis ester base oil melibatkan dua tahapan utama, yaitu oligomerisasi dan esterifikasi. Penelitian ini bertujuan untuk mendapatkan rancangan serta mendesain pengendalian proses pada proses pre- treatment oligomerisasi pabrik ester base oil dengan multivariable model predictive control (MMPC) 4x4. Metode yang digunakan untuk mendapatkan model first order plus dead time (FOPDT) 4x4 adalah dengan cara dilakukan identifikasi sistem menggunakan metode Smith, metode Wade, dan metode Solver. Selanjutnya, ditentukan model FOPDT terbaik dengan membandingkan nilai root- mean-square error (RMSE) terkecil dari setiap metode. Metode tuning yang digunakan untuk MMPC adalah metode Shridhar-Cooper dilanjutkan dengan fine- tuning untuk mendapatkan nilai parameter P (prediction horizon), M (control horizon), dan T (sampling time). Parameter MMPC tersebut akan diuji berdasarkan respon kinerja pengendali terhadap pengujian set point (SP) tracking dan pengujian disturbance rejection. Kinerja MMPC juga akan dibandingkan dengan kinerja pengendali propotional-integral (PI) dengan perhitungan integral absolute error (IAE) dan integral square error (ISE). Hasil identifikasi sistem didapatkan model FOPDT terbaik menggunakan metode Smith yaitu M1V3, M2V1 ; metode Wade yaitu M1V2, M2V3, M2V4, M4V2 ; metode Solver yaitu M1V1, M1V4, M2V2, M3V1, M3V2, M3V3, M3V4, M4V1, M4V3, M4V4. Metode fine-tuning pada penyetelan MMPC menghasilkan parameter P, M, T terbaik masing-masing sebesar 350, 300, dan 2. Pada pengujian SP ttacking, MMPC menunjukkan kinerja terbaik dalam pengendalian suhu sedangkan kinerja pengendali PI lebih baik dalam pengendalian laju alir. Pada pengujian disturbance rejection, kinerja MMPC lebih baik dibandingkan pengendali PI dengan perbaikan kinerja pengendalian sebesar 7,16% - 61,35% untuk nilai IAE dan 13,96% - 88,60% untuk nilai ISE.

Ester base oil is a natural lubricant widely accepted due to its high lubricating ability, as well as advantages such as low-temperature performance, high viscosity index, excellent friction reduction, and anti-wear properties. The synthesis process of ester base oil involves two main stages, namely oligomerization and esterification. This research aims to obtain a design and design process control in the pre-treatment process of oligomerization in the ester base oil plant with multivariable model predictive control (MMPC) 4x4. The method used to obtain the first-order plus dead time (FOPDT) 4x4 model is by identifying the system using Smith's method, Wade's method, and Solver's method. Furthermore, the best FOPDT model is determined by comparing the smallest root-mean-square error (RMSE) values from each method. The tuning method used for MMPC is the Shridhar-Cooper method followed by fine-tuning to obtain the parameter values P (prediction horizon), M (control horizon), and T (sampling time). These MMPC parameters will be tested based on controller performance responses to set point (SP) tracking testing and disturbance rejection testing. The performance of MMPC will also be compared with proportional-integral (PI) controllers using integral absolute error (IAE) and integral square error (ISE) calculations. The results of the system identification obtained the best FOPDT model using Smith's method, namely M1V3, M2V1; Wade's method, namely M1V2, M2V3, M2V4, M4V2; Solver's method, namely M1V1, M1V4, M2V2, M3V1, M3V2, M3V3, M3V4, M4V1, M4V3, M4V4 .The fine-tuning method in MMPC tuning resulted in the best P, M, T parameters of 350, 300, and 2 respectively. In SP tracking testing, MMPC showed the best performance in temperature control while PI controller performance was better in flow rate control. In disturbance rejection testing, MMPC performance was better than PI controllers with performance improvement ranging from 7.16% to 61.35% for IAE values and 13.96% to 88.60% for ISE values."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dio Arif Alwafi
