Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 148180 dokumen yang sesuai dengan query
cover
Rista
"

Kegiatan monitoring adalah salah satu hal penting dalam proses perawatan pohon kelapa sawit. Penyakit Ganoderma merupakan salah satu penyakit pada pohon kelapa sawit yang proses penyebarannya cepat. Saat ini kegiatan monitoring kesehatan kelapa sawit masih dilakukan secara manual (konvensional) yaitu dengan melihat secara langsung satu persatu pohon kelapa sawit. Proses ini membutuhkan waktu yang lama serta tenaga yang tidak sedikit. Teknik deteksi menggunakan potongan sampel daun dapat memungkinkan terjadi perubahan biologis pada daun dan proses pengambilan data sampel yang rumit. Pendeteksian menggunakan sampel citra dari drone lebih mudah dilakukan, namun belum dapat menghasilkan informasi terkait vegetasi tanaman. Berdasarkan permasalahan tersebut, pada penelitian ini dilakukan deteksi dan klasifikasi kesehatan pohon kelapa sawit menggunakan sampel citra pohon tampak atas. Pengambil data citra menggunakan drone DJI Air 2S yang dilengkapi dengan kamera multispektral enam kanal (red, green, blue, orange, cyan, dan near infrared) untuk mendapatkan informasi yang lebih lengkap terkait vegetasi tanaman, sehingga prosesnya jauh lebih mudah dan cepat. Data citra yang diperoleh dilakukan pemodelan YOLO dan middle level fusion CNN untuk mendapatkan hasil lokasi pohon dan status kesehatannya. Pengambilan data citra dilakukan di PT Perkebunan Nusantara III (PERSERO) kelapa sawit Cikasungka, Wilayah Distrik Jawa Barat Banten pada pohon kelapa sawit sehat dan pohon kelapa sawit terinfeksi penyakit Ganoderma. Dalam penelitian ini, pemodelan YOLO menggunakan citra RGB mampu mendeteksi banyaknya objek pohon terdeteksi dengan baik (convidence score > 0,75) sebanyak 1426 pohon (703 pohon sehat dan 723 pohon tidak sehat) dengan mAP (mean Average Precision) sebesar 0,911. Pada pemodelan CNN menggunakan metode middle fusion dengan citra multispektral mampu mengklasifikasi kesehatan pohon kelapa sawit lebih baik dibandingkan hanya menggunakan citra RGB maupun citra OCN dengan performa akurasi sebesar 89,72 %.


Monitoring activities is one of the essential things the oil palm maintenance process. Ganoderma disease is one of the fastest spreading diseases of oil palm trees. Currently, monitoring the health of oil palms is still done manually (conventional) by looking directly at each oil palm tree. This process certainly requires a long time and a lot of energy. Detection techniques using leaf sample pieces can allow for biological changes in the leaf and the collection process are too tricky. Detection techniques using image sample captured by drone can be easier, but it does not provide complete information related to plant vegetation. Based on these problems, in this research the detection and classification of oil palm tree health using top view tree image samples. Image data collection using DJI Air 2S drone equipped with a six-band multispectral camera (red, green, blue, orange, cyan, and near infrared) to obtain more complete information related to plant vegetation, so that the process will be much easier and faster. The image data obtained is then performed YOLO modeling and middle level fusion CNN using multispectral images (RGB and OCN) to get the results of tree location and health status. The data was collected at PT Perkebunan Nusantara III (PERSERO) Cikasungka Oil Palm Plantation, West Java District Area Banten on healthy oil palm trees and oil palm trees infected with Ganoderma disease. In this research, YOLO modeling using RGB images was able to detect the number of tree objects detected well (convidence score > 0,75) as many as 1426 trees (703 healthy trees and 723 unhealthy trees) with mAP (mean Average Precision) of 0,911. CNN modeling using the middle fusion method is able to classify the health status of oil palm trees better than only using RGB images and OCN images with an accuracy performance of 89,72%.

