Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 128153 dokumen yang sesuai dengan query
cover
Sitinjak, Yohana Apriana
"Wilayah Kabupaten Cilacap khsusunya wilayah selatan Kecamatan Adipala berpotensi terhadap bahaya gempabumi. Gempabumi sebesar 6,2 magnitudo pernah mengguncang Cilacap pada tanggal 25 Januari 2014. Studi mengenai kerentanan dan bahaya gempabumi akan sangat membantu untuk penilaian resiko maupun program mitigasi. Tujuan dari Penelitian ini adalah menganalisis tipologi kawasan rawan bencana gempabumi di wilayah selatan Kecamatan Adipala, Kabupaten Cilacap. Penelitian ini menggunakan metode matriks pembobotan kestabilan wilayah yang berpedoman pada Peraturan Menteri Pekerjaan Umum Nomor 21 Tahun 2007 tentang Pedoman Penataan Ruang menunjukan skor akhir untuk Wilayah Selatan Kecamatan Adipala adalah 31-54 yang mana masuk kedalam semua kategori kestabilan yaitu stabil, kurang stabil dan tidak stabil. Menurut nilai kestabilan tipologi, wilayah Selatan Kecamatan Adipala diklasifikasikan menjadi Tipe A, Tipe B, Tipe C, Tipe D, dan Tipe E. Dimana Tipe A merupakan tipe yang paling stabil karena jauh dari zona sesar dan disusun oleh batuan yang keras sedangkan Tipe E adalah tipe yang paling tidak stabil yang mana disusun oleh batuan lunak serta berada tepat pada zona sesar.

The Cilacap Regency area, particularly the southern region of the Adipala District, is susceptible to earthquake hazards. An earthquake with a magnitude of 6.2 once shook Cilacap on January 25, 2014. Studies on vulnerability and earthquake hazards are highly beneficial for risk assessment and mitigation programs. The aim of this research is to analyze the typology of earthquake-prone areas in the southern region of Adipala District, Cilacap Regency. This research uses the regional stability weighting matrix method, guided by the Regulation of the Minister of Public Works No. 21 of 2007 concerning Spatial Planning Guidelines, which indicates that the final scores for the Southern Region of Adipala District range from 31 to 54, encompassing all stability categories: stable, less stable, and unstable. According to the stability typology values, the southern region of Adipala District is classified into Type A, Type B, Type C, Type D, and Type E. Type A is the most stable type, being far from fault zones and composed of hard rocks, whereas Type E is the least stable type, composed of soft rocks and located directly on fault zones."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hasdy Muhammad
"Kecamatan Maos di Kabupaten Cilacap pada tahun 1916 dan 1923 pernah mengalami gempa bumi yang mengakibatkan perekonomian lumpuh. Tidak menutup kemungkinan gempa bumi dapat terjadi kembali. Oleh sebab itu, perlu tindakan meminimalisir dampak gempa bumi dengan salah satu caranya membuat Peta Kawasan Rawan Gempa Bumi yang telah diatur melalui Peraturan Menteri PU No. 21/PRT/M/2007. Peraturan ini mengklasifikasikan kawasan rawan gempa bumi berdasarkan kajian tipologi informasi geologi. Informasi geologi diambil dari pemetaan geomorfologi pada Kecamatan Maos dimana diketahui bahwa litologi umum di Maos berupa batupasir dan tanah aluvium dengan tingkat kemiringan lereng dibawah 10 hingga 30% dimana terdapat sesar naik di sisi barat dan tenggara Maos serta sesar normal di barat laut Maos. Nilai kegempaan Maos dapat diketahui dari nilai PGAnya sebesar 0,6869 - 0,8764 g. Dari informasi geologi ini, dilakukan skoring dan pembobotan sehingga didapatkan nilai kestabilan wilayah Kecamatan Maos ada di rentang 33 hingga 51 dimana terdapat lima kelas klasifikasi tipologi di Kecamatan Maos yaitu Kelas A, Kelas B, Kelas C, Kelas D, dan Kelas E. Direkomendasikan bagi daerah yang berada di kawasan Kelas E untuk tidak membangun kawasan budidaya dan infrastruktur sebab di kawasan ini memiliki potensi bahaya tinggi jika terjadi bencana gempa bumi. 