"Pelumas dapat didefinisikan sebagai substansi yang ditempatkan di antara dua permukaan yang bergerak relatif untuk mengurangi gesekan di antara keduanya. Pelumas dapat mengurangi gesekan, tingkat keausan, dan konsumsi energi. Oleh karena itu, pelumas secara luas diterapkan di hampir semua bidang industri, terutama pada bidang transportasi, manufakur, hingga pembangkit listrik. Proses oligomerisasi dalam pembuatan ester minyak dasar dilakukan dengan menggabungkan senyawa asam karboksilat dengan poliol. Melalui reaksi oligomerisasi ini, jumlah cabang samping akan meningkat seiring pertumbuhan panjang rantai utama, yang pada gilirannya dapat meningkatkan viskositas ester minyak dasar. Penelitian ini bertujuan untuk mendapatkan rancangan serta mendesain pengendalian proses pada proses oligomerisasi pabrik ester base oil dengan multivariable model predictive control MMPC 100 (2×2) dan MMPC 101 (2×2) dengan identifikasi proses model first order plus dead time (FOPDT) dengan metode Smith, Wade, dan Solver. Selanjutnya, ditentukan model FOPDT terbaik dengan membandingkan nilai root-mean- square error (RMSE) terkecil dari setiap metode. Metode tuning yang digunakan untuk MMPC adalah metode Shridhar-Cooper dilanjutkan dengan fine tuning untuk mendapatkan nilai parameter P (prediction horizon), M (control horizon), dan T (sampling time) terbaik. Parameter MMPC tersebut akan diuji berdasarkan respon kinerja pengendali terhadap perubahan set point (SP) dan pengujian disturbance rejection dengan perhitungan integral absolute error (IAE) dan integral square error (ISE). Hasil identifikasi sistem didapatkan model FOPDT terbaik seluruhnya menggunakan metode Solver. Metode fine tuning pada penyetelan MMPC menghasilkan parameter T, P, M untuk MMPC 100 (2×2) sebesar 9, 120, dan 20 dan untuk MMPC 101 (2×2) sebesar 1, 230, dan 150. Pada pengujian Set Point (SP) tracking, MMPC merupakan pengendali terbaik untuk seluruh pengendalian dibandingkan pengendali PI. Pada pengujian disturbance rejection terhadap perubahan suhu inlet, pengujian dilakukan dengan membandingkan tiga kondisi, yaitu dengan adanya pengendalian pre treatment (Full Control), tanpa adanya pengendalian pre treatment (Local Control) dan PI. Didapatkan kinerja MMPC Full Control lebih baik dibandingkan kinerja MMPC Local Control dengan pemulihan kinerja pengendali sebesar 7,36%, 0,007%, 0,086%, dan 0,03% untuk nilai IAE dan 0,61%, 0,00%, 0,00%, dan 0,00% untuk nilai ISE.

A lubricant can be defined as a substance placed between two relatively moving surfaces to reduce the friction between them. Lubricants can reduce friction, wear rate, and energy consumption. Therefore, lubricants are widely applied in almost all industrial fields, especially in transportation, manufacturing, and power generation. The oligomerization process in the preparation of base oil esters is carried out by combining carboxylic acid compounds with polyols. Through this oligomerization reaction, the number of side branches will increase as the main chain length grows, which in turn can increase the viscosity of the base oil ester. This study aims to obtain the design and design of process control in the oligomerization process of base oil ester plant with multivariable model predictive control MMPC 100 (2×2) and MMPC 101 (2×2) with first order plus dead time (FOPDT) model process identification by Smith, Wade, and Solver methods. Next, the best FOPDT model is determined by comparing the smallest root-mean-square error (RMSE) value from each method. The tuning method used for MMPC is the Shridhar-Cooper method followed by fine tuning to get the best parameter values of P (prediction horizon), M (control horizon), and T (sampling time). MMPC parameters will be tested based on the controller performance response to set point (SP) changes and disturbance rejection testing with integral absolute error (IAE) and integral square error (ISE) calculations. The results of system identification obtained the best FOPDT model entirely using the Solver method. The fine-tuning method on MMPC tuning produces parameters T, P, M for MMPC 100 (2×2) of 9, 120, and 20 and for MMPC 101 (2×2) of 1, 230, and 150. In the Set Point (SP) tracking test, MMPC is the best controller for all controls compared to PI controllers. In testing disturbance rejection to changes in inlet temperature, testing is done by comparing two conditions, namely with the presence of pre-treatment control (Full Control) and without pre-treatment control (Local Control). MMPC Full Control performance is better than MMPC Local Control performance with controller performance recovery of 7.36%, 0.007%, 0.086%, and 0.03% for IAE values and 0.61%, 0.00%, 0.00%, and 0.00% for ISE values."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Zaki Haryo Brillianto
