Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 216566 dokumen yang sesuai dengan query
cover
Taihitu, Paulus Jirre Hacika
"Aktivitas geotermal pada daerah X telah ditemukan melalui keberadaan manifestasi panas bumi yang sangat impresif di beberapa titik. Beberapa penelitian yang dilakukan di daerah ini bertujuan untuk menemukan lokasi dan karakteristik reservoir utama sistem geotermal yang ada di area prospek. Namun, beberapa hasil interpretasi yang ditemukan ambigu dikarenakan penggunaan metode survei yang tidak tepat. Dalam penelitian ini, model konseptual yang terintegrasi dari metode magnetotellurik, geokimia, dan geologi digunakan untuk mendelineasi zona reservoir, karakteristik fluida reservoir, dan temperatur reservoir. Berdasarkan hasil konstruksi model konseptual, reservoir sistem geotermal di daerah penelitian ini ditemukan menggunakan metode magnetotellurik berada tepat di bawah tubuh gunung A. Keberadaan manifestasi fumarol di puncak gunung A, tepatnya di kawah gunung A yang mengalami perluasan ke arah timur laut dan sebagian ke arah barat laut, memvalidasi hasil ini. Temperatur pada reservoir mencapai 310°C, dengan sumber panas yang berasal dari gunung A muda. Area prospek diperkirakan sekitar 24 km dengan top of reservoir pada elevasi 1000 meter. Berdasarkan hasil ini, pengeboran eksplorasi dengan tipe sumur standard hole direkomendasikan untuk memvalidasi hasil eksplorasi 3G (geofisika, geokimia, geologi), yang akan ditajak pada kedalaman 2000 meter.

Geothermal activity in area X has been identified through the presence of impressive manifestations of geothermal activity at several points. Several studies conducted in this area aimed to locate and characterize the main reservoir of the geothermal system present in the prospect area. However, some of the interpreted results were ambiguous due to the improper use of survey methods. In this study, a conceptual model integrated from magnetotelluric, geochemical, and geological methods was used to delineate the reservoir zone, fluid reservoir characteristics, and reservoir temperature. Based on the constructed conceptual model, the geothermal reservoir system in this study area was found to be located precisely beneath the base of Mount A using the magnetotelluric method. The presence of fumaroles at the summit of Mount A, specifically in the Kawah Mount A, which is expanding towards the east-northeast and west-northwest, validates these results. The reservoir temperature reaches 310°C, with the heat source originating from the young Mount A. The prospect area is estimated to be approximately 24 km with a top of reservoir at an elevation of 1000 meters. Based on these results, drilling exporation with a standard hole type is recommended to validate the 3G exploration results (geophysics, geochemistry, geology), which will be drilled to a depth of 2000 meters."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Eka Yunita
"Daerah penelitian “M” merupakan salah satu daerah yang memiliki potensi geotermal di Indonesia. Hal tersebut ditunjukkan dengan adanya struktur geologi dan kemunculan manifestasi di permukaan yang dapat membantu dalam mengidentifikasi keberadaan sistem geotermal di bawah permukaan. Penelitian ini menggunakan inversi 3-dimensi magnetotellurik untuk mengetahui distribusi resistivitas di bawah permukaan, penentuan area prospek, serta pembuatan model konseptual dengan integrasi data magnetotellurik dan data pendukung berupa data geologi, geokimia, dan gravitasi. Berdasarkan data pendukung geologi, daerah “M” terdiri dari susunan produk vulkanik berumur kuarter dan struktur geologi dengan arah barat laut-tenggara. Dari data pendukung geokimia, ditemukan endapan travertine di sekitar manifestasi mata air panas yang relatif bersifat netral, temperatur cukup tinggi, dan berasosiasi dengan struktur geologi. Fluida di mata air panas tersebut dominan bertipe bicarbonate water yang menandakan fluida berasal dari reservoir dan dominan telah terkontaminasi oleh meteoric water. Fluida tersebut juga dominan memiliki nilai klorida tinggi yang menandakan bahwa lingkungan manifestasi mata air panas berada di lingkungan vulkanik. Selain itu, perhitungan dengan geotermometer diperoleh dugaan temperatur reservoir berkisar antara 160°C-180°C. Berdasarkan hasil pemodelan inversi 3-dimensi magnetotellurik dan data pendukung berupa model forward2-dimensi gravitasi diketahui sebaran dari variasi resistivitas dan densitas bawah permukaan yang menggambarkan lapisan clay cap, top of reservoir, dan bentuk updome yang kemungkinan merupakan heat source. Lapisan dengan nilai resistivitas rendah diduga merupakan clay cap atau batuan penudung berupa sebaran batuan beku yang mengalami alterasi. Di bawah lapisan clay cap terdapat sebaran resistivitas medium yang diindikasikan sebagai reservoir berupa batu gamping bahbotala. Di bagian bawahnya terdapat lapisan dengan resistivitas tinggi yang kemungkinan adalah batuan metamorf yang menjadi batuan dasar/basement. Diantara basement ini terdapat bentuk updome dengan resistivitas sedikit lebih tinggi yang diduga merupakan batuan terobosan atau intrusi yang dapat menjadi sumber panas bagi sistem geotermal. Sumber panas ini diduga berasal dari Dolok Tinggi Raja dikarenakan terbentuknya dome di permukaan yang mungkin diakibatkan oleh adanya larutan magma yang tidak tererupsikan keluar permukaan sehingga membentuk batuan terobosan di bawah permukaan. Adanya sumber panas ini dapat menimbulkan aliran fluida panas secara vertikal (upflow). Berdasarkan integrasi data-data tersebut, area prospek geotermal di daerah “M” diperkirakan berada di sekitar Dolok Tinggi Raja melebar ke arah timur laut, timur, dan selatan.