Maos District in Cilacap Regency in 1916 and 1923 experienced an earthquake which resulted in the economy being paralyzed. It is possible that an earthquake could occur again. To anticipate that, action is needed to minimize the impact of an earthquake by making an Earthquake Hazard Map which has been regulated in Minister of Public Works Regulation No. 21/PRT/M/2007. This regulation classifies areas prone to earthquake disasters based on geological information typology. Geological information was taken from geomorphological mapping in Maos District where it is known that the general lithology in Maos is sandstone and alluvial soil with a slope level <= 10 - 30% where there are thrust faults on the west and southeast sides of Maos and normal faults on the northwest side of Maos. The seismicity value of Maos can be known from its PGA value of 0.6869 - 0.8764 g. From this geological information, scoring and weighting were carried out to obtain a regional stability value for Maos District in the range of 33 to 51 where there are five typological classification classes in Maos District, namely Class A, Class B, Class C, Class D and Class E. Recommended for areas in Class E are not to build cultivation areas and infrastructure because this area has a high potential for danger if an earthquake occurs."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ade Arifin Aziz
"Gerakan tanah adalah proses ketika material tanah atau batuan mengalami perpindahan akibat gravitasi bumi dan dampaknya merugikan bagi lingkungan hingga menimbulkan korban jiwa (Noor, 2011). Berdasarkan catatan dari Badan Nasional Penanggulangan Bencana, terdapat 289 kejadian bencana akibat gerakan tanah terhitung tahun 2018 hingga tahun 2022 di Kabupaten Banyumas, Provinsi Jawa Tengah (Data Informasi Bencana Indonesia (DIBI)). Pergerakan tanah dipengaruhi oleh parameter-parameter yang berpengaruh terhadap gerakan tanah seperti litologi, aspek lereng, curvature, curah hujan, kemiringan lereng, elevasi, tata guna lahan, jarak dari sungai, jarak dari struktur, dan normalized difference vegetation index (NDVI) (Chen et al., 2021). Tujuan dari penelitian ini yaitu untuk mengidentifikasi daerah rawan pergerakan tanah berdasarkan parameter-parameter tersebut dan memetakan daerah rawan pergerakan tanah di daerah Kabupaten Banyumas mengacu pada Sistem Informasi Geografis (SIG) dengan menggunakan metode information value model dan frequency ratio. Tujuan lainnya yaitu untuk mengkaji tingkat akurasi dari setiap metode dan menentukan metode apakah yang lebih baik digunakan di lokasi penelitian. Hasil dari penelitian ini didapatkan bahwa model yang dihasilkan oleh metode frekuensi rasio mendapatkan nilai AUC pada succes rate sebesar 70,5% dan predictife rate 61,14%. Sementara model yang dihasilkan oleh metode information value mendapatkan nilai AUC succes rate sebesar 66,39% dan predictife rate 60,26%. Berdasarkan validasi AUC dari kedua model tersebut, maka diketahui metode frekuensi rasio merupakan metode yang lebih baik dari metode information value dalam memodelkan tingkat kerentanan gerakan tanah di lokasi penelitian.

Land movement is a process when soil or rock material is displaced due to the earth's gravity and the impact is detrimental to the environment and causes casualties (Noor, 2011). Based on records from the National Disaster Management Agency, there were 289 disaster events due to land movement from 2018 to 2022 in Banyumas Regency, Central Java Province (Disaster Information Data Indonesia (DIBI)). Land movement is influenced by parameters that affect land movement such as lithology, slope aspect, curvature, rainfall, slope, elevation, land use, distance from rivers, distance from structures, and normalized difference vegetation index (NDVI) (Chen et al., 2021). The purpose of this research is to identify land movement prone areas based on these parameters and map land movement prone areas in the Banyumas Regency area referring to the Geographic Information System (GIS) using the information value model and frequency ratio methods. Another objective is to assess the accuracy level of each method and determine which method is better used in the research location. The results of this study found that the model generated by the frequency ratio method obtained an AUC value at a success rate of 70.5% and a predictive rate of 61.14%. While the model produced by the information value method gets an AUC succes rate of 66.39% and a predictive rate of 60.26%. Based on the AUC validation of the two models, it is known that the frequency ratio method is a better method than the information value method in modeling the level of ground motion vulnerability at the research site."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Yoga Murpadinata
"Kabupaten Cilacap termasuk ke dalam daerah rawan gempa bumi. Pada tanggal 25 Januari 2014 pernah terjadi gempa dengan magnitudo 6,5 di Cilacap. Peristiwa gempa bumi yang terjadi didominasi oleh gempa yang bersumber dari Megathrust selatan Jawa yang dekat dengan Cilacap. Wilayah penelitian, yang berada di Selatan Kecamatan Kawunganten, Kabupaten Cilacap (Desa Ujungmanik, Kubangkangkung, dan Sidaurip), sebagian tersusun atas endapan lempung yang rentan dengan amplifikasi. Adanya kehadiran sesar membuat daerah semakin rawan terhadap gempa bumi. Dengan jumlah penduduk yang cukup banyak dan keterdapatan sarana prasarananya, maka diperlukan analisis tipologi dan kestabilan kawasan rawan gempa bumi sebagai langkah mitigasi. Analisis ini menggunakan empat parameter utama yaitu data litologi batuan, data sesar, data kemiringan lereng, dan data PGA permukaan. Seluruh parameter tersebut dilakukan skoring sesuai Peraturan Menteri Pekerjaan Umum Nomor 21 Tahun 2007 tentang Pedoman Penataan Ruang Kawasan Rawan Gempa Bumi. Hasil skoring tiap parameter digabung untuk menghasilkan sebuah peta tipologi dan sebaran kestabilan wilayah kawasan rawan gempa bumi. Hasil penelitian didapat bahwa wilayah penelitian memiliki kestabilan yang stabil, kurang stabil, dan tidak stabil dengan range skor 33-55 dan dibagi menjadi 5 tipe tipologi kawasan rawan bencana gempa bumi yaitu Tipe A, Tipe B, Tipe C, Tipe D, dan Tipe E.

