Ditemukan 208885 dokumen yang sesuai dengan query
Brandon Ivander
"Banyak informasi yang tersebar pada media sosial. Kehadiran media sosial seperti X (Twitter), Facebook, dan TikTok memfasilitasi persebaran informasi dari seluruh penjuru dunia. Informasi yang ada pada media sosial beragam jenisnya, mulai dari ekspresi diri, opini, atau bahkan informasi terkait suatu kejadian di dunia nyata. Permasalahannya, informasi yang bertebaran di media sosial belum tentu relevan dengan informasi yang diinginkan. Masalah tersebut dapat diselesaikan dengan penggunaan kecerdasan buatan untuk melakukan kurasi data. Namun, dalam menggunakan kecerdasan buatan biaya komputasi yang diperlukan cukup mahal dan banyaknya informasi yang diproses dapat membuat waktu untuk melakukan analisis data menjadi cukup lama. Untuk menanggulangi masalah tersebut, penggunaan paradigma cloud computing dapat digunakan karena sumber daya komputasi cloud umumnya lebih mudah diakses dibandingkan dengan sumber daya komputasi lokal. Sudah terdapat sebuah library bernama FogVerse yang dibangun dengan Apache Kafka untuk melakukan stream data processing, yaitu FogVerse. FogVerse merupakan salah satu solusi untuk digunakan dalam pembangunan aplikasi berbasis stream data processing karena kemampuannya untuk melakukan pemrosesan berbagai sumber data dan menangani aliran informasi yang banyak. FogVerse pada dasarnya digunakan dalam pengaturan sumber daya untuk fog computing, tetapi penelitian ini hanya berfokus pada penggunaan FogVerse sebagai server yang menghubungkan setiap komponen pada sistem. Penelitian ini dilakukan untuk meneliti dua hal utama, yaitu meningkatkan kemampuan dari FogVerse secara keseluruhan dan merancang serta mengimplementasikan sistem deteksi kejadian darurat menggunakan data dari media sosial yang diimplementasikan menggunakan FogVerse yang sudah dimodifikasi. Terdapat tiga pengingkatan pada FogVerse, yaitu dynamic partition, multiprocessing, dan auto scaling. Dari hasil peningkatan FogVerse, penelitian dilakukan untuk menujukan bahwa terjadinya peningkatan dari sisi throughput dan latency terhadap aplikasi yang dibangun menggunakan FogVerse terbaru.
A lot of information can be found on social media. The presence of social media such as X (Twitter), Facebook, and TikTok facilitate the spread of information from all over the the world. There are various types of information on social media, ranging from self-expression, opinions, or even information related to an event in the real world. The problem is that the information scattered on social media is not necessarily relevant to the desired information. This problem can be solved by using artificial intelligence to process the data. However, in using artificial intelligence, the cost of computing are quite expensive and the amount of information processed can make the time to analyze the data quite long. The use of cloud computing paradigms can be used because cloud computing resources are generally more accessible than local computing resources. There is a library called FogVerse that is built using Apache Kafka to perform stream data processing, namely Fog-Verse. FogVerse is one of the solutions to be used on building applications that based on stream data processing because of its ability to perform processing from various data sources and handle multiple streams of information. FogVerse is normally used in resource management for fog computing, but this research only focuses on using FogVerse as a server that connects each component in the system. This research was conducted to examine two main things, improving the overall capabilities of FogVerse and designing and implementing an emergency event detection system using data from social media that is implemented using the modified FogVerse. There are three enhancements to FogVerse, namely dynamic partition, multiprocessing, and auto scaling. From the results of the FogVerse upgrade, research was conducted to show that there was an increase in terms of throughput and latency for applications built using the latest version of FogVerse."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership Universitas Indonesia Library
Ikramullah
"Banyak informasi yang tersebar pada media sosial. Kehadiran media sosial seperti X (Twitter), Facebook, dan TikTok memfasilitasi persebaran informasi dari seluruh penjuru dunia. Informasi yang ada pada media sosial beragam jenisnya, mulai dari ekspresi diri, opini, atau bahkan informasi terkait suatu kejadian di dunia nyata. Permasalahannya, informasi yang bertebaran di media sosial belum tentu relevan dengan informasi yang diinginkan. Masalah tersebut dapat diselesaikan dengan penggunaan kecerdasan buatan untuk melakukan kurasi data. Namun, dalam menggunakan kecerdasan buatan biaya komputasi yang diperlukan cukup mahal dan banyaknya informasi yang diproses dapat membuat waktu untuk melakukan analisis data menjadi cukup lama. Untuk menanggulangi masalah tersebut, penggunaan paradigma cloud computing dapat digunakan karena sumber daya komputasi cloud umumnya lebih mudah diakses dibandingkan dengan sumber daya komputasi lokal. Sudah terdapat sebuah library bernama FogVerse yang dibangun dengan Apache Kafka untuk melakukan stream data processing, yaitu FogVerse. FogVerse merupakan salah satu solusi untuk digunakan dalam pembangunan aplikasi berbasis stream data processing karena kemampuannya untuk melakukan pemrosesan berbagai sumber data dan menangani aliran informasi yang banyak. FogVerse pada dasarnya digunakan dalam pengaturan sumber daya untuk fog computing, tetapi penelitian ini hanya berfokus pada penggunaan FogVerse sebagai server yang menghubungkan setiap komponen pada sistem. Penelitian ini dilakukan untuk meneliti dua hal utama, yaitu meningkatkan kemampuan dari FogVerse secara keseluruhan dan merancang serta mengimplementasikan sistem deteksi kejadian darurat menggunakan data dari media sosial yang diimplementasikan menggunakan FogVerse yang sudah dimodifikasi. Terdapat tiga pengingkatan pada FogVerse, yaitu dynamic partition, multiprocessing, dan auto scaling. Dari hasil peningkatan FogVerse, penelitian dilakukan untuk menujukan bahwa terjadinya peningkatan dari sisi throughput dan latency terhadap aplikasi yang dibangun menggunakan FogVerse terbaru.