"ABSTRAK
Pengendalian proses pemisahan metanol-air pada produksi dimethyl ether (DME) dari gas sistesis menggunakan pengendali Model Predictive Control (MPC) jenis single-input single-output (SISO) telah menunjukkan hasil yang lebih baik dibandingkan dengan penggunaan pengendali Propotional-Integral (PI). Namun, penerapan pengendali MPC tunggal ini membuat proses produksi DME menjadi tidak ekonomis dikarenakan biaya modal pengendali MPC lebih besar dibandingkan pengendali PI. Pada penelitian ini, dirancang pengendali Multivariable Model Predictive Control (MMPC 4x4) dengan empat variabel masukan atau variabel yang dimanipulasikan (manipulated variable, MV) dan empat variabel keluaran atau variabel yang dikendalikan (controlled variable, CV). Pengendali MMPC diusulkan untuk mengurangi jumlah pengendali yang digunakan (empat MPC) serta mengatasi interaksi antar-variabel yang akan memengaruhi kinerja pengendalian. Perancangan pengendali meliputi identifikasi interaksi antar-variabel melalui pemodelan empirik first-order plus dead time (FOPDT) dan penyetelan pengendali. Empat CV tersebut meliputi suhu kondensor, suhu keluaran cooler, level kondensor, dan level kolom, sedangkan empat MV-nya meliputi beban kondensor, beban cooler, laju alir produk distilat, dan laju alir produk bawah. Hasilnya menunjukkan bahwa interaksi antar variabel yang teridentifikasi meliputi seluruh variabel yang terlibat, sehingga didapatkan matriks 4x4 yang berisi 16 model FOPDT. Nilai parameter pengendali berupa sampling time (T), prediction horizon (P), dan control horizon (M) yang memberikan kinerja pengendalian yang optimum berturut-turut adalah 2, 24, dan 10. Penggunaan MMPC memberikan kinerja pengendalian yang lebih baik dibandingkan dengan MPC, yang ditunjukkan oleh penurunan IAE sebesar 7% hingga 72% dan penurunan ISE sebesar 14% sampe 83%.

ABSTRACT
Process control of separating methanol-water from the production of dimethyl ether (DME) from synthesis gas using the Model Predictive Control (MPC) controller of single-input single-output (SISO) type has shown better results compared to the use of Propotional-Integral (PI) controllers. However, the application of this single MPC controller made the DME production process uneconomical because the MPC controllers capital cost was greater than the PI controller. In this study, a Multivariable Model Predictive Control (MMPC 4x4) controller was designed with four input variables or manipulated variables (manipulated variables, MV) and four controlled variables (controlled variables, CV). The MMPC controller is proposed to reduce the number of controllers used (four MPC) and overcome inter-variable interactions that will affect control performance. The design of the controller includes the identification of inter-variable interactions through first-order plus dead time (FOPDT) empirical modeling and controller adjustments. The four CVs include condenser temperature, cooler output temperature, condenser level, and column level, while the four MVs include condenser load, cooler load, distillate product flow rate, and bottom product flow rate. The results show that the interactions between the variables identified include all the variables involved, resulting in 16 FOPDT models. The control parameter values ​​in the form of sampling time (T), prediction horizon (P), and control horizon (M) that provide optimum control performance are 2, 24, and 10. The use of MMPC provides better control performance compared to MPC, which is indicated by a decrease in IAE of 7% to 72% and a decrease in ISE of 14% to 83%."