"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Panggabean, Prima Ria Rumata
"Busuk pangkal batang merupakan penyakit utama tanaman kelapa sawit yang disebabkan oleh patogen yaitu jamur Ganoderma sp. terkhusus di Indonesia. Tindakan pengendalian dan metode pengamatan kondisi kelapa sawit yang dilakukan oleh petani secara manual masih belum efektif. Pemanfaatan teknologi drone DJI Air 2S yang dilengkapi kamera RGB (Red, Green, Blue) dapat memberikan solusi untuk pemantauan kondisi kelapa sawit yang lebih efektif menggunakan citra dari hasil perekaman. Kamera RGB masih memiliki kelemahan dalam mendeteksi penyakit kelapa sawit sehingga membutuhkan kamera tambahan dengan variasi panjang gelombang yang berbeda yaitu kamera OCN (Orange, Cyan, NIR). Citra dari hasil perekaman kamera RGB dan OCN memiliki informasi yang dapat digunakan untuk mengidentifikasi penyakit busuk pangkal batang menggunakan citra daun kelapa sawit sehingga membutuhkan metode pengolahan citra yang tepat untuk menggabungkan kedua citra. Metode image fusion dapat menggabungkan informasi dari citra RGB dan OCN sehingga menghasilkan citra baru yang memiliki enam kanal (Red, Green, Blue, Orange, Cyan, NIR). Penelitian ini berfokus untuk membangun metode image fusion (RGB dan OCN) berbasis arsitektur ResNet50 untuk mengidentifikasi penyakit kelapa sawit. Hasilnya didapatkan bahwa metode image fusion berbasis arsitektur ResNet50 dapat digunakan untuk mengidentifikasi penyakit kelapa sawit dengan sangat baik dibuktikan dengan nilai akurasi 99,70%, presisi 98,11%, dan recall 97,19%.

Stem base rot is a major disease of oil palm caused by the pathogen Ganoderma sp. especially in Indonesia. Control measures and methods of observing the condition of oil palms carried out by farmers manually are still not effective. The use of DJI Air 2S drone technology equipped with an RGB (Red, Green, Blue) camera can provide a solution for more effective monitoring of oil palm conditions using images from recording results. RGB cameras still have weaknesses in detecting oil palm diseases so they need additional cameras with different wavelength variations, namely OCN (Orange, Cyan, NIR) cameras. Images from RGB and OCN camera recordings have information that can be used to identify stem base rot using oil palm leaf images, so an appropriate image processing method is needed to combine the two images. The image fusion method can combine information from RGB and OCN images to produce a new image that has six channels (Red, Green, Blue, Orange, Cyan, NIR). This research focuses on building an image fusion method (RGB and OCN) based on ResNet50 architecture to identify oil palm diseases. It was found that the image fusion method based on ResNet50 architecture can be used to identify oil palm diseases very well as evidenced by the accuracy value of 99.70%, precision of 98.11%, and recall of 97.19%."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Dipo Rizki Saleh
"Melihat inovasi penginderaan jauh dalam estimasi stok karbon kelapa sawit untuk inventarisasi stok karbon, diperlukan pembangunan model demi mengetahui distribusi stok karbon kelapa sawit melalui penginderaan jauh. Variabel yang digunakan yaitu nilai piksel dari indeks vegetasi NDVI, GNDVI, EVI, ARVI, SAVI pada citra satelit Sentinel 2-B dan Landsat 8. Data stok karbon lapangan diperoleh dengan persamaan allometrik biomassa dari tinggi dan keliling batang. Model terpilih yaitu ARVI pada Sentinel 2-B dan Landsat 8 dengan memiliki nilai korelasi dan determenansi tertinggi. Model terpilih yang dijadikan distribusi spasial estimasi stok karbon mempunyai rentang estimasi stok karbon berupa <110 kg/piksel, 110 – 150 kg/piksel, 150 – 190 kg/piksel, dan 190 – 240 kg/piksel pada Sentinel 2-B dan <900 kg/piksel, 900 – 1100 kg/piksel, 1100 – 1300 kg/piksel dan 1300 – 1500 kg/piksel pada Landsat 8 yang terdistribusi spasial di kelompok umur 17, 18, 19, dan 20 tahun dari berbagai bagian timur dan tenggara, kerapatan vegetasi, dan aspek kondisi lingkungan Kecamatan Kemang dan Ranca Bungur. Berdasarkan perbandingan, nilai piksel indeks vegetasi berbanding lurus dengan kelompok umur dimana semakin tua maka semakin tinggi, sama dengan kerapatan vegetasi di area, semakin banyak jumlah vegetasi maka semakin tinggi juga nilai piksel dari indeks vegetasi. Landsat 8 terpilih karena memiliki nilai korelasi lebih besar terhadap kerapatan vegetasi, hasil akhir yaitu estimasi stok karbon kelapa sawit umur 17 tahun dengan luas 267,56 Ha ialah 3.421,74 ton, 18 tahun 369,12 Ha ialah 5150,52 ton, 19 tahun 316,41 Ha ialah 4.271,86 ton, dan 20 tahun 55,54 Ha ialah 761,67 ton. Jumlah total estimasi stok karbon pada wilayah penelitian adalah 13.605,79 ton.

