Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 92907 dokumen yang sesuai dengan query
cover
Afifah Rahma Tifani
"Konsumsi baterai litium-ion di seluruh dunia meningkat secara drastis dari tahun 2010 hingga tahun 2015 yaitu dari 4,6 milyar hingga 7 milyar. Tentunya, peningkatan ini disertai dengan peningkatan jumlah limbahnya. Dalam setiap unit baterai li-ion bekas terkandung beberapa bahan beracun elektrolit yang mudah terbakar yang berbahaya bagi lingkungan. Dalam limbah tersebut juga terkandung logam kobalt yang mencapai 5–20%, sebagai komposisi logam terbesar dalam baterai litium ion bekas. Daur ulang baterai litium ion bekas diperlukan untuk pengurangan penipisan sumber daya logam sekaligus mengurangi dampak kontaminasi lingkungan. Proses daur ulang yang sering digunakan adalah proses hidrometalurgi leaching. Pelarut yang digunakan biasanya berupa asam kuat, seperti asam sulfat dan agen pereduksi digunakan untuk mengurangi jumlah leaching agent yang digunakan. Untuk meningkatkan kemurnian logam kobalt, proses dilanjutkan dengan proses ekstraksi. Dalam penelitian ini, digunakan 2 M H2SO4, 0,25 M C6H8O6 pada kondisi operasi 80OC selama 100 menit, menghasilkan logam Co ter-leaching sebesar 96,22%. Larutan hasil leaching yang didapat kemudian dilakukan proses ekstraksi cair-cair menggunakan Cyanex 272 dan TBP sebagai ekstraktan. Hasil dari proses ekstraksi cair-cair dengan kondisi operasi konsentrasi ekstraktan Cyanex 272 sebesar 0,5 M + TBP 5% v/v, pH fasa akuatik sebesar 4,5 selama 30 menit ekstraksi, menghasilkan logam Co terekstraksi sebesar 95,93%.

The consumption of lithium-ion batteries worldwide increased in 2015, from 4.6 billion to 7 billion. Of course, this increase is accompanied by an increase in the amount of waste. In each used li-ion battery unit contains several toxic electrolytes that are flammable which are harmful to the environment. The waste also contains cobalt metal which reaches 5–20%, as the largest metal composition in used lithium-ion batteries. The recycling of used lithium-ion batteries is necessary to reduce the depletion of metal resources while reducing the impact of environmental contamination. The recycling process that is often used is the hydrometallurgical leaching process. The solvent used is usually a strong acid, such as sulfuric acid and the reducing agent used is ascorbic acid. To increase the purity of cobalt metal, the process is followed by an extraction process. This research is using 2 M of H2SO4 and 0,25 M of C6H8O6, with the operating condition 80oC in 100 minutes leaching process resulting 96,22 % Co extracted. The solvent extraction is using Cyanex 272 and TBP as the extractant. The result from solvent extraction with 0,5 M of Cyanex 272 + 5% v/v TBP, pH aquatic phase 4,5 in 30 minutes extraction process is 95,93% Co being extracted."
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Benedict, Hizkia Juan
"With the rapid growing of Lithium-ion battery (LIB) across the world and in Australia for multiple purposes, LIB presents several emerging challenges such as sourcing the critical minerals (e.g., lithium, cobalt, nickel, manganese) and managing the end-of-life battery waste management. The purpose of this report is to design and develop a process that is able to recover lithium from end-of-life LIB. The proposed processing plant would be located at Townsville, Queensland. The feed that is introduced to the process plant would be 3000 t/y of cathode material. The objective of the process plant is to recycle lithium in the form of lithium phosphate (Li3PO4) and the plant is aim to produce 76.06 kg/hr of Li3PO4. The product is aim to have 99.9% of lithium. The crushing section comes following alkaline leaching through hydrometallurgy main process objective is to reduce the cathode sheets to 250 microns for further leaching processes downstream. 261.74 kg/hr of cathode sheets are entering from alkaline leaching and exit as black mass from the Node-200 at flowrate of 261.48 kg/hr. Main unit in the process is the hammer mill, which is used to reduce the sizes of the cathode sheets. Other units in the process consists of conveyor belts and compressors to transport solids and gas respectively into and exiting the hammer mill with the addition of a cyclone separator to collect black mass that is brought along when sending argon from the hammer mill out into the. The estimated cost of this plant section is 25,132,887 AUD with annual electricity usage of 52,488 kW/year.