2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Adjisetya
"Hidrogen merupakan salah satu gas yang memiliki banyak kegunaan. Salah satunya pada industri kimia. Pabrik yang memiliki banyak gangguan akan berdampak pada efektivitas dan kestabilan operasi pabrik. Selain itu, pabrik yang memiliki banyak gangguan unit juga akan berpengaruh pada lingkungan sekitar. Unit kompresor dan steam reformer merupakan unit – unit yang penting dalam pabrik biohidrogen dari biomassa. Kompresor berfungsi untuk mencapai tekanan tinggi pada kondisi operasi selanjutnya dan steam reformer merupakan proses utama dari pabrik ini yang berfungsi untuk menghasilkan gas hidrogen.  Multivariable model predictive control (MMPC) merupakan suatu pengendali tingkat lanjut. Identifikasi model empirik berdasarkan berdasarkan first order plus dead time (FOPDT) untuk pengaruh gangguan ini dilakukan melalui metode process reaction curve (PRC). Dalam melakukan pengujian, model empirik yang digunakan pada MMPC yaitu model FOPDT yang diperoleh dengan metode 2 (Smith), serta penggabungan dengan model FOPDT MPC yang telah diperoleh pada penelitian sebelumnya yang telah dilakukan oleh oleh Wahid dan Taqwallah (2018). Untuk memperoleh kinerja pengendalian proses yang optimal dilakukan proses tuning atau penyetelan dengan menggunakan metode Shridhar dan Cooper, serta fine tuning untuk dibandingkan dengan kinerja pengendalian model predictive control (MPC) oleh Wahid dan Taqwallah (2018). MMPC fine tuning dengan model FOPDT yang diperoleh dengan metode 2 (Smith) tanpa penggabungan dengan model MPC memberikan hasil yang terbaik karena dapat menstabilkan aliran lebih cepat sesuai dengan setpoint. Parameter nilai T, P, dan M pada MMPC yang diperoleh yaitu 1, 341, dan 121 pada unit kompresor, serta 1, 45, dan 21 pada unit steam reformer. Peningkatan kinerja MMPC ini yaitu pada unit kompresor 1 yaitu 85,84%; unit kompresor 2 61,39%; unit kompresor 3 yaitu 94,57%; dan unit kompresor 4 yaitu 73,35%, serta pada unit steam reformer peningkatan kinerja MMPC fine tuning yaitu 63,34% pada heater dan 80,16% pada combustor.

Hydrogen is one of many gases that has many uses, one of which is in the chemical industry. A factory that has many units creates a lot of disturbances that affect on the effectiveness and stability of the plant's operation, and it will also affect the surrounding environment. Compressor unit and steam reformer are two of the important units in biohydrogen plant from biomass. The compressor works to achieve high pressure in the next operation and Steam Reformer is the main process of this plant which functions to produce H2 gas. Multivariable Model Predictive Control (MMPC) is an advanced controller.  The identification of the empirical model based on first order plus dead time (FOPDT) for the effect of this disturbance was carried out using the process reaction curve (PRC) method. The empirical model that used for the MMPC controller is the FOPDT model obtained by method 2 (Smith), as well as combining it with the MPC FOPDT model which has been acquired in previous research conducted by Wahid and Taqwallah (2018). To obtain optimal process control, a tuning process is carried out using the Shridhar and Cooper method, along with fine tuning to compare with the control performance of the model predictive control (MPC) by Wahid and Taqwallah (2018). Fine tuning MMPC controller with FOPDT model obtained by method 2 (Smith) without combining it with MPC model gives the best results because it stabilizes the flow faster based on setpoint. Parameter values of T, P, and M on the MMPC controller are 1, 341, and 121 on the compressor unit and 1, 45, and 21 on the steam reformer unit. Improvement of this MMPC on compressor unit 1 is 85.84%, compressor unit 2 61.39%, compressor unit 3 is 94.57%, and compressor unit 4 is 73.35%. In steam reformer unit, improvement of fine-tuned MMPC is 63.34% on heater and 80.16% on combustor.