Seeing the innovation of remote sensing in the estimation of oil palm carbon stock for carbon stock inventory, it is necessary to develop a model to determine the distribution of oil palm carbon stock through remote sensing. The variable used is the pixel value of the vegetation index NDVI, GNDVI, EVI, ARVI, SAVI on the Sentinel 2-B and Landsat 8 satellite images. Field carbon stock data were obtained by using allometric equations of biomass from stem height and circumference. The selected model is ARVI on Sentinel 2-B and Landsat 8 with the highest correlation and determination values. The selected model which is used as a spatial distribution of carbon stock estimates has a range of carbon stock estimates in the form of <110 kg/pixel, 110 – 150 kg/pixel, 150 – 190 kg/pixel, and 190 – 240 kg/pixel on Sentinel 2-B and <900 kg/pixel, 900 – 1100 kg/pixel, 1100 – 1300 kg/pixel and 1300 – 1500 kg/pixel on Landsat 8 which are spatially distributed in the 17, 18, 19, and 20 year age groups from different parts of the east and southeast, density vegetation, and aspects of environmental conditions in the Districts of Kemang and Ranca Bungur. Based on the comparison, the pixel value of the vegetation index is directly proportional to the age group where the older it is, the higher it is, equal to the density of vegetation in the area, the more the number of vegetation, the higher the pixel value of the vegetation index. Landsat 8 was chosen because it has a greater correlation value with vegetation density, the final result is the estimated carbon stock of oil palm aged 17 years with an area of 267.56 Ha is 3,421.74 tons, 18 years 369.12 Ha is 5150.52 tons, 19 years 316.41 Ha is 4,271.86 tons, and 20 years 55.54 Ha is 761.67 tons. Total estimated carbon stock is 13,605.79 tons."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Zenitho Giantino
"Meningkatnya suhu secara global yang disebabkan oleh emisi karbon yang jumlahnya lebih banyak dari penyerapan menyebabkan terjadinya berbagai permasalahan lingkungan. Kelapa sawit memiliki potensi sebagai penyerap karbon di atmosfer. Penelitian ini memiliki tujuan unutk menganalisis distribusi spasial stok karbon tanaman kelapa sawit dan hubungannya dengan musim basah dan kering serta kemiringan tanahnya untuk melihat variasi stok karbonnya. Penginderaan jauh multispektral digunakan pada penelitian ini dan digunakan lima indeks vegetasi yaitu NDVI, GNDVI, SAVI, OSAVI, dan ARVI sebagai prediktor yang digunakan bersama dengan stok karbon lapangan untuk dibandingkan sehingga diperoleh model estimasi yang akurat. Hasil menunjukkan bahwa distribusi spasial estimasi stok karbon yang dihasilkan indeks vegetasi ARVI pada wilayah penelitian di setiap blok didominasi oleh stok karbon dengan nilai menengah. Hubungan musim basah dan kering yang dilihat dari curah hujan dengan stok karbon dan hasil uji korelasi menunjukkan bahwa curah hujan memiliki nilai korelasi positif yang sangat lemah dan variasi stok karbon berdasarkan kemiringan tanah menunjukkan bahwa kemiringan tanah tidak memiliki pengaruh terhadap stok karbon yang tersimpan. Hal tersebut dapat disebabkan karena jarak tanam kelapa sawit pada wilayah penelitian relatif sama.