Dengan pertumbuhan pesat baterai Lithium-ion (LIB) di seluruh dunia dan di Australia untuk berbagai tujuan, LIB menghadirkan beberapa tantangan baru seperti pengadaan mineral kritis (misalnya, lithium, kobalt, nikel, mangan) dan pengelolaan limbah baterai akhir masa pakai. Tujuan dari laporan ini adalah merancang dan mengembangkan proses yang dapat memulihkan lithium dari LIB akhir masa pakai. Pabrik pengolahan yang diusulkan akan berlokasi di Townsville, Queensland. Bahan baku yang dimasukkan ke pabrik pengolahan adalah 3000 ton per tahun material katoda. Tujuan pabrik pengolahan adalah mendaur ulang lithium dalam bentuk lithium fosfat (Li3PO4) dan pabrik ini bertujuan untuk menghasilkan 76,06 kg/jam Li3PO4. Produk tersebut ditargetkan memiliki 99,9% lithium. Bagian penghancuran mengikuti proses pelindian alkali melalui hidrometalurgi dengan tujuan utama mengurangi lembaran katoda menjadi 250 mikron untuk proses pelindian lebih lanjut di hilir. Sebanyak 261,74 kg/jam lembaran katoda masuk dari pelindian alkali dan keluar sebagai massa hitam dari Node-200 dengan laju aliran 261,48 kg/jam. Unit utama dalam proses ini adalah hammer mill, yang digunakan untuk mengurangi ukuran lembaran katoda. Unit lain dalam proses ini terdiri dari sabuk konveyor dan kompresor untuk mengangkut padatan dan gas masing-masing ke dalam dan keluar dari hammer mill dengan tambahan pemisah siklon untuk mengumpulkan massa hitam yang terbawa saat mengirimkan argon dari hammer mill keluar. Perkiraan biaya bagian pabrik ini adalah 25.132.887 AUD dengan penggunaan listrik tahunan sebesar 52.488 kW/tahun."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Alyamitha Nadiyah Syafitri Baud
"Milling and LFP synthesis section (node 400) is a mechanochemical process used to grind mainly feed from node 300 (from stream 303) and node 200 (from stream 203) into a fine powder. Subsequently, solid glucose is also added to the ball mill to carbon coated the surface of regenerated LFP crystals. The LFP crystals are made by mixing FePO4 and LiFePO4 solid mixture and LiOH and Li2CO3 solution mixture under argon atmosphere. Using electrical and thermal energy solids, the feed is being mixed for 4 h using ball milling to achieve a more uniform distribution of components within the materials. At 200o C decomposed glucose promotes the reduction conversion of Fe3+ to Fe2+. After heating, LiFePO4/C is synthesised under 200 ºC. Due to the involvement of organic matter glucose in the reaction, CO2 is inevitably generated in this process. In addition to carbon dioxide, the exhaust gas also contains water vapor and argon gas. They are all transferred to be treated in the next step instead of emitting. The output from this process is the crystals solids of the regenerated LFP that has been coated with carbon, this is where the final product of the whole process produced. The objective of the final process is to create a regenerated carbon coated LFP at a rate of 1001.59 tonnes/yr.