The research area "M" is one of the areas with geothermal potential in Indonesia. This is indicated by the presence of geological structures and the appearance of manifestations on the surface which can assist in identifying the presence of subsurface geothermal systems. This study uses 3-dimensional magnetotelluric inversion to determine the distribution of resistivity below the surface, determine prospect areas, and construct a conceptual model by integrating magnetotelluric data and supporting data in the form of geological, geochemical and gravity data. Based on supporting geological data, the "M" area consists of volcanic products of quarter age and geological structures in a northwest-southeast direction. From supporting geochemical data, travertine deposits around hot spring manifestations were found which were relatively neutral, had relatively high temperatures, and were associated with geological structures. The fluid in the hot springs is dominant of the bicarbonate water type, which indicates that the fluid comes from a reservoir and has been predominantly contaminated by meteoric water. The fluid also dominantly has a high chloride value which indicates that the manifestation environment of the hot springs is in a volcanic environment. In addition, calculations with the geothermometer obtained an estimated reservoir temperature ranging from 160°C-180°C. Based on the results of 3-dimensional magnetotelluric inversion modeling and supporting data in the form of a 2-dimensional forward gravity model, it is known that the distribution of resistivity and subsurface density variations describes the clay cap layer, top of reservoir, and up-dome shape which may be a heat source. The layer with a low resistivity value is thought to be a clay cap or a cap rock in the form of a distribution of altered igneous rocks. Beneath the clay cap layer, there is a medium resistivity distribution which is indicated as a reservoir in the form of bahbotala limestone. At the bottom, there is a layer with high resistivity which is probably the metamorphic rock that became the basement. Among these basements, there is an up-dome with slightly higher resistivity which is thought to be a breakthrough or intrusive rock which can be a heat source for geothermal systems. This heat source is thought to have originated from Dolok Tinggi Raja due to the formation of a dome on the surface which may be caused by the presence of magma solution that has not erupted off the surface to form breakthrough rock below the surface. The existence of this heat source can cause a vertical flow of hot fluid (up-flow). Based on the integration of these data, the geothermal prospect area in the “M” area is estimated to be around Dolok Tinggi Raja, widening to the northeast, east, and south."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Liberte Iusti De Dili
"Area Prospek Geotermal C terletak dibagian Selatan Provinsi Jawa Barat yang berada di sisi barat vulkanik Gunung Patuha dan Kawah Putih. Area C sudah memiliki 3 (tiga) sumur eksplorasi yang direncanakan sebagai sumur produksi. Sumur W1 mencapai kedalaman 1550 mTD mendapatkan reservoar “steam dominated” dengan temperatur lebih dari 240°C dapat membangkitkan dengan kapasitas 4.2 MW sedangkan untuk sumur W2 dan W3 belum keluar uap dari kepala sumur. Untuk menambah kapasitas area geotermal C akan dilakukan pemboran sumur baru. Sebelum melakukan pemboran perlu memperhatikan parameter utama untuk meningkatkan keberhasilan dalam pemboran. Tiga parameter utama yang harus ada dalam keberhasilan pemboran yaitu didapatkan permeabilitas dan temperatur tinggi serta keberadaan benign fluid. Data geofisika memiliki peran yang penting mengingat keterbatasan data dan jumlah sumur belum mencakup seluruh area geothermal C. Pemodelan serta analisis data geofisika (Magentotellurik dan gravitasi) yang diintegrasikan dengan data geologi, geokimia dan sumur dilakukan untuk membuat model konseptual yang komprehensif untuk menggambarkan kondisi bawah permukaan seperti persebaran permeabilitas dan temperatur tinggi serta keberadaa benign fluid. Pemodelan 3D data Magnetotellurik dapat menggambarkan secara luas mengenai distribusi temperatur bawah permukaan, indikasi batuan penudung (clay cap) dan potensi sumber panas serta batas reservoir. Analisis data Gravitasi yang meliputi First Horizontal Derivative (FHD) dan Second Vertival Derivative (SVD) dapat memberikan gambaran distribusi struktur geologi bawah permukaan di area Geotermal C yang berasosiasi dengan zona permeabilitas. Hasil dari integrasi data-data tersebut diharapkan dapat menjadi dasar analisis data dalam meningkatkan kepercayaan dalam pentuan target pemboran sumur produksi.