The increase in global temperatures caused by carbon emissions which are greater than absorption causes various environmental problems. Oil palm has the potential to absorb carbon in the atmosphere. This study aims to analyze the spatial distribution of carbon stocks in oil palm plants and their relationship with the wet and dry seasons and the slope of the soil to see variations in carbon stocks. Multispectral remote sensing was used in this study and five vegetation indices were used, namely NDVI, GNDVI, SAVI, OSAVI, and ARVI as predictors which were used together with field carbon stocks to be compared in order to obtain an accurate estimation model. The results show that the spatial distribution of estimated carbon stocks resulting from the ARVI vegetation index in each block is dominated by carbon stocks with intermediate values. The relationship between wet and dry seasons and carbon stocks shows that rainfall has a very weak positive correlation value and variations in carbon stocks based on soil slope shows that soil slope has no effect on stored carbon stocks. This could be due to the relatively similar spacing of oil palm plantings in the study area."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia;Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia;Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia;Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia;Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ayom Widipaminto
"Identifikasi jenis material atap bangunan sangat dilakukan untuk bermacam pemanfaatan dari pemodelan cuaca mikro hingga analisis resiko bencana. Penelitian identifikasi jenis material atap bangunan telah dilakukan dengan menggunakan data hiperspektral, data lapangan, laboratorium serta data satelit penginderaan jauh masih memerlukan peningkatan akurasi. Penelitian ini bertujuan untuk mengembangkan metode spektroskopi reflektansi menggunakan kombinasi kanal spektral pada fusi data satelit penginderaan jauh resolusi resolusi spasial sangat tinggi (50 cm) dengan menerapkan koreksi spekular, masking vegetasi serta machine learning Random Forest untuk meningkatkan akurasi identifikasi jenis material atap bangunan. Metode yang dikembangkan menghasilkan akurasi untuk material aluminium, asbes, keramik, beton, genteng pasir besi dengan akurasi total 97.48% dengan nilai Kappa 0,958. Fusi data Pleiades dan Landsat-8 dilakukan untuk memperoleh data SWIR dengan panjang gelombang 2107–2294 nm dan resolusi spasial 50 cm untuk analisis spektral, sehingga identifikasi jenis material atap bangunan asbes dapat diidentifikasi dengan akurasi 95%. Koreksi spekular dan masking vegetasi meningkatkan akurasi identifikasi jenis material atap bangunan 8-12% sebagai perbaikan koreksi radiometrik dalam pengolahan data resolusi sangat tinggi.

Identification of the type of building roof material is widely used for various application from micro weather modeling to disaster risk analysis. Research on the identification of the type of building roof material has been carried out using hyperspectral data, field data, laboratories and remote sensing satellite data still requires increased accuracy. This study aims to develop method spectroscopy reflectance using a spectral channel combination on remote sensing satellite data fusion with very high spatial resolution (50 cm) by applying specular correction, vegetation masking and Random Forest machine learning to improve the accuracy of identifying the type of building roof material. The developed method produces accuracy for aluminum, asbestos, ceramic, concrete, iron sand tiles with a total accuracy of 97.48% with a Kappa value of 0.958. Pleiades and Landsat-8 data fusion was carried out to obtain SWIR data with a wavelength of 2107–2294 nm and a spatial resolution of 50 cm for spectral analysis, so that the identification of the type of asbestos roof material can be identified with an accuracy of 95%. Specular correction and vegetation masking increase the accuracy of identifying the type of building roof material by 8-12% as an improvement in radiometric correction in very high spatial resolution (50 cm) data processing."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
D-pdf
UI - Disertasi Membership  Universitas Indonesia Library
cover
Enrico Gracia
"Padi merupakan komoditas tanaman pangan yang menghasilkan beras. Pemanfaatan teknologi penginderaan jauh dalam estimasi produksi padi dapat memberikan informasi yang cepat dan hemat biaya. Penelitian ini menggunakan citra Planet Fusion dengan resolusi spasial 3 meter dan bebas awan untuk menganalisis fenologi dan produktivitas padi berbasis indeks vegetasi. Tiga indeks vegetasi, yaitu NDVI, GNDVI, dan EVI, dievaluasi dengan mengambil nilai indeks dari citra Planet Fusion. Estimasi produktivitas padi akan ditentukan menggunakan indeks-indeks tersebut, yang kemudian akan dianalisis hubungan spasial kondisi fisik di Desa Wargasetra. Hasil menunjukkan bahwa ketiga indeks vegetasi memiliki nilai RMSE yang kecil (berkisar antara 0,21–0,25), menunjukkan tingginya akurasi data citra multispektral Planet Fusion. Secara spasial, pola tanam padi berubah dinamis berdasarkan ketinggian, di mana padi di lahan sawah yang lebih tinggi ditanam atau dipanen lebih awal mengikuti arah aliran air. Indeks vegetasi GNDVI sesuai untuk pemetaan distribusi umur tanaman padi dengan rerata r2 = 0,892. Produktivitas padi di Desa Wargasetra dapat diestimasi dengan indeks vegetasi NDVI, yang dimana sesuai untuk digunakan estimasi produktivitas panen padi, dengan nilai r2 = 0,678 dan RMSE = 0,057. Analisis regresi berganda menunjukkan korelasi produktivitas padi sebesar 0,776 dengan jenis tanah dan jarak dari sungai. Jenis tanah Aluvial Eutrik dan Kambisol Eutrik memiliki produktivitas padi tertinggi. Lahan sawah di ketinggian 50–100 mdpl memiliki rata-rata produktivitas padi yang lebih tinggi, sementara produktivitas cenderung menurun saat menjauh dari aliran sungai.