Bagian penggilingan dan sintesis LFP (node 400) adalah proses mekanokimia yang digunakan untuk menggiling terutama umpan dari node 300 (dari aliran 303) dan node 200 (dari aliran 203) menjadi bubuk halus. Selanjutnya, glukosa padat juga ditambahkan ke ball mill untuk melapisi permukaan kristal LFP yang diregenerasi dengan karbon. Kristal LFP dibuat dengan mencampurkan campuran padat FePO4 dan LiFePO4 serta campuran larutan LiOH dan Li2CO3 di bawah atmosfer argon. Menggunakan energi listrik dan termal, umpan dicampur selama 4 jam menggunakan ball milling untuk mencapai distribusi komponen yang lebih seragam di dalam bahan. Pada suhu 200°C, glukosa yang terdekomposisi mendorong konversi reduksi Fe3+ menjadi Fe2+. Setelah pemanasan, LiFePO4/C disintesis di bawah suhu 200°C. Karena keterlibatan bahan organik glukosa dalam reaksi, CO2 tidak dapat dihindari dihasilkan dalam proses ini. Selain karbon dioksida, gas buang juga mengandung uap air dan gas argon. Semuanya dipindahkan untuk diproses pada langkah berikutnya daripada dilepaskan. Hasil dari proses ini adalah kristal padat dari LFP yang diregenerasi yang telah dilapisi dengan karbon, di sinilah produk akhir dari seluruh proses dihasilkan. Tujuan dari proses akhir ini adalah untuk menghasilkan LFP yang dilapisi karbon dengan laju 1001.59 ton/tahun."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Jason Anfernee Kaloh
"Mengikuti studi literatur, ekstraksi mangan dan litium dari larutan asam dapat dicapai dengan menggunakan natrium karbonat, menghasilkan presipitat karbonat mangan dan litium. Setelah reaksi, padatan disaring menggunakan filter pelat dari larutan asam. Subsistem filter reaktor kedua kemudian dipasang sebagai sejumlah besar litium yang tidak bereaksi dan litium karbonat terlarut yang tersisa. Dengan cara ini, produk padat mangan dan litium karbonat diperoleh pada 99,5% berat. Aliran daur ulang awalnya direncanakan. Namun, setelah pertimbangan dan penyelidikan lebih dalam dalam neraca massa dan spesifikasi peralatan, hal itu dipertimbangkan. Dengan demikian, aliran daur ulang dapat dianggap dilewati. Area pabrik ini mahal, memiliki total biaya tetap berdasarkan lokasi US$164.864.820 di Jakarta, Indonesia. Artinya, rencana proses ini masih memerlukan optimasi dan pertimbangan ulang. Pabrik ini juga mengeluarkan emisi karbon sebesar 80.910,20 kg CO2 per tahun. Dengan optimasi peralatan lebih lanjut, hal ini dapat dikurangi. Analisis bahaya awal menunjukkan bahwa bahaya yang ditimbulkan dalam proses ini agak minimal dan terkait dengan aliran dan bahan peralatan. Tumpahan, korosi, dan erosi adalah bahaya utama yang dapat dicegah dan dikurangi dengan perawatan dan pemeriksaan rutin.

Following a literature study, the extraction of manganese and lithium from an acidic solution can be achieved using sodium carbonate, producing carbonate precipitates of manganese and lithium. Following reaction, solids are filtered out using a plate filter from the acidic solution. A second reactor-filter subsystem is then set in place as a sizeable amount of unreacted lithium and dissolved lithium carbonate remain. In this way, a solid product of manganese and lithium carbonates are obtained at 99.5% by weight. A recycle stream was initially planned. However, after deeper consideration and investigation in mass balances and equipment specifications, it was considered. Thus, the recycle stream can be considered by-passed. This plant area is costly, having a locationfactored total fixed cost US$164,864,820 in Jakarta, Indonesia. This means that this process plan still requires optimisation and reconsiderations. This plant also gives off a carbon emission of 80,910.20 kg CO2 annually. With further equipment optimisation, this can be reduced. Preliminary hazard analysis shows that the hazards posed in this process are rather minimal and are related with flowrates and equipment materials. Spillage, corrosion, and erosion are the major hazards which can be prevented and mitigated by routine maintenance and check-up."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
David Febraldo
"Kendaraan listrik memerlukan energi listrik untuk beroperasi yang disimpan didalam baterai. Kendaraan listrik menghasilkan panas pada baterai yang digunakan. Panas baterai yang berlebih dapat mengurangi masa pakai dan menyebabkan terjadinya ledakan. Penggunaan pipa kalor sebagai sistem pendingin memiliki potensi menjadi solusi masalah panas berlebih pada kendaraan listrik. Tujuan penelitian adalah menyusun konsep keberlanjutan penerapan pipa kalor pada baterai kendaraan listrik. Pengujian dilakukan dengan membangun prototipe, analisis ekonomi melalui cost comparison serta analisis persepsi sosial melalui kuisioner. Hasil menunjukkan penggunaan pipa kalor mampu menjaga temperatur baterai dibawah 40 °C. Penggunaan pipa kalor dalam jangka panjang dapat memberikan keuntungan dan teknologi ini diterima secara sosial oleh peneliti dan para ahli. Saran untuk penelitian adalah perlu dilakukan penelitian lebih lanjut mengenai penerapan pipa kalor pada baterai, perlu adanya pengembangan kebijakan terkait lokasi pembuangan, mekanisme pengelolaan dan penyuluhan kepada masyarakat.