Geothermal Prospect Area C is located in the southern part of West Java Province, on the western side of the volcanic Mount Patuha and Kawah Putih. Area C already has 3 (three) exploration wells which are planned as production wells.Well W1 reaches a depth of 1550 mTD and has a "steam dominated" reservoir with a temperature of more than 240°C which can generate a capacity of 4.2 MW, while for wells W2 and W3 no steam has yet emerged from the wellhead. To increase the capacity of geothermal area C, new wells will be drilled. Before drilling, you need to pay attention to the main parameters to increase drilling success. The three main parameters that must be present for successful drilling are high permeability and temperature and the presence of benign fluid. Geophysical data has an important role considering that data is limited and the number of wells does not cover the entire geothermal area of C. Modeling and analysis of geophysical data (Magentotelluric and gravity) which is integrated with geological, geochemical and well data is carried out to create a comprehensive conceptual model to describe subsurface conditions such as the distribution of permeability and high temperatures as well as the existence of fluid beings. 3D modeling of Magnetotelluric data can provide a broad description of subsurface temperature distribution, indications of cap rock (clay cap) and potential heat sources and reservoir boundaries. Gravity data analysis which includes First Horizontal Derivative (FHD) and Second Vertical Derivative (SVD) can provide an overview of the distribution of subsurface geological structures in the Geothermal C area which is associated with the permeability zone. It is hoped that the results of the integration of these data can become the basis for data analysis in increasing confidence in determining production well drilling targets."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Haryo Gusmedi Sudarmo
"Telah dilakukan penelitian guna mendelineasi sistem panas bumi lapangan geothermal ldquo;H rdquo;. Penelitian ini menggunakan metode remote sensing untuk memetakan struktur dan alterasi di permukaan. Analisis geokimia digunakan untuk mengetahui karakteristik sistem panas bumi dan analisis geofisika digunakan untuk memetakan kondisi sistem panas bumi di bawah permukaan. Berdasarkan analisis remote sensing dengan teknik band combination secara pengamatan manual menunjukkan bahwa arah utama dari kelurusan - kelurusan yang berkembang di daerah penelitian ldquo;H rdquo; adalah Barat Laut - Tenggara dan Barat Daya - Timur Laut sesuai dengan Peta Geologi Regional yang berkorelasi dengan kemunculan beberapa manifestasi. Analisis remote sensing juga menemukan 1 lokasi yang diduga merupakan alterasi di permukaan. Analisis data geokimia dilakukan terhadap 12 manifestasi menunjukkan bahwa mata air panas SL-1, SL-2, SLM-1, SLM-2, HTS-1, HTS-2, HTS-3, TBK, TLH-1, TLH -2, TLH-3 dan TLH- 4 merupakan manifestasi tipe outflow.
Berdasarkan diagram segitiga ternary Na - K - Mg, diagram Na-K/Mg-Ca, diagram Enthalpy - Chloride Mixing Model, geothermometer Na/K menunjukkan temperatur reservoar adalah sekitar 210 C - 240 C dan dapat dikategorikan ke dalam sistem geothermal moderate to high temperature. Analisis Inversi 3-D Data MT menggunakan 66 data titik ukur. Berdasarkan inversi 3-D Data MT diketahui bahwa lapisan clay cap dengan nilai resistivitas rendah le; 10 ?m tersebar di Selatan dengan ketebalan 500 meter hingga 1000 meter. Lapisan reservoar terletak di bawah clay cap dengan nilai resistivitas >10 - 65 ?m. Base of Conductor BOC diperkirakan berada pada kedalaman 700 meter dengan updome berada di antara Sesar Wairutung dan Sesar Banda. Berdasarkan peta BOC diperoleh luas area prospek geothermal sekitar 16.5 km2.