Rice crop is a significant food-crop commodity worldwide. Remote sensing technology is applied to obtain rapid and cost-effective information on rice crop production. This study analyzed the phenology and productivity of rice crop in Desa Wargasetra using Planet Fusion imagery, with a spatial resolution of 3-meter and cloud-free. The analysis was based on three vegetation indices, such as NDVI, GNDVI, and EVI, obtained from Planet Fusion imagery. The evaluation of these indices allowed for estimating rice productivity and its spatial relationship with physical conditions in Desa Wargasetra. The results demonstrated that Planet Fusion's multispectral imagery data is accurate, with a small RMSE value (ranging from 0.21 to 0.25) for the three vegetation indices. The rice crops phenology pattern changed dynamically based on altitude, with rice in higher area planted or harvested earlier following the direction of water flow. The GNDVI vegetation index is suitable for mapping the age distribution of rice plants, with an average r2 of 0.892. The NDVI vegetation index is suitable for estimating rice harvest productivity in Desa Wargasetra, with an r2 of 0.678 and an RMSE of 0.057. Multiple regression dummy variable analysis revealed a correlation between rice productivity, soil type, and distance from the river. Eutric Alluvial and Eutric Cambisol soil types had the highest rice productivity. Paddy fields at 50–100 meters above sea level had higher average rice productivity, while productivity will be decreased if they are far from the river."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Agus Zainal Arifin
"Klasifikasi citra penginderaan jauh (inderaja) bertujuan untuk menghasilkan peta tematik, dimana tiap warna mewakili sebuah objek, misalkan hutan laut, sungai, sawah dan lain-lain. Makalah ini mempresentasikan disain dan implementasi perangkat lunak untuk mengklasifikasi citra inderaja multispektral. Metode berbasis unsupervised yang diusulkan ini adalah integrasi dari metode feature extraction, hierarchical (hirarki) clustering dan partitional (partisi) clustering. Feature extraction dimaksudkan untuk mendapatkan komponen utama citra multispektral tersebut sekaligus mengeliminir komponen yang redundan, sehingga akan mengurangi kompleksitas komputasi. Histogram komponen utama ini dianalisa untuk lemlah terkonsentrasinya pixel dalam feature space, sehingga proses split dapat menghasilkan cluster dengan cepat.
Beberapa cluster yang sangat mirip akan digabungkan oleh proses merge. Pada tahap akhir proses partisi akan mendeteksi prototype tiap cluster dengan Fuzzy C-Mean (FCM). Uji coba perangkat lunak ini dilakukan pada citra Landsat TM dan GOES-8. Hasilnya diukur berdasarkan homogenitas eksekusi dan nilai label contingency. Tabel ini akan membuktikan keberhasilan klasifikasi terhadap 800 sampel dari Jawa Timur yang sebelumnya telah dikenali. Untuk bahan perbandingan sampel diuji coba dengan algortima ISMC (Improve Split and Merge Classification), yang berdasarkan penelitian sebelumnya telah telah terbukti lebih baik dari pada ISODATA. Secara umum, uji coba menunjukkan keunggulannya dibandingkan ISMC."