"
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Devina Ismaya
"Kebutuhan akan enzim papain belakangan ini mengalami peningkatan, dengan laju permintaan sebesar 3 – 5 % pertahun. Proses pemisahan enzim papain dari buah pepaya dengan metode ekstraksi padat – cair (leaching) mempergunakan pelarut air dan campuran buffer dalam prosesnya, dalam experimen digunakan berbagai macam variabel operasi untuk mendukung proses ekstraksi ini berjalan dengan maksimal, seperti variasi suhu dan lama waktu pengadukan (345 rpm).
Hasil ekstraksi yang diperoleh kemudian di analisa dengan metode tirosin untuk aktivitas enzim dan metode lowry untuk analisa kadar protein, yang kemudian akan digunakan untuk menghitung berapa aktivitas spesifik tertinggi yang akan diperoleh berdasarkan variasi suhu dan waktu pengadukan.
Berdasarkan hasil penelitian diperoleh nilai aktivitas enzim tertinggi pada perlakuan suhu 70˚C dan waktu pengadukan selama 120 menit sebesar 4,68 EU/mL. Sedangkan untuk aktivitas spesifik enzim sebesar 10.34 EU/mg.

The need for the enzyme papain is greatly increased, its about 3 – 4% /years. The Separation Process of Papain Enzyme from Papaya Fruit by Solid-Liquid Extraction or leaching by using water and solvent mixtures buffer, this process is used in a wide range of operating conditions to support the extraction process such as temperature variations and long stirring.
The results obtained from the extraction are then determine for the enzyme activity by tyrosin method and protein levels by lowry method, and then calculate how the highest specific activity will be retrieved based on variation of temperature and time of stirring.
Based on the research results obtained the value of the highest enzyme activity on the treatment temperature 70˚C and time under stirring for 120 minutes of 4,68 EU/mL. As for the specific enzyme activity of 10.34 EU/mg
"
Depok: Fakultas Teknik Universitas Indonesia, 2013
S47695
UI - Skripsi Membership  Universitas Indonesia Library
cover
Shinskey, F.G.
New York: McGraw-Hill, 1977
660.284 2 SHI d
Buku Teks  Universitas Indonesia Library
cover
Holland, Charles D.
Englewood Cliffs, NJ: Prentice-Hall, 1975
660.284 2 HOL f
Buku Teks  Universitas Indonesia Library
cover
Erwin Firmansyah Saputro
"ABSTRAK
Selama ini DME (dimetil eter) disintesis dari metanol dalam satu reaktor dan dimurnikan dalam dua kolom distilasi sehingga biaya produksinya tinggi karena reaktor dan kolom ini menyumbang 50-70% dari total biaya produksi. Dengan proses distilasi reaktif, konversi metanol dapat ditingkatkan dengan signifikan sekaligus memurnikan produk DME pada waktu yang sama, sehingga memangkas biaya produksi DME dengan signifikan pula. Akan tetapi, dua proses (reaksi dan separasi) yang terjadi dalam satu kolom menyebabkan berkurangnya katup pengendalian yang berfungsi sebagai aktuator pada sistem pengendalian. Akibatnya, unit ini bersifat sangat non-linear, dan perancangan sistem pengendalian unit distilasi reaktif menjadi tantangan tersendiri. Penelitian ini ingin menemukan konfigurasi pengendalian PI yang optimum untuk mengatasi gangguan. Parameter konfigurasinya meliputi pemilihan manipulated variable (MV) yang dapat berupa laju alir umpan atau laju alir pemanas pada reboiler, dan controlled variable (CV) yang dapat berupa suhu talam yang paling sensitif atau laju produksi DME. Konfigurasi tersebut juga disertai penyetelan (tuning) pada pengendali PI dengan metode penyetelan Auto Tuning Variation. Pemilihan CV dan MV menghasilkan dua kemungkinan struktur pengendalian (control structure, CS), yakni CS 1 dan CS 2. Hasil simulasi menunjukkan talam 5 memiliki suhu yang paling sensitif sehingga suhu talam ini dipilih sebagai CV. Simulasi dinamiknya menunjukkan bahwa CS 2 lebih baik dari pada CS 1, karena CS 1 gagal menangani gangguan sebesar -5%, sedangkan CS 2 mampu menangani gangguan hingga ±25%.