The study of ldquo H rdquo geothermal field has been conducted to delineate their geothermal system. This study uses remote sensing method for mapping structure and alteration on the surface. Geochemical analysis is used to determine the characteristics of geothermal system and geophysical analysis is used to interpret the condition of geothermal system of sub surface. Based on remote sensing analysis using band combination technique with manual observation indicates that the main direction of the developed lineaments in the research area H is Northwest Southeast and Southwest Northeast in accordance with Regional Geological Map correlated with the appearance of several manifestations. The remote sensing analysis also found 1 suspected alteration site on the surface. Analysis of geochemical data was performed on 12 manifestations shows that hot springs SL 1, SL 2, SLM 1, SLM 2, HTS 1, HTS 2, HTS 3, TBK, TLH 1, TLH 2, TLH 3 and TLH 4 are outflow manifestations type.
Based on the diagram of the ternary triangle Na K Mg, Na K Mg Ca diagram, Enthalpy Chloride Mixing Model diagram, Na K geothermometer estimates the reservoir temperature is about 210 C 240 C and can be categorized into the moderate to high temperature geothermal system. Analysis of inversion 3 D MT data using 66 data points measurement. Based on 3 D inversion MT data is known that clay cap layer with low resistivity value le 10 m spread in South with thickness 500 meter to 1000 meter. The reservoir layer is located under clay cap with resistivity value 10 m 65 m. Base of Conductor BOC is estimated to be at depth of 700 meters with an updome located around Wairutung Fault Banda Fault. Based on BOC, the prospectable area of geothermal system is about 16.5 km2.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2017
T48035
UI - Tesis Membership  Universitas Indonesia Library
cover
Anzalna Naufal Amaya
"Pada kondisi pemanfaatan geotermal yang sedang direncanakan untuk meningkat, tahap eksplorasi menjadi tahap yang sangat penting dan dilakukan di banyak lokasi. Daerah prospek geotermal “X” belum banyak pihak yang melangsungkan tahap eksplorasi. Dalam penelitian ini, struktur daerah penelitian yang kemungkinan menjadi jalur bagi fluida geotermal didelineasi menggunakan data gravitasi darat dan juga data gravitasi satelit. Penggunaan dua jenis data ini bertujuan untuk mengetahui perbedaan yang dimiliki oleh kedua jenis data dan untuk mengetahui data gravitasi mana yang memilki akurasi paling tinggi. Dilakukan pemisahan anomali pada data gravitasi darat dan satelit menggunakan metode Polynomial TSA orde 1 dan orde 2 serta Spectrum Analysis Bandpass Filter. Kemudian data gravitasi juga diterapkan filter First Horizontal Derivative (FHD) dan Second Vertical Derivative (SVD) untuk delineasi struktur. Inversi 3 dimensi juga diterapkan pada data gravitasi darat dan gravitasi satelit karena inversi 3 dimensi lebih objektif dalam menampilkan kondisi vertikal dan lateral suatu daerah. Dari penerapan berbagai metode tersebut didapatkan kondisi daerah penelitian berupa struktur graben dengan litologi aluvium yang dikelilingi oleh batuan berdensitas tinggi seperti granit, diorite, dan metasedimen. Data gravitasi darat diintegrasi dengan data MT, data geologi, dan geokimia karena data gravitasi darat memiliki akurasi yang lebih tinggi dibandingkan dengan data gravitas satelit, yang dibuktikan dengan kesesuaian sesar geologi dengan pola anomali gravitasi yang ada. Dari hasil integrasi, didapatkan zona resistif terduga heat source pada bagian barat daya daerah penelitian diindikasikan sebagai batuan diorit karena berdasarkan inversi 3 dimensi zona tersebut memiliki anomali gravitasi tinggi. Selain itu, zona konduktif yang berada di tengah daerah penelitian merupakan lapisan aluvium karena memiliki anomali gravitasi rendah. Dari analisis FHD dan SVD didapatkan sesar yang membatasi lapisan beranomali gravitasi tinggi dengan anomali gravitasi rendah yang mengindikasikan keberadaan graben, serta sesar tersebut menjadi jalur fluida geothermal karena terdapat manifestasi air panas di ujung sesar.