2002
JIKT-2-1-Mei2002-49
Artikel Jurnal  Universitas Indonesia Library
cover
Garry Christ Himawan
"Kemitraan kelapa sawit antara Perusahaan Komersil dengan petani telah berlangsung sejak tahun 1980an. Meskipun kemitraan tersebut ditujukan untuk memberikan manfaat bagi kedua belah pihak, masih banyak ditemui permasalahan. Penelitian mengenai permasalahan kemitraan inti-plasma dari perspektif Perusahaan Kelapa Sawit masih terbatas, sehingga perlu dilakukan. Penelitian ini bertujuan untuk mencari akar masalah atas permasalahan yang timbul dari program kemitraan Perusahaan XXX serta memberikan usulan strategi untuk menghasilkan kemitraan yang berkelanjutan dan saling menguntungkan. Penelitian menggunakan teori logika kelembagaan untuk mengevaluasi program kemitraan kelapa sawit Perusahaan XXX dan key mediating variable model dari teori komitmen dan kepercayaan untuk mengembangkan strategi. Hasil dari penelitian ini meliputi tujuh poin akar masalah dari faktor di dalam kemitraan dan tiga poin akar masalah dari faktor di luar kemitraan serta sembilan poin usulan strategi yang diharapkan dapat meningkatkan profitabilitas kemitraan bagi perusahaan XXX. Selain meningkatkan profitabilitas sembilan poin strategi tersebut sekaligus dilakukan untuk menghindari biaya terminasi kemitraan yang rendah dari petani, meningkatkan manfaat kemitraan bagi petani, menyamakan nilai-nilai antara petani dengan Perusahaan XXX, memperbaiki komunikasi Perusahaan XXX kepada petani dan yang terakhir mencegah terjadinya tindakan oportunistik yang dilakukan pengurus koperasi. Selain itu, penelitian ini memberikan rekomendasi kepada regulator terkait penetapan harga TBS serta penegakan terhadap peraturan yang berlaku.

Oil palm partnerships between commercial companies and smallholders have been going on since the 1980s. Although the partnership is intended to provide benefits for both parties, there are still many problems. Research on the problems of nucleus-plasma partnerships from the perspective of oil palm companies is still limited, so it needs to be done. This study aims to find the root cause of partnership problems carried out by Company XXX as well as to provide a business strategy to generate sustainable and mutually beneficial partnerships. The research was conducted by looking for the root causes of the low profitability of partnerships conducted with farmers, then looking for solutions to each of the root causes and at the same time strengthening the variables that affect farmer commitment and trust in partnerships. This study using institutional logic theory to evaluate Company XXX's oil palm program partnerships and key mediating variables models from commitment and trust theory to develop strategy. The results of this study include seven points of the root causes within the partnership and three points of the root causes outside the partnership as well as nine points of strategic advice that are expected to increase partnership profitability for XXX companies. In addition to increasing profitability, the nine-point strategy is simultaneously carried out to avoid lower partnership termination costs from farmers, increase benefits for farmers, equalize partnership values between farmers and Company XXX, improve communication between Company XXX and farmers and finally prevent opportunistic actions. by cooperative managers. In addition, this study provides recommendations to regulators regarding FFB pricing and enforcement of applicable regulations."
Jakarta: Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Rahma Muthia
"Penelitian berupa peningkatan kualitas bio-oil dengan bahan baku tandan kosong kelapa sawit merupakan sebuah kontribusi untuk merealisasikan pemanfaatan biooil sebagai bahan bakar alternatif. Hingga saat ini, terdapat beberapa kendala yang menghalangi penggunaan bio-oil di tengah masyarakat, yaitu rendahnya nilai heating value, tingginya tingkat keasaman, korosif, dan tidak stabilnya produk. Permasalahan tersebut bersumber dari tingginya kandungan senyawa oksigenat di dalam bio-oil.
Penelitian ini bertujuan untuk mendapatkan bio-oil dengan kadar oksigenat yang lebih rendah. Dalam penelitian ini, digunakan metode fast pyrolysis pada temperatur 550o C, dengan empat perlakuan, yaitu produksi bio-oil tanpa katalis, dengan katalis RCC komersial, dengan katalis zeolit alam lampung teraktivasi, dan dengan katalis nanokristal ZSM-5 yang disintesis di laboratorium.
Dari hasil sintesis katalis tidak terbentuk kristal SiO2, Al2O3, dan kristal mineral zeolit tertentu sehingga diperoleh beberapa evaluasi dari sintesis yang dijalankan. Produk bio-oil memiliki properti fisik dan kimia yang berbeda satu sama lain. Katalis zeolit terbukti mampu mereduksi senyawa oksigenat. Selain itu, katalis tersebut meningkatkan sejumlah kadar fenol yang mampu menaikkan nilai heating value.