Cilacap Regency is included in an earthquake-prone area. On January 25, 2014, an earthquake with a magnitude of 6.5 occurred in Cilacap. The earthquake events that occurred were dominated by earthquakes originating from Megathrust South Java which is close to Cilacap. The research area in the South of Kawunganten District, Cilacap Regency (Ujungmanik, Kubangkangkung and Sidaurip Villages) is partly composed of clay deposits that are susceptible to amplification. The presence of faults makes the area more vulnerable to earthquakes. With a large population and the availability of infrastructure, typology and stability analysis of earthquake-prone areas is needed as a mitigation measure. This analysis uses four main parameters, rock lithology data, fault data, slope data and surface PGA data. All these parameters are scored in accordance with Minister of Public Works Regulation Number 21 of 2007 concerning Spatial Planning Guidelines in Earthquake Prone Areas. The scoring results for each parameter are combined to produce a typology map and distribution of regional stability in earthquake-prone areas. The research results showed that the research area had stable, less stable and unstable stability range score 33-55 and divided into 5 typological types of earthquake-prone areas, namely Type A, Type B, Type C, Type D, and Type E."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Atur Nagari
"Kota Surabaya merupakan salah satu kota besar di Indonesia yang wilayahnya dilewati oleh dua segmen patahan dari Sesar Kendeng, yaitu Patahan Waru dan Patahan Surabaya. Keduanya memiliki laju pergerakan sebesar 0,05 mm/tahun dan berpotensi terjadi gempabumi berkekuatan besar di masa mendatang. Selain itu, Wilayah Surabaya berdekatan dengan Megathrust East Java di Selatan Pulau Jawa. Berdasarkan riwayat kegempaan, Wilayah Surabaya belum pernah menjadi titik episenter gempabumi dan hanya ikut terguncang akibat gempabumi yang terjadi disekitarnya. Penelitian ini bertujuan untuk menganalisis dan memetakan besaran percepatan tanah di Surabaya akibat gempabumi. Metode penelitian yang digunakan ialah metode Probabilistic Seismic Hazard Analysis (PSHA) dengan bantuan perangkat lunak R-CRISIS. Sumber gempabumi yang diolah berada pada radius 500 Km dari Surabaya dengan kedalaman <300 Km dan dikumpulkan dari berbagai katalog seperti katalog BMKG, katalog PuSGeN, katalog USGS, dan katalog ISC dari tahun 1900-Januari 2023. Hasil pengolahan menunjukkan bahwa nilai percepatan tanah yang diperoleh pada PoE 2% dalam 50 tahun (periode ulang 2.475 tahun) saat T=0s sebesar 0,314-0,538 g, T=0,2s sebesar 0,759-1,308 g, dan T=1s sebesar 0,192 – 0,321 g. Berikutnya, nilai percepatan tanah pada PoE 5% dalam 50 tahun (periode ulang 975 tahun) saat T=0s sebesar 0,236-0,391 g, T=0,2s sebesar 0,562 – 0,903 g, dan T=1s sebesar 0,134-0,211 g. Selanjutnya, nilai percepatan tanah pada PoE 10% dalam 50 tahun (periode ulang 475 tahun) saat T=0s sebesar 0,180-0,289 g, T=0,2s sebesar 0,417-0,678 g, dan T=1s sebesar 0,101-0,147 g. Berdasarkan hasil analisis, Wilayah Surabaya Barat mengalami respon percepatan tanah paling tinggi. Hal ini bersesuaian dengan tektonik Surabaya Barat yang dilewati oleh Patahan Surabaya dan Patahan Waru, sehingga nilai percepatan tanah yang tinggi diakibatkan oleh sumber gempabumi fault (patahan). Setelah dikonversi menjadi gal, potensi kerusakan yang ditimbulkan berdasarkan nilai percepatan tanah yang diperoleh sebesar VI-XII MMI (99,05-1.282,71 gal).