The increase in the use of electric vehicles is increasing over time. Electric vehicles require electrical energy to operate which is stored in the battery. Electric vehicles generate heat in the batteries used. Excessive battery heat can reduce its life and cause an explosion. The use of heat pipes as a cooling system has the potential to be a solution to the problem of overheating in electric vehicles. The aim of the research is to develop the concept of sustainability applying heat pipes to electric vehicle batteries. Testing is done by building prototypes, economic analysis through cost comparison and analysis of social perceptions through questionnaires. The results show that the use of heat pipes is able to maintain the battery temperature below 40 °C. The use of heat pipes in the long term can provide benefits and this technology is socially accepted by researchers and experts. Suggestions for research are that further research is needed regarding the application of heat pipes to batteries, it is necessary to develop policies related to disposal locations, management mechanisms and outreach to the community."
Jakarta: Sekolah Ilmu Lingkungan Universitas Indonesia, 2023
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Wildan Nurasad
"Tahapan proses yang dilakukan untuk pengambilan kembali logam lithium adalah leaching, pembuatan membran emulsi, dan ekstraksi. Limbah baterai Li-Ion dikarakterisasi terlebih dahulu dengan XRD. Hasil XRD menunjukan bahwa terdapat kandungan logam lithium di limbah dalam bentuk LiCoO2. Kondisi optimum untuk proses leaching adalah menggunakan asam sitrat 1,5 M, rasio padatan/cairan: 20 gram/L, dan kecepatan pengadukan 400 rpm pada suhu 550C selama 50 menit dengan hasil 99,3% lithium berhasil ter-leaching. Lalu untuk kondisi optimum proses pembuatan membran emulsi adalah menggunakan 0,03 M Cyanex 921, 8% w/v SPAN 80, 0,05 M H2SO4, rasio volume fasa ekstraktan/fasa internal: 1/1, dan kecepatan pengadukan 1150 rpm selama 60 menit yang mampu menghasilkan membran emulsi dengan tingkat kestabilan diatas 90% setelah 4 jam. Selanjutnya pada proses ekstraksi dengan kondisi optimum pH 6 untuk fasa umpan, rasio volume fasa emulsi/fasa umpan: 1/2, dan kecepatan pengadukan 175 rpm selama 15 menit dengan hasil 63,4% lithium berhasil ter-ekstrak.

The process to acquire lithium metal are leaching, creation of emulsion membrane, and extraction. The spent Li-Ion battery was characterized first by XRD. Result of XRD showed that there is lithium in spent battery in the form of LiCoO2. The optimum condition for leaching process is using citric acid 1,5 M, solid/liquid ratio: 20 gram/L, and stirring speed 400 rpm in 550C for 50 minutes with result 99,3% lithium successfully leached. Then the optimum condition to make emulsion membrane is using 0,03 M Cyanex 921, 8% w/v SPAN 80, 0,05 M H2SO4, extractant phase/internal phase volume ratio: 1/1, and stirring speed 1150 rpm for 60 minutes able to produce emulsion membrane with stability level of above 90% after 4 hours. Next in extraction process with optimum condition pH 6 for external phase, emulsion phase/external phase volume ratio: 1/2, and stirring speed 175 rpm for 15 minutes with result 63,4% lithium successfully extracted."
Depok: Fakultas Teknik Universitas Indonesia, 2016
S63081
UI - Skripsi Membership  Universitas Indonesia Library
cover
"Limbah industri merupakan suatu dampak yang tidak dapa! dielakkan dari sedap kegiatan produksi. Melihat hai tersebut perlu kiranya diusahalcan meande-
metode yang efzkrgf unzulc mengurangi dan memanfaarkan limbah tersebur. Limbah baru baterai dengan kandungan logam berat seperri Mn dan Zn, sangatlah berbahqva bila dibiarkan begiru saja mencemari Iingkungan. Kandungan Iogam yang rernyara cmp tinggi persentasenya, bila dilfhat banyaknya jumlah barerai yang dikonsurnsf masyaralrat Indonesia. Hal ini haruslah dpandang sebagai suatu potensi yang hams dimanfaalkan. Oleh karenanya perlu dilakukan suatu penelitian untuk mencari rnerode alrernatif untulc merecovezy kandungan logam yang lerdapar dalam Iimbah baterai, car dapat dimanfaatlcan lsembafi.
Pada penelitian ini, campuran ele/ctroli! bateraf dilarurkan pada laruran HC!