Secara berurutan, kandungan senyawa oksigenat dan fenol pada bio-oil tanpa katalis, dengan RCC komersial, dengan ZAL teraktivasi, dan dengan katalis sintesis adalah 42,48% dan 10,74%; 31,79% dan 29,1%; 33,26% dan 26,49%; serta 36,09% dan 22,94%. RCC komersial merupakan katalis yang memberikan produk bio-oil terbaik dengan penurunan senyawa oksigenat. Hal ini disebabkan karena kekuatan kristal yang lebih baik dibandingkan katalis zeolit alam teraktivasi dan katalis yang disintesis di laboratorium.

Research in increasing quality of bio-oil with empty fruit bunch of palm as raw materials was a contribution to realize the utilization of bio-oil as an alternative fuel. There were several obstacles that inhibit the use of bio-oil, namely low heating value, high levels of acidity, corrosive, and unstable products. Those problem were due to the high content of oxygenate compounds in the bio-oil.
Purpose of the research is to get bio-oil product with less oxygenate compounds. This study uses methods of fast pyrolysis at 550o C, with four treatments: production of bio-oil without catalyst, with commercial RCC, with activated lampung zeolite catalyst, and with nanocrystal ZSM-5 catalyst synthesized in the laboratory.
Synthesis catalyst did not form crystal SiO2, Al2O3 and specific zeolite mineral, so it brings some evaluations. Bio-oil products have different physical and chemical properties. Zeolite catalyst can reduce oxygenate compounds. Besides, it is able to increase phenol quantity that makes effect for increasing of heating value.
Sequentially, oxygenates and phenol content in bio-oil produced without catalyst, with commercial RCC, with activated lampung zeolite catalyst, and with nanocrystal ZSM-5 catalyst synthesized are 42.48% and 10.74%; 31.79% and 29.1%; 33.26% and 26.49%; 36.09% and 22.94%. Commercial RCC gives best quality bio-oil with less oxygenates. It is caused by better crystalline strength compared with activated lampung zeolit catalyst and synthesized catalyst at laboratory.
"
Depok: Fakultas Teknik Universitas Indonesia, 2011
S1536
UI - Skripsi Open  Universitas Indonesia Library
cover
Sulistiyaningsih
"ABSTRAK
Kabupaten Bandung sebagai salah satu kabupaten dengan penduduk terbanyak di Indonesia memiliki sumber daya alam yang beragam dengan segala pemanfaatannya sehingga jenis tutupan lahan yang ada pun berbeda-beda. Pemantauan terhadap penggunaan lahan perlu dilakukan untuk mencegah penyalahgunaan lahan dan penanggulangan akan bencana alam. Metode untuk pemantauan dapat dilakukan dengan klasifikasi jenis tutupan lahan menggunakan teknik penginderaan jarak jauh seperti penggabungan data satelit aktif dan pasif. Pada penelitian ini menggunakan citra satelit aktif (ALOS-2/PALSAR-2) dan satelit pasif (Landsat 8) untuk mendapatkan citra yang mudah untuk diinterpretasi dan terbebas dari gangguan atmosfer. Salah satu metode klasifikasi yang dapat dilakukan adalah maximum likelihood, yaitu metode yang menggunakan data acuan (training sample) serta kemungkinan suatu piksel terkelompok dalam suatu kelas. Penggunaan citra gabungan dengan metode maximum likelihood menghasilkan keakurasian citra lebih dari 60% dan lebih tinggi dari citra ALOS-2/PALSAR-2 yang diklasifikasikan tanpa Landsat 8 (40%)

ABSTRAK
Bandung regency is one of the biggest regency in Indonesia with large number of population which has nature resources with different utilization that cause land cover diversity. Land cover monitoring is necessary to prevent any land misuses and nature disasters. A way to monitor land cover is to classify the land cover uses remote sensing technique such as joint data of active and passive. This research is analyzing active satellite image (ALOS-2/PALSAR-2) and pasive satellite image (Landsat 8) that are being used to produce an image which is easy to interpret with less atmospheric disruption. One of the methods that can be used is maximum likelihood. Maximum likelihood is a supervised classification method which uses reference data (training sample) and probability of a pixel is clustered in a spesific class. The use of joint processing data with maximun likelihood method results in accuracy greater than 60% and is better than accuracy of ALOS-2/PALSAR-2?s image itself (40%)."
2016
S63172
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>