Surabaya City is one of the major cities in Indonesia that is passed by two fault segments of the Kendeng Fault, namely the Waru Fault and the Surabaya Fault. Both have a movement rate of 0,05 mm/year and potentially have a large-power earthquake in the future. In addition, the Surabaya Region is adjacent to the East Java Megathrust in the South of Java Island. Based on the history of seismicity, the Surabaya Region has never been the epicenter of an earthquake and has only been shaken by earthquakes that occurred around it. This study aims to analyzing and mapping the amount of ground acceleration in Surabaya due to earthquakes. The research method used is the Probabilistic Seismic Hazard Analysis (PSHA) method using R-CRISIS software. The processed earthquake source is within 500 Km from Surabaya with a depth of <300 Km and is collected from various catalogs such as the BMKG catalog, the PuSGeN catalog, the USGS catalog, and the ISC catalog from 1900 to January 2023. The results of processing show that the ground acceleration values obtained at PoE 2% in 50 years (return period of 2.475 years) when T=0s is 0,314 – 0,538 g, T=0,2s is 0,759-1,308 g, and T=1s is 0,192-0,321 g. Subsequently, the ground acceleration values at PoE 5% in 50 years (return period of 975 years) when T=0s is 0,236-0,391 g, T=0,2s is 0,562-0,903 g, and T=1s is 0,134-0,211 g. Furthermore, the ground acceleration values at PoE were 10% in 50 years (return period of 475 years) when T=0s is 0,180-0,289 g, T=0,2s is 0,417-0,678 g, and T=1s is 0,101-0,147 g. Based on the results of the analysis, the West Surabaya Region experienced the highest ground acceleration response. This corresponds to the tectonics of West Surabaya which is passed by the Surabaya Fault and the Waru Fault, so that the high value of ground acceleration is due to the fault earthquake source. After being converted into gal, the potential damage caused based on the ground acceleration value obtained is VI-XII MMI (99,05 – 1.282,71 gal)."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Deliyanti Ganesha
"ABSTRAK
Untuk melakukan mitigasi bencana gempa bumi di Kabupaten Pandeglang, wilayah rawan gempa bumi dan wilayah kerentanan terhadap gempa bumi perlu ditentukan. Wilayah rawan gempa bumi Kabupaten Pandeglang ditentukan oleh nilai PGA (Peak Ground Acceleration), struktur geologi, litologi dan kemiringan lereng melalui sistem skoring. Setelah diketahui wilayah rawan gempa bumi maka diidentifikasikan grid yang mewakili wilayah tersebut sebagai daerah penelitian. Identifikasi rawan gempa bumi, kepadatan dan kualitas bangunan pada permukiman daerah penelitian dilakukan melalui sistem grid dan survei lapang. Dengan menganalisis rawan gempa bumi, kepadatan dan kualitas bangunan maka dihasilkan wilayah kerentanan terhadap gempa bumi di Kabupaten Pandeglang bagian barat (studi kasus sebagian Kecamatan Cigeulis, Cimanggu dan Sumur). Wilayah kerentanan tinggi terhadap gempa bumi terletak pada permukiman Desa Sumberjaya Kecamatan Sumur. Wilayah kerentanan sedang terletak pada permukiman Desa Cimanggu dan Tangkilsari Kecamatan Cimanggu. Sedangkan wilayah kerentanan rendah terletak pada permukiman Desa Tangkilsari Kecamatan Cimanggu, Desa Kertajaya dan Kertamukti Kecamatan Sumur.