0.5 M Endapan yang dfhasilkan kemudian dicuci pda beberapa variasi pencucfan, yairu: tanpa, sam kafi, duakali, dan tiga /cali pencucian. Setelah dzperoleh kondfsi pencucian maksfmum, endapan /aiu dilalrukan pengeringan pada beberapa variasi temperatur, yairu: remperatur ruang, 1000 C, 200“C dan 250°C. Sedangkan jiltrat hasil leaching dilakukan presnvitasi lzidroksida dengan menggunalcan tiga metode berbeda.
Pencucian endapan hasil leaching sebanjzak riga kali drperoleh tingkal recovery Iagam Mn dalarn bentuk M1102 !erbesar yairu sebesar 96,36 %. Dimana pengeringan endapan ridak berpengaruh pada lingkat recovery Mn. Sedongkan pada proses' pemisahan ion Iogam yaitu antara ion Mn dan Zn yang terlarur pada jiltrat hasi! leaching, dengan nzenggunakan metode IH dirnanafiltrar diendapkan berrahap yang kemudian dilakukan pencucian dengan HC! 0,4 M dilanjutkan dengan pencucian sebanyak tiga kali. Diperoleh tinglcat separasi unsur rerbesar dalam bemulc logam hidroksida yaitu sebesar 90,65 % Mn dan 60,92 % Zn."
Fakultas Teknik Universitas Indonesia, 2002
S41461
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Afif Denaldy
"Penelitian ini bertujuan untuk menghilangkan kandungan besi dalam larutan sehingga
pada akhirnya produk yang dihasilkan hanya mengandung nikel dan kobalt. Nikel dan
kobalt kemudian akan diolah dalam pembuatan suku cadang baterai lithium. Proses
penghilangan ini menggunakan pereaksi kalsium karbonat (CaCO3), dengan dua
parameter yaitu pH dan konsentrasi. Parameter untuk pH adalah pH 1, pH 2, dan pH 3,
sedangkan parameter lainnya adalah konsentrasi, yaitu konsentrasi 10% dan
konsentrasi 15%. Karakterisasi residu dilakukan dengan dua alat, yaitu SEM EDS dan
XRD. Keduanya merupakan hasil semi kuantitatif. Untuk filtrat digunakan alat ICP
yang datanya bersifat kualitatif. Data tersebut akan difokuskan pada tiga unsur utama
yaitu besi, nikel, dan kobalt. Unsur-unsur tersebut akan dibandingkan berdasarkan data
yang peneliti lakukan, dan dibandingkan dengan data di literatur. Kondisi optimal pada
percobaan ini adaalah pada konsentrasi 10%, suhu 90oC, 2 jam pengadukan dan
pemanasan, pada pH 3.

This study was aiming to remove the iron content in the solution so in the end of the
product will be only nickel and cobalt contained. The nickel and cobalt then will be
process in making the lithium battery parts. This removal process using calcium
carbonate (CaCO3) as the reagent, with two parameters which are pH and
concentration. The parameter for pH is pH 1, pH 2, and pH 3, and the other parameter
is concentration which are 10% concentration and 15% concentration. The
characterization of residue will be done with two tools, which are SEM EDS and XRD.
Both of them are the semi quantitative result. For the filtrate it will used the ICP tools
which the data is qualitative. The data will be focusing on three main elements, which
are iron, nickel, and cobalt. Those elements will be compared based on the data that
the researcher got and compared with the literature data. The optimal condition on
removing the iron content is on 10% reagent concentration, 90oC, 2 hours of stirring
and heating, and at pH 3.
"
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Mohamad Farhan
"Lithium Ferro Phosphate (LFP - LiFePO4) adalah salah satu jenis katoda dalam baterai lithium-ion. LFP memiliki struktur olivine yang membuat katoda ini bersifat stabil. Bahan pembentuk LFP tergolong murah dan LFP dapat digunakan untuk jangka panjang berkat cycle rate yang tinggi. Namun, dalam aplikasinya katoda ini memiliki konduktifitas dan kapasitas yang rendah. Dalam penelitian ini, sintesis LFP akan menggunakan metode ball-milling yang dibantu dengan ultrasonic treatment yang akan mengurangi ukuran partikel dan mempercepat penguraian precursor Fe2O3, mengakibatkan peningkatan kapasitas pada siklus tinggi. Penambahan bubuk nikel dengan jumlah 7.5%wt merupakan salah satu cara untuk meningkatkan konduktifitas dan kapasitas LFP yang rendah. Selain itu, penggunaan bubuk nikel juga merupakan opsi yang lebih murah dibandingkan dengan menggunakan bahan aditif lainnya. Penelitian ini akan membandingkan LFP/C, LFP/Ni, dan dua sampel yang sama dengan penambahan metode ultrasonic. Pengamatan SEM dan XRD membuktikan bahwa dengan ultrasonic treatment partikel menjadi lebih halus dan nikel berhasil masuk ke LFP sebagai reinforcing composite.