Under the conditions of geothermal utilization that is being planned to increase, the exploration stage becomes a very important stage and is carried out in many locations. The geothermal prospect area "X" haven’t carried out by many parties for the exploration stage. In this study, the structure of the study area that is likely to be a pathway for geothermal fluids was delineated using ground gravity data and also satellite gravity data. The use of these two types of data aims to find out the differences between the two types of data and to find out which gravity data has the highest accuracy. Anomaly separation for ground and satellite gravity data were performed using the Polynomial TSA method of order 1 and order 2 and spectrum analysis bandpass filter. Then the First Horizontal Derivative (FHD) and Second Vertical Derivative (SVD) filters is applied to the gravity data for structural delineation. 3-dimensional inversions are also applied to ground gravity and satellite gravity data because 3-dimensional inversions are more objective in displaying the vertical and lateral conditions of an area. From the application of these various methods, the condition of the research area was obtained in the form of graben structures with alluvium lithology surrounded by high-density rocks such as granite, diorite, and metasedic. Ground gravity data is integrated with MT data, geological data, and geochemistry because ground gravity data have higher accuracy compared to satellite gravitas data, which is evidenced by the suitability of geological faults with existing gravitational anomalous patterns. From the integration results, a suspected heat source resistive zone in the southwestern part of the study area was indicated as a diorite rock because based on the 3-dimensional inversion the zone had a high gravitational anomaly. In addition, the conductive zone in the middle of the study area is an alluvium layer because it has a low gravity anomaly. From the analysis of FHD and SVD, it was found that faults limit the high-gravity patterned layer with low gravity anomalies indicating the presence of grabens, and the fault became a geothermal fluid path because there was a manifestation of hot water at the end of the fault."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Sofwatul Fida
"Danau Toba merupakan kaldera yang terbentuk dari tiga kali letusan gunung berapi super, hal ini menjadikannya sebagai kaldera tebesar di Asia Tenggara dengan panjang 100 meter, lebar 30 meter, dan tinggi mencapai 505 meter. Danau Toba memiliki potensi geotermal, hal tersebut ditandai dengan munculnya manifestasi di permukaan berupa mata air panas, fumarol dan steaming ground di daerah Simbolon dan Pusuk Buhit. Hal tersebut mengindikasikan bahwa terdapat magmatic body sebagai sumber panas dari sistem geotermal di sekitar Danau Toba. Oleh karena itu penelitian ini bertujuan untuk mengetahui gambaran bawah permukaan Danau Toba sehingga dapat menginterpretasi keberadaan magmatic body dan sistem geotermal. Metode yang digunakan adalah metode gravitasi dan magnetotellurik. Hasil penelitian menunjukkan adanya fitur berupa magma chamber dikedalaman 10-40 km dengan diameter sebesar 30x40 km memiliki nilai densitas sebesar 2.5 gr/cc dan resistivitas >100 ohm.m. Ditemukan juga terdapat lapisan toba tuff hasil erupsi kaldera Toba pada kedalaman 0-1 km dengan nilai densitas 2.21 gr/cc. Serta lapisan basement dengan anomali resistivitas rendah (6-10 ohm.m) dan densitas sebesar 2.61 gr/cc. Selain itu, ditemukan adanya clay cap yang berada di bawah titik MT004 pada kedalaman 1.5 km dengan nilai resistivitas rendah (10-20 Ohm.m). Hasil integrasi menunjukkan bahwa magmatic body di bawah Danau Toba berperan sebagai sumber utama dari sistem geotermal yang berada di sekitar Danau Toba. Terdapat aliran uap panas yang mengalir dari magmatic body menuju kedalaman dangkal hingga pada kedalaman sekitar 3 km di bawah titik MT-004 yang merupakan proyeksi dari daerah Pusuk Buhit dan Simbolon. Aliran uap panas ini mengalami penurunan suhu sehingga mendingin dan memadat membentuk plutonik body. Plutonik body inilah yang diduga berperan sebagai heat source dari sistem geotermal di daerah Pusuk Buhit dan Simbolon. Hal tersebut diperkuat dengan data penunjang geokimia berupa plot diagram trilinear SO4-HCO3-Cl yang menampilkan bahwa fluida air panas di Pusuk Buhit dan Simbolon sama-sama terletak pada sudut sulfat yaitu steam heated waters dimana tipe fluida yang terbentuk akibat pemanasan air tanah oleh uap geotermal bukan volcanic waters (pemanasan air tanah oleh magma).