ABSTRACT
To mitigate damage from earthquake disaster in Pandeglang Regency, earthquake hazard region and vulnerability region to earthquake has to determined. Earthquake hazard region in Pandeglang Regency is determined by the value of PGA (Peak Ground Acceleration), geological structure, lithology and slope. To determine the hazard earthquake region, scoring method is used. After determine earthquake hazard region, grid which represents the earthquake hazard region is identified. The grid is research?s area. Earthquake hazard, density and quality of construction in settlements of research?s area are identified by grid system and survey. Vulnerability region to earthquake in the west Pandeglang Regency (case studies : part of Cigeulis, Cimanggu and Sumur District) is determined by analyzed earthquake hazard, density and quality of construction. High vulnerability region to earthquake is located in settlements of Sumberjaya Village Sumur District. Moderate vulnerability region to earthquake is located in settlements of Cimanggu and Tangkilsari Village Cimanggu District. Low vulnerability region to earthquake is located in settlements of Tangkilsari Village Cimanggu District, Kertajaya and Kertamukti Village Sumur District."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2011
S365
UI - Skripsi Open  Universitas Indonesia Library
cover
Sigit Pramono
"

Kota Palu sebagai bagian Provinsi Sulawesi Tengah secara tektonik berada dekat dengan sumber gempa aktif crustal, yaitu sesar segmen Sulawesi Tengah. Sesar tersebut terdiri dari banyak segmen, diantaranya yang sudah dikenal adalah Sesar Besar Palu-Koro memanjang dari utara ke selatan. Di ujung selatan terhubung sesar Matano dan di utara terhubung dengan subduksi Utara Sulawesi (North Sulawesi Subduction) dan Selat Makasar bagian utara. Pembangunan infrastruktur berbasis mitigasi kegempaan di Indonesia merujuk Peraturan Bangunan Tahan Gempa berdasarkan Peta Bahaya Gempabumi SNI 1726 Tahun 2019. Kota Palu dan wilayah sekitar sesar segmen Sulawesi Tengah menjadi wilayah yang perlu dilakukan penelitian dengan mempertimbangkan efek kondisi site lokal. Parameter kondisi lokal meliputi jenis situs tanah, periode dominan tanah metode Horizontal to Vertical Spectral Ratio (HVSR) dan estimasi kedalaman bedrock menggunakan metoda Spatial Autocorrelation (SPAC) menjadi bagian parameter studi karakteristik ground motion di Kota Sulawesi Tengah. Penelitian ini menggunakan parameter gempa magnitudo gempa ML 1,5-6,5. Pengolahan data ground motion menggunakan data hasil observasi sinyal 5 sensor Jaringan Strong motion Nasional BMKG sampling 100Hz, 5 sensor  jaringan strong motion terpasang sementara sampling 100Hz dan 25 sensor Jaringan Array Velocity Broadband dengan sampling 250 Hz. Jaringan khusus array ini hasil kerjasama BMKG dengan ANU (Australian National University) yang dipasang di sekitar Kota Palu dan dekat sesar segmen Sulawesi Tengah dalam durasi 3 bulan. Tujuan dalam studi ini adalah untuk mengkaji karakteristik dan pembangunan model ground motion segmen fault Sulawesi Tengah. Karakteristik ground motion model yang dibangun dikaji dari uji model regional dan lokal dengan katalog gempa utama (independent) dan gempa gabungan foreshock,mainshock dan aftershock (dependent). Hasilnya menunjukkan karakteristik ground motion hasil dependent mempunyai nilai hasil model yang lebih rendah dibandingan independent, fitting model regional menunjukkan hasil bervariasi tingkat kecocokannya terhadap data observasi masing-masing fault yaitu dengan melihat hasil garis korelasi terhadap data observasi dan hasil residualnya. Model tersebut diuji menggunakan data observasi gempa merusak 29 Mei 2017 Mw 6,6 dan gempa merusak 2018 magnitudo 7,4. Hasilnya menunjukkan model GMPE dependent mempunyai nilai estimasi GM-PGA model yang berada pada distribusi data observasi, sedangkan hasil model independent mempunyai tingkat kecocokan berada di atas sebaran data observasi. Sedangkan pengujian GMSA median M=3-4 dan M=4-5 model dependent dan independent terhadap dari data observasi M=3-4 dan M=4-5 di luar data pembangun model, menunjukkan hasil korelasi yang cukup baik terhadap dua model tersebut. Pemahaman kondisi site lokal menjadi sangat penting dan menjadi bagian dalam perhitungan GM-PGA dan dipertimbangkan dalam penentuan nilai estimasi tingkat goncangan dalam bagian desain infrastruktur mitigasi bencana gempa bumi.     

 


Palu City in one major city in Indonesia which has administratively is the part of Central Sulawesi Province. It has the potential to develop the big infrastructure which has to consider mitigation aspect, due to tectonically it has located close to earthquake active source, particularly segments crustal zone of Central Sulawesi. Central Sulawesi fault has the many faults segmentation, it is called The Active Major Fault System of Central Sulawesi, as well known Palu Koro Fault System zone. It was along the north to southward close to Palu Valley. Development of infrastructure with earthquake hazard mitigation accordance to SNI 1726:2019. Local site classification parameters using the dominant period HVSR (Horizontal Vertical Spectral Ratio), estimation deep of engineering bedrock using SPAC method (Spatial Auto Correlation) as well done. The understanding of the local seismic condition and seismotectonic mechanism based on seismicity data are significantly contributing to know earlier the possibility of the amplification, which have related PGA value with the distance. In this study used 5 National Strong motion Network Station of  BMKG in Palu, 25 Array Network Broadband Velocity Temporarily Station of BMKG-ANU and 5 Regional Strong motion Network Temporarily Station along the Palu-Koro fault and short period for the mini regional network. The purpose of this research to study the characteristics of the local ground motion GM-PGA model from multi fault in Central of Sulawesi, with considered the local site effect.  All these parameters contribute to play roles within the form of the GMPE model.The characteristics of ground motion in this research using independent (mainshock)-independent (foreshock, mainshock, aftershock) regional and local earthquake catalog. The result showed characteristics of ground motion dependent has the calculated value is lower than independent, and the regional model showed the fitting variated to micro fault observed data. It can be seen using correlated regression and residuals. Moreover, when compared with two devastating earthquakes, 29th May 2017 Mw 6.6 and Palu earthquake Mw 7.4 showed that the dependent model is fitted well with distribution of observed data, while for the independent model is overestimated. Meanwhile to calibrate GMSA has used Median GMSA for M=3-4 and M=4-5 to GMSA data observed of M=3-4 and M=4-5. The results showed that the well correlated between of Median GMSA to data observed distribution. The Understanding of local seismic is very important to asses the related PGA value with the distance in GM-PGA and GMSA in GMPE. The GMPE model could be used to be considered in detail engineering design process to determine the level of potential shaking when implement development mitigation based.    