Lithium Ferro Phosphate (LFP - LiFePO4) is one type of cathode in a lithium-ion battery. LFP has an olivine structure which makes this a stable cathode. LFP precursors are relatively cheap and LFP can be used for the long term thanks to its high cycle rate due to the olivine structure. However, in its application this cathode has low conductivity and capacity. In this research, LFP synthesis will use a ball-milling method which is assisted by ultrasonic treatment which will reduce particle size and accelerate the dissolution of Fe2O3 precursors, resulting in increased capacity at higher cycles. The addition of 7.5%wt of nickel powder is one way to increase conductivity and low LFP capacity. In addition, the use of nickel powder is also a cheaper alternative compared to using other additives. This study will compare LFP/C, LFP/Ni, and the same two samples with the addition of the ultrasonic method. SEM and XRD observations has proven that ultrasonic treatment has made the particle size become smoother and nickel successfully enters the LFP as a reinforcing composite."
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Firdaus
"Pengembangan teknologi baterai di dunia saat ini menjadi salah satu alternatif sumber tenaga pada kendaraan otomotif. Perkembangan terkini teknologi baterai telah sampai pada penggunaan lithium karbonat (Li2CO3) sebagai bahan baku untuk menghasilkan baterai Lithium Ion. Oleh karena itu, kebutuhan material baku Li2CO3 akan meningkat sejalan dengan perkembangan riset baterai Lithium Ion ini. Di sisi lain, Indonesia disinyalir memiliki sumber daya alam mineral spodumene (LiAl(SiO3)2) dalam jumlah besar dan potensial untuk diproses menjadi Li2CO3. Proses ekstraksi spodumene menjadi Li2CO3 sebenarnya telah banyak dilakukan peneliti dan industri. Namun demikian, teknologi proses ekstraksi yang ada memiliki tahapan proses yang panjang dan melibatkan reagen dalam jumlah besar. Oleh karena itu, dibutuhkan proses yang lebih sederhana dan efisien. Dengan latar belakang tersebut, diusulkan teknologi ekstraksi hidrometalurgi baru dengan bahan caustic (NaOH) sebagai pelarut dalam proses pelindian untuk mendapatkan Li2CO3 pada penelitian ini. Campuran senyawa SiO2-Al2O3-LiOH yang dipanggang pada suhu 12000C digunakan sebagai mineral sintetis pengganti spodumene. Karakterisasi material dilakukan untuk menguji dan mengamati sifat fisika, kimia dan komposisi bahan mineral dan hasil ekstraksi yang didapatkan. Didapatkan perolehan maksimum lithium sebesar 9 % pada pelindian dengan NaOH selama 70 menit dan 8 % pada karbonasi dengan CO2 selama 10 dan 20 menit.

The development of battery technology in the world today to be one of the alternative sources of energy in automotive vehicles. Recent developments in battery technology have come to the use of lithium carbonate (Li2CO3) as a raw material to produce Lithium Ion battery. Therefore, the raw material needs of Li2CO3 will increase in line with the development of the Lithium Ion battery research. On the other hand, Indonesia has natural resources allegedly spodumene (LiAl2SiO6) in bulk and potential for processing into Li2CO3. The spodumene into Li2CO3 extraction process has actually done a lot of research and industry. However, the existing extraction technology has a long process steps and involve large amounts of reagents. Therefore, it takes the process much simpler and efficient. With this background, the proposed new hydrometallurgical extraction technology with caustic material (NaOH) as a solvent in the leaching process to get Li2CO3 was performed. SiO2-Al2O3-LiOH mixture are roasted at a temperature of 12000C, which is used, as a synthetic mineral, to substitute spodumene. Material characterization performed to test and observe the physical, chemical and mineral composition and. It is obtained 9% lithium of leaching with NaOH for 70 minutes and 8% in carbonation with CO2 for 10 and 20 minutes."
Depok: Fakultas Teknik Universitas Indonesia, 2013
S53368
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>