Lake Toba is a caldera formed from three times a super volcanic eruption, this makes it as the largest caldera in Southeast Asia with a length of 100 meters, 30 meters wide, and height reaches 505 meters. Lake Toba has geothermal potential, it is characterized by the presence of manifestations on the surface such as hot springs, fumarol and steaming ground in the Simbolon and Pusuk Buhit area. This indicates that there is a magmatic body as a heat source of a geothermal system around Lake Toba. Therefore this study aims to find out the surface of Lake Toba so that it can interpret the existence of magmatic body and geothermal systems. The method used is the gravity and magnetotellurics method. The results showed a feature in the form of magma chamber in the time of 10-40 km with a diameter of 30x40 km has a density value of 2.5 gr/cc and resistivity >100 ohm.m. There was also a Toba tuff layer the result of the Toba caldera eruption at a depth of 0-1 km with a density value of 2.21 gr/cc. And the basement layer with low resistivity anomalies (6-10 ohm.m) and a density of 2.61 gr/cc. In addition, there was a clay cap which was below the MT004 point at a depth of 1.5 km with a low resistivity value (10-20 ohm.m). Integration results show that the magmatic body under Lake Toba acts as the main source of the geothermal system around Lake Toba. There is a hot vapor flow that flows from Magmatic Body towards a shallow depth to a depth of about 3 km below the MT-004 point which is a projection of the Pusuk Buhit and Simbolon area. This hot vapor stream had temperature decrease, then it cools and covers forming a body plutonic. This Putonik body is suspected of playing a role as a heat source of the geothermal system in the Pusuk Buhit and Simbolon areas. This is reinforced by geochemical supporting data in the form of a SO4-HCO3-CL trilinear diagram plot that displays that hot water fluids in the hull of Buhit and Simbolon are equally lies in the sulfate angle, namely steam heated waters where the type of fluid is formed due to soil water heating by geothermal steam not a volcanic waters (groundwater heating by magma)."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fitriyani Mustika Ruslita
"Energi panas bumi adalah energi terbarukan yang sedang dikembangkan di dunia ini. Namun sebelum energi panas bumi dapat dimanfaatkan, perlu dilakukan eksplorasi untuk mengetahui kondisi bawah permukaan. Ada tiga hal yang harus dipenuhi dalam menentukan target eksplorasi sistem panas bumi, yaitu adanya suhu bawah permukaan yang tinggi, fluida dengan derajat keasaman netral, dan adanya zona dengan permeabilitas tinggi. Zona dengan permeabilitas tinggi berkaitan dengan adanya struktur geologi bawah permukaan atau patahan. Metode Magnetotellurik (MT) dan Metode Microearthquake dapat digunakan untuk mendelineasi keberadaan struktur bawah permukaan. Data MT riil diolah dengan metode inversi 3-D sampai akhirnya didapatkan karakteristik dari diagram polar, induction arrow, dan penampang resistivitas. Diagram polar dapat mengidentifikasi adanya patahan, sedangkan induction arrow dapat mengidentifikasi zona konduktif yang biasanya mengindikasikan struktur bawah permukaan. Hasil ini didukung oleh data MEQ riil yang telah diolah dengan menggunakan metode single station sampai didapatkan lokasi hiposenter yang menandakan zona dengan permeabilitas tinggi. Data geologi dan geokimia yang dikombinasikan dengan hasil dari pengolahan data riil MT dan MEQ tersebut menghasilkan delineasi daerah dengan suhu yang tinggi, memiliki fluida dengan derajat keasaman netral, serta zona dengan permeabilitas tinggi dan memiliki struktur bawah permukaan yang nantinya akan dijadikan target pengeboran.