"
Depok: Fakultas Teknik Universitas Indonesia, 2020
D-Pdf
UI - Disertasi Membership  Universitas Indonesia Library
cover
Arini Dina Hanifa
"Pada tanggal 21 November 2022, terjadi gempa bumi di Kabupaten Cianjur, Jawa Barat, dengan kekuatan 5,6 Mw dan kedalaman 11 km, mengakibatkan kerusakan bangunan yang sangat masif, ratusan korban meninggal, dan ribuan luka-luka. Untuk meminimalisasi dampak bencana gempa bumi yang masih sangat mungkin terjadi, diperlukan adanya mitigasi, salah satunya dengan menggunakan Probabilistic Seismic Hazard Analysis (PSHA) yang menghitung tingkat bahaya gempa bumi berupa potensi getaran tanah maksimum pada suatu daerah secara probabilistik berdasarkan data historikal kegempaan berupa magnitudo, lokasi, dan jumlah gempa bumi. Data yang digunakan dalam penelitian adalah katalog gempa PuSGeN, USGS, dan ISC; serta informasi mengenai karakteristik zona subduksi dan sesar. Seluruh data diproses dengan menggunakan perangkat lunak R-CRISIS sehingga didapat nilai percepatan tanah maksimum (PGA) di batuan dasar dalam 3 peta dan percepatan spektra (SA) dalam 6 peta. Nilai Nilai PGA, SA pada T=0.2 detik, dan SA pada T=1 detik dengan probabilitas terlampaui (PoE) 2% dalam 50 tahun berturut-turut ada dalam rentang 0,78—1,05 g; 1,08—1,64 g; dan 0,42—0,75 g. Nilai PGA, SA pada T=0.2 detik, dan SA pada T=1 detik dengan PoE 7% dalam 75 tahun berturut-turut ada dalam rentang 0,62—0,88 g; 0,83—1,23 g; dan 0,32—0,53 g. Nilai PGA, SA pada T=0.2 detik, dan SA pada T=1 detik dengan PoE 10% dalam 50 tahun berturut-turut ada dalam rentang 0,5—0,72 g; 0,69—0,98 g; dan 0,25—0,40 g. Wilayah Kabupaten Cianjur yang memiliki tingkat kerawanan tertinggi adalah bagian selatan yang lebih dekat dengan zona subduksi megathrust serta bagian tengah yang dilalui sesar. Hasil dari penelitian ini diharapkan dapat menjadi informasi tambahan untuk rencana mitigasi Kabupaten Cianjur ke depannya.