ABSTRACT
Conventionally, DME was synthesized from methanol and purified using two distillation columns, which contributes about 50-70% to the cost of production. Using reactive distillation process, the conversion of methanol can be enhanced greatly and purifying the DME at the same time, thus reducing the cost of production, significantly. The two processes (reaction and separation) occurred in the same column reduce the number of control valves as the actuator for control system. This makes reactive distillation column is very non-linear in terms of controllability, and therefore the design of control system of such column can be quite a challenge. In this research, the optimum PI controller configuration will be obtained. The parameters for this configuration are the choice of manipulated variable (MV) that can be the feed flow rate or steam flow rate in reboiler and the controlled variable (CV) that can be the most sensitive tray temperature or the production rate. The configuration also including the PI controller tuning by using Auto Tuning Variation (ATV) method. The CV-MV pairing choice results two possible control structures, namely CS 1 and CS 2. The result showed that the tray #5 was the most sensitive tray temperature and selected as CV. The dynamic simulation showed that CS 1 failed to handle -5% disturbance change, while CS 2 succesfully handle up to ±25% disturbance change.
"
Depok: Fakultas Teknik Universitas Indonesia, 2016
S63408
UI - Skripsi Membership  Universitas Indonesia Library
cover
I Gede Eka Perdana Putra
"Dimetil eter DME sebagai energi alternatif yang bersih telah mendapat perhatian dalam beberapa tahun terakhir. Produksi DME dengan distilasi reaktif memiliki potensi untuk menghemat biaya kapital dan penggunaan energi. Meski begitu, kombinasi sistem reaksi dan distilasi dalam satu kolom membuat proses distilasi reaktif menjadi sistem multivariabel yang kompleks dengan perilaku proses yang sangat non linear dan adanya interaksi antar variabel proses yang kuat. Studi ini menginvestigasi pengendalian proses distilasi reaktif DME dengan multivariable Model Predictive Control MPC berdasarkan struktur pengendalian suhu dua titik untuk menjaga kemurnian kedua aliran produk. Model proses diestimasi dengan model first-order plus dead time. Kemurnian DME dan air masing-masing dijaga dengan mengendalikan suhu tahap 5 di zona rektifikasi dan suhu tahap 47 pelucutan. Hasil simulasi menunjukkan bahwa nilai integral of squared error ISE untuk perubahan set point suhu tahap 5 dan 47 dapat dikurangi masing-masing 19,89 dan 18,26 untuk sistem dengan pengendali multivariable MPC dibandingkan dengan pengendali PI konvensional. Selain itu, pengendali multivariable MPC mampu menangani interaksi lup pengendalian yang ditunjukkan oleh respon yang lebih stabil dan tidak berosilasi.

Dimethyl ether DME as an alternative clean energy has attracted a growing attention in the recent years. DME production via reactive distillation has potential for capital cost and energy requirement savings. However, combination of reaction and distillation on a single column makes reactive distillation process a very complex multivariable system with high non linearity of process and strong interaction between process variables. This study investigates a multivariable model predictive control MPC based on two point temperature control strategy for the DME reactive distillation column to maintain the purities of both product streams. The process model is estimated by a first order plus dead time model. The DME and water purity is maintained by controlling stage 5 temperature in rectifying section and stage 47 in stripping section, respectively. The results show that the integral of squared error ISE values for the set point tracking in stages 5 and 47 temperatures can be reduced, respectively, 19.89 and 18.26 for the system under multivariable MPC controller compared to the conventional PI controllers. In addition, the MPC controller is able to handle the loop interactions that is shown by more stable and non oscillatory responses."
Depok: Fakultas Teknik Universitas Indonesia, 2017
S66799
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>