Geothermal energy is a renewable energy which is now being developed all over ther world. However, before it can be optimized, exploration needed to be done in order to understand about the subsurface condition. There are three things that needed to be fulfilled in order to define the exploration target of geothermal system : high subsurface temperature, neutral fluids, and a zone with high permeability. High permeability zones are often associated with subsurface geological structure or fault. Magnetotelluric (MT) dan Microearthquake (MEQ) methods can be utilized to delineate subsurface structures. Polar diagram, induction arrow, and resistivity section are obtained from 3-D inversion of a real MT data. Polar diagram can identify the existence of a fault, meanwhile induction arrow can only identify conductive zones. These results will be supported with high permeability zone and hipocenters of real MEQ data which has been processed by single station method. Geology and geochemistry data can be combined with MT and MEQ results, thus the high subsurface zone, neutral subsurface fluids, high permeability zone and subsurface structure can be delineated, also well target location can be obtained."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2017
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Adilla Armando
"Daerah penelitian AA merupakan area potensi panasbumi yang cukup prospek dan memiliki manifestasi berupa Fumarol yang memiliki temperatur 90 oC dan beberapa mata air panas yang memiliki temperatur permukaan antara 30-60 oC. Ditinjau dari informasi geologi, area ini memiliki basement batuan tersier yang ditutupi oleh produk lava andesit dan tufaan jaman kuarter. Bentukan geologi yang muncul pada area ini berupa kaldera dan beberapa struktur utama berarah NE-SW sebagai pengontrol aliran fluida menuju manifestasi. Sedangkan, struktur lokal yang membatasi area prospek dapat diidentifikasi oleh beberapa atribut dari metode Geofisika Magnetotellurik dan Gravitasi. Atribut metode Magnetotellurik dapat menghasilkan informasi terkait orientasi dominan struktur serta keberadaan zona konduktif, sedangkan atribut metode Gravitasi digunakan untuk mengetahui jenis struktur dan batas kontak dari zona regional dan residual struktur sebagai benda anomali. Dari hasil atribut dan pemodelan kedua metode tersebut beserta data pendukung geokimia, bahwa zona prospek terletak diantara kemunculan manifestasi fumarol di gunung Ambang dengan luasan prospek sebesar 11 km2 dan prediksi temperatur reservoir 260 0C. Area prospek tersebut menjadi rekomendasi sebagai lokasi exploration drilling selanjutnya dengan well output yang tinggi.

AA research area is a potential and prospect geothermal region. There are some manifestation, fumarol 90 0C and some cool hot springs that has an ambient temperature 30 60 0C. Based on geological information, there is dominantly tertiary sediment basement which are covered by andesite lava products and quartery tufaan. There are caldera and some major structure oriented NNE SSW as geological surface product and controlling some surface manifestations. Whereas, local structure which is located between major structure can be identified by several attributes of Magnetotellurik and Gravity methods. Magnetotelluric attributes can provide about structure orientation and conductive zone relocation while Gravity attributes can also answering about surface Geology structure distribution based on regional residual anomaly. Accordingly, based on integrative analysis and interpretation, prospect area is constrained between the appearance of fumarol and major structure in Ambang mount, which is covered 11km2 and prediction reservoir temperature 260 0C. It rsquo s very useful as a recomendation for the next exploration drilling location with high output well."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2017
T47949
UI - Tesis Membership  Universitas Indonesia Library
cover
Friska Agustina
"Sistem geotermal merupakan sistem yang dinamis, terutama ketika mulai dilakukan produksi, keadaan sistem geotermal akan mengalami ketidakseimbangan. Dengan dilakukannya produksi, tekanan pada reservoir akan menurun dan mengakibatkan boiling, sehingga fase cair berubah menjadi fase uap. Dengan permeabilitas vertikal yang baik, fase uap akan bergerak ke bagian atas reservoir dan terpisah dengan fase cair, lalu terbentuklah steam cap di zona atas dan reservoir dengan fase cair pada bagian bawah. Walaupun uap yang paling mudah digunakan dalam pemanfaatan eksplorasi geotermal, namun proses pembentukan uap lebih lambat jika dibandingkan dengan pengambilan uap dari reservoir, sehingga membuat proses eksplorasi menjadi tidak sustainable. Oleh karena itu, perlu dilakukan pengelolaan reservoir yang baik dengan melakukan monitoring dan proses produksi-reinjeksi yang baik. Pada penelitian ini, digunakan metode 3-D forward modeling dengan melakukan simulasi perubahan karakteristik reservoir dengan mengasumsikan penambahan volume steam cap. Lalu dalam proses analisisnya dilakukan inversi 1-D dan 2-D juga membuat kurva resistivitas untuk setiap model sintetik yang telah dibuat. Dari hasil kurva resistivitas, telihat jika adanya kenaikan kurva atau kenaikan nilai resistivitas yang bertahap pada bagian kedalaman antara clay cap dan reservoir. Begitupun dari hasil inversi, terlihat anomali dengan resistivitas tinggi pada bagian antara clay cap dan reservoir. Perubahan nilai resistivitas itu sendiri menunjukkan bagaimana pengaruh keberadaan steam cap pada respon resistivitas.