On November 21, 2022, an earthquake occurred in Cianjur Regency, West Java, with a magnitude of 5.6 Mw and a depth of 11 km. It caused extensive damage to buildings, hundreds of fatalities, and thousands of injuries. To reduce the impact of the disaster that is still very likely to occur, an action to mitigate is needed, one of which is by using the Probabilistic Seismic Hazard Analysis (PSHA) which calculates the level of earthquake hazard in the form of maximum ground vibration potential in an area probabilistically based on historical seismic data in the form of magnitude, location, and number of earthquakes. The data used in this study are PuSGeN, USGS, and ISC earthquake catalogs; as well as information on the characteristics of subduction zones and faults. All the data was processed using the R-CRISIS software, resulting in three maps of peak ground acceleration (PGA) at the bedrock and six maps of spectral acceleration (SA). The values of PGA, SA at T=0.2 seconds, and SA at T=1 second with a probability of exceedance (PoE) of 2% in 50 years are within the range of 0.78—1.05 g, 1.08—1.64 g, and 0.42—0.75 g, respectively. The values of PGA, SA at T=0.2 seconds, and SA at T=1 second with a PoE of 7% in 75 years are within the range of 0.62—0.88 g, 0.83—1.23 g, and 0.32—0.53 g, respectively. The values of PGA, SA at T=0.2 seconds, and SA at T=1 second with a PoE of 10% in 50 years are within the range of 0.5—0.72 g, 0.69—0.98 g, and 0.25—0.40 g, respectively. The southern part of Cianjur Regency, which is closer to the megathrust subduction zone, and the central part traversed by faults, are identified as the areas with the highest vulnerability. The results of this research are expected to provide additional information for future mitigation plans in Cianjur Regency."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Jessica Stephanie Tulis
"Gempa bumi berkekuatan 4,8 SR pernah terjadi pada 13 Juni 2018 pukul 20.06 WIB di Kabupaten Sumenep, Pulau Madura yang mengakibatkan ratusan rumah warga rusak akibat bencana ini. Agar dampak kerusakan dan kerugian jiwa hingga materiil dapat diminimalisir, diperlukan usaha mitigasi bencana gempa bumi di Pulau Madura dengan melakukan penelitian mengenai kemungkinan munculnya gempa bumi pada tingkat bahaya tertentu dengan metode PSHA (Probabilistic Seismic Hazard Analysis). Metode ini menggunakan mengkombinasikan karakteristik magnitudo, jarak, dan waktu dari riwayat gempa bumi di wilayah penelitian untuk memperkirakan kemungkinan percepatan gerakan tanah maksimum atau PGA yang mungkin terjadi dalam periode ulang tertentu (Dewi et al., 2018). Penelitian ini menggunakan sumber data berupa katalog riwayat gempa Pulau Madura, informasi karakteristik active fault, zona subduction, dan zona background di sekitar Pulau Madura, serta informasi fungsi atenuasi yang sesuai dengan daerah penelitian. Seluruh data telah diproses sedemikian rupa hingga menghasilkan 3 peta PGA di batuan dasar dalam masa guna bangunan 50 tahun dan 1 grafik respon SA dalam periode 4 detik di lokasi kejadian gempa 13 Juni 2018. Peta pertama dengan PoE 10% (periode ulang gempa 475 tahun) memiliki rentang nilai PGA 0,21 – 0,31 g. Peta kedua dengan PoE 5% (periode ulang gempa 975 tahun) memiliki rentang nilai PGA 0,23 – 0,34 g. Peta ketiga dengan PoE 2% (periode ulang gempa 2.475 tahun) memiliki rentang nilai PGA 0,25 – 0,4 g. Peningkatan rentang nilai PGA saat nilai PoE menurun disebabkan oleh semakin panjang periode ulang tahunnya maka semakin banyak gempa bumi dengan magnitudo yang lebih besar dapat muncul. Pada Pulau Madura, peta PGA dengan PoE 2% (periode ulang gempa 2.475 tahun) hasil penelitian memiliki rentang nilai PGA 0,25 – 0,27 g, sedangkan pada peta PGA dengan PoE yang sama milik SNI 1726:2019 memiliki rentang nilai 0,15 – 0,20 g. Jika nilai PGA dengan PoE 2% (periode ulang gempa 2.475 tahun) hasil penelitian di Pulau Madura dikonversi menjadi MMI, maka akan masuk ke intensitas VII (very strong) hingga VIII (severe). Lalu menurut grafik respon SA dalam periode 4 detik di lokasi kejadian gempa 13 Juni 2018, diperlukan revisi kode bangunan nasional SNI 1726:2019 di koordinat riwayat gempa bumi Sumenep pada 13 Juni 2018 dari percepatan tanah spektral tertinggi 0,45 g menjadi 0,61 g. Kedepannya, disarankan untuk melakukan penelitian lanjutan terhadap PGA di Pulau Madura menggunakan informasi kondisi batuan sebenarnya, melakukan pemutakhiran sumber-sumber gempa bumi di sekitar Pulau Madura, melakukan penelitian lanjutan terhadap PGA di Indonesia untuk perbaikan kode bangunan nasional SNI 1726:2019, dan diharapkan hasil penelitian ini dapat menjadi informasi tambahan bagi proses mitigasi bencana gempa bumi di Pulau Madura.