The geothermal system is a dynamic system, especially when production starts, the state of the geothermal system will experience an imbalance. With production, the pressure in the reservoir will decrease and result in boiling, so that the liquid phase changes to the vapor phase. With good vertical permeability, the vapor phase will move to the top of the reservoir and separate from the liquid phase, then a steam cap is formed in the upper zone and a reservoir with a liquid phase at the bottom. Although steam is the easiest to use in the utilization of geothermal exploration, the process of forming steam is slower than the extraction of steam from a reservoir, thus making the exploration process unsustainable. Therefore, it is necessary to carry out a good reservoir management by monitoring and a good production-reinjection process. In this study, the 3-D forward modeling method was used by simulating reservoir changes by assuming an additional steam cap volume.Then, in the analysis process, 1-D and 2-D inversions are also carried out to create a resistivity curve for each forward model that has been made. From the results of the resistivity curve, it can be seen if there is a gradual increase in the resistivity value at the depth between the clay cap and the reservoir. Likewise, from the inversion results, anomaly with high resistivity was seen in the part between the clay cap and the reservoir. The change in the resistivity value itself shows how the presence of a steam cap affects the resistivity response.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Qonita Amriyah
"Lokasi prospek geotermal Tawau berada sekitar 20 km arah timur laut kota Tawau, Sabah, Malaysia. Daerah ini didominasi oleh batuan vulkanik Pliocene- Quaternary berupa batuan basalt, dacite, tuff dan andesit yang menyebar di sekitar area Gunung Maria dan Gunung Andrassy. Mata air panas pada lokasi ini ditemukan di area Apas Kiri (A1-A4, A5, A8), area Balung (B1, B2), area Tawau (T1, T2) dan area Sungai Jepun (J1, J2). Berdasarkan data geokimia, pusat reservoar geotermal diperkirakan berada di sebelah tenggara Gunung Maria yang meluas ke area Balung.
Untuk memverifikasi hal tersebut, dilakukanlah survey Magnetotellurik (MT). Data MT yang diperoleh dari lapangan kemudian diinversi secara multidimensi (2D dan 3D). Inversi 2D dan 3D secara berturut-turut dilakukan dengan menggunakan software WinGlink dan MT3DInv-X. Selanjutnya, hasil inversi MT tersebut diintegrasikan dengan data geologi dan geokimia yang ada sehingga diperoleh sebuah konseptual model sistem geotermal daerah Tawau yang terintegrasi. Pemodelan visualisasi dilakukan dengan menggunakan software Geoslicer-X.
Adapun hasil penelitian memperlihatkan bahwa secara umum hasil inversi 2D telah dapat menggambarkan kondisi bawah permukaan. Akan tetapi, hasil inversi 3D ternyata lebih baik dibandingkan dengan hasil inversi 2D dalam hal kesesuaian dengan struktur. Oleh karenanya, integrasi antar keduanya diperlukan untuk menggambarkan kondisi bawah permukaan yang lebih akurat.

Tawau geothermal prospect is located about 20 km northeast of Tawau City, Sabah, Malaysia. This area is dominated by Pliocene-Quaternary volcanic rocks such as basalt, dacite, tuff and andesitic rock which are spread around the Mt. Maria and Mt. Andrassy. Hot spring in this area appears in Apas Kiri area (A1-4, A5, A8), Balung area (B1, B2), Tawau area (T1, T2) and Jepun River area (J1, J2). Based on geochemistry data, center of geothermal reservoar is assessed beneath the southeastern part of Mt. Maria and may extends to the Balung Area.
Survey Magnetonetotelluric (MT) was carried out to verify that point. The MT data was processed using multidimensional inversion (2D and 3D). The 2D Inversion was done by using WinGlink software, while the 3D Inversion has been carried out using MT3DInv-X software. The result of MT inversion was then integrated with geological and geochemical data to get an integrated conceptual model of geothermal system Tawau. Visualization modelling was performed by using Geoslicer-X software.
The result of this study show, that in general, 2D inversion's result indicates the subsurface condition with good result. But, 3D inversion is actually more better than 2D inversion in describing geological structure. Accordingly, integration of both results is necessary to describe the subsurface condition more acurately.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2012
S1980
UI - Skripsi Open  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>