An earthquake of 4.8 Richter Scale occurred on June 13, 2018 at 20.06 WIB in Sumenep Regency, Madura Island, which damaged hundreds of residents' houses as a result of this disaster. To reduce the damage and loss of life to material, it’s necessary to mitigate the earthquake disaster on Madura Island by conducting research on the possibility of earthquakes occurring at a certain hazard level using the PSHA (Probabilistic Seismic Hazard Analysis) method. This method combines the characteristics of magnitude, distance, and time from the history of earthquakes in the study area to estimate the possible maximum ground motion acceleration or PGA that may occur within a certain return period (Dewi et al., 2018). This study uses data sources such as earthquake history catalog of the Madura Island, active faults, subduction zones, and background zones characteristics around Madura Island, and also attenuation function information related to the research area. All data has been processed and produced 3 PGA maps in bedrock with a 50 year building life and 1 SA response graph in a 4 second period at the site of the 13 June 2018 earthquake. The first map with 10% PoE (475 years earthquake return period) has a PGA value range of 0,21 – 0,31 g. The second map with 5% PoE (975 years earthquake return period) has a PGA value range of 0,23 – 0,34 g. The third map with a PoE of 2% (2.475 years earthquake return period) has a PGA value range of 0,25 – 0,4 g. The increase in the PGA range value when the PoE value decreases is caused by the longer the earthquake return period, the more earthquakes with a larger magnitude can occur. On Madura Island, the PGA map with a PoE of 2% (2.475 years earthquake return period) of this study have a PGA value range of 0,25 – 0.27 g, while the PGA map with the same PoE belonging to SNI 1726:2019 has a value range of 0,15 – 0,20 g. If the PGA value with a PoE of 2% (2.475 years earthquake return period) from the research on Madura Island is converted to MMI, the intensity will be VII (very strong) to VIII (severe). Then according to the graph of the SA response for a period of 4 seconds at the location of the 13 June 2018 earthquake, it is necessary to revise the national building code of SNI 1726: 2019 in the coordinates of the Sumenep earthquake history on 13 June 2018 from the highest spectral ground acceleration of 0,45 g to 0,61 g. In the future, it is recommended to carry out further research on PGA on Madura Island using information on actual rock conditions, update earthquake sources around Madura Island, conduct further research on PGA in Indonesia to improve the national building code SNI 1726:2019, and hope that this research can be additional information for the earthquake disaster mitigation process on Madura Island."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Shella Happy Kusuma
"Jawa Timur merupakan salah satu provinsi di pulau jawa dengan aktivitas tektonik yang paling banyak. Hal ini disebabkan oleh pengaruh pergeseran lempeng Indo-Australia ke utara dan bertabrakan dengan lempeng Eurasia. Penelitian ini bertujuan untuk mendapatkan peta kerentanan seismik di wilayah Jawa Timur berdasarkan nilai 𝒂 dan nilai 𝒃 serta nilai persentase tingkat resiko gempa bumi dan periode ulang di wilayah Jawa Timur sebagai upaya pengurangan resiko bencana gempa bumi berdasarkan prinsip hukum Gutenberg-Richter. Hasil didapatkan dengan mengamati grafik hubungan frekuensi kejadian gempa dan kekuatan gempa. Metode yang digunakan daam penelitian ini adalah maximum likelihood. Hasil penelitian menyatakan bahwa wilayah Jawa Timur memiliki nilai a sebesar 12-28 dan nilai b sebesar 2-4,5 dengan bagian barat wilayah Jawa Timur berpotensi terjadi lebih bnayak gempa dibandingkan dengan bagian timur provinsi Jawa Timur. Nilai a dan b juga menunjukkan adanya korelasi dengan keberadaan sesar di Jawa Timur. Hasil perhitungan periode ulang dan probabilitas terjadinya gempa didapatkan periode ulang gempa M≥4 adalah 2 tahun 8 bulan dengan probabilitas terjadinya adalah P(20)=99%; P(40)=100%; P(60)=100%. Serta periode ulang gempa yang berpotensi merusak yaitu M≥5,8 adalah 83 tahun dan 2 bulan dengan probabilitas kejadiannya adalah P(20)=21%; P(40)=38%; P(60)=751%.

East Java is one of the provinces on the island of Java with the most tectonic activity. This is caused by the influence of the Indo-Australian plate shifting north and colliding with the Eurasian plate. This research aims to obtain a seismic vulnerability map in the East Java region based on the a and b values as well as the percentage value of the earthquake risk level and return period in the East Java region as an effort to reduce the risk of earthquake disasters based on the principles of the Gutenberg-Richter law. The results were obtained by observing the graph of the relationship between the frequency of earthquake events and the strength of the earthquake. The method used in this research is maximum likelihood. The research results state that the East Java region has an a value of 12-28 and a b value of 2-4.5 with the western part of the East Java region having the potential to experience more earthquakes compared to the eastern part of the East Java province. The values a and b also show a correlation with the presence of faults in East Java. The results of calculating the return period and probability of an earthquake occurring show that the return period for an M≥4 earthquake is 2 years 8 months with the probability of occurrence being P(20)=99%; P(40)=100%; P(60)=100%. And the return period for a potentially damaging earthquake, namely M≥5.8, is 83 years and 2 months with the probability of occurrence being P(20)=21%; P(40)=38%; P(60)=751%."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>