A lot of information can be found on social media. The presence of social media such as X (Twitter), Facebook, and TikTok facilitate the spread of information from all over the the world. There are various types of information on social media, ranging from self-expression, opinions, or even information related to an event in the real world. The problem is that the information scattered on social media is not necessarily relevant to the desired information. This problem can be solved by using artificial intelligence to process the data. However, in using artificial intelligence, the cost of computing are quite expensive and the amount of information processed can make the time to analyze the data quite long. The use of cloud computing paradigms can be used because cloud computing resources are generally more accessible than local computing resources. There is a library called FogVerse that is built using Apache Kafka to perform stream data processing, namely Fog-Verse. FogVerse is one of the solutions to be used on building applications that based on stream data processing because of its ability to perform processing from various data sources and handle multiple streams of information. FogVerse is normally used in resource management for fog computing, but this research only focuses on using FogVerse as a server that connects each component in the system. This research was conducted to examine two main things, improving the overall capabilities of FogVerse and designing and implementing an emergency event detection system using data from social media that is implemented using the modified FogVerse. There are three enhancements to FogVerse, namely dynamic partition, multiprocessing, and auto scaling. From the results of the FogVerse upgrade, research was conducted to show that there was an increase in terms of throughput and latency for applications built using the latest version of FogVerse."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership Universitas Indonesia Library
Oxford: Pergamon Press , 1992
004.33 REA
Buku Teks SO Universitas Indonesia Library
Foster, Caxton C.
Sydney: Addison-Wesley, 1981
001.644 04 FOS r
Buku Teks SO Universitas Indonesia Library
Auslander, David M.
Englewood Cliffs, NJ: Prentice-Hall, 1990
629.895 AUS r
Buku Teks Universitas Indonesia Library
Fadly Ahmad Firdausy
"SARS-CoV-19 merupakan salah satu virus mematikan yang pernah ada, merenggut 6 juta nyawa di seluruh dunia dan 155 ribu di Indonesia yang dimulai dari tahun 2019 akhir sampai 21 Juni 2022. Virus SARS-CoV-19 yang menyebabkan penyakit COVID-19 ini menyebar melalui udara. Untuk mencegah penyebaran COVID-19, Indonesia telah melakukan banyak cara. Walaupun vaksin sudah tersedia, memakai masker dan menjaga jarak menjadi kunci utama dalam penekanan penyebaran virus tersebut. Dengan diwajibkannya pemakaian masker menjadi sebuah tantangan bagi para peneliti untuk mengembangkan sistem pendeteksian masker wajah secara real-time, untuk mengetahui apakah memakai masker atau tidak. Telah banyak penelitian yang dilakukan untuk membuat sistem deteksi wajah yang bertujuan memiliki sistem yang akurat, cepat, dan efektif. Penelitian yang sudah dilakukan memakai metode yang berbeda-beda. Mulai dari RetinaNet, FaceNet, MobileNet, OpenCV, R-CNN, RefineDet dan YOLOv5. Penelitian ini mengembangkan sistem pengembangan masker wajah menggunakan metode YOLOv5 dimana mampu mendeteksi tiga kelas dan juga mendeteksi objek yang banyak. YOLOv5 sendiri merupakan sebuah framework pada machine learning yang digunakan untuk mendeteksi objek secara real-time. Dataset yang digunakan dikumpulkan dari beberapa dataset lain dengan total 4900 gambar. Beberapa skenario dengan parameter dilakukan dan hasil terbaik didapati dengan menggunakan dataset tanpa augmentasi dengan batch-size 32, dengan presisi sebesar 95,9%, recall sebesar 95,7%, dan mAP sebesar 95,7%.
SARS-CoV-19 is one of the worst viruses that ever exist, claiming the lives of 6 million people globally and 155,000 in Indonesia that started in 2019 until 21 June 2022. SARS-CoV-19 virus that caused COVID-19 is spreading through air. Indonesia has taken a variety of measures to prevent the COVID-19 from spreading. Even while vaccines are available, wearing masks and keeping a safe distance are the most effective ways to prevent the virus from spreading. The mandated use of masks become a challenge for developers to inventing a real-time face mask detection system that can determine whether to employ a mask. Many experiments have been undertaken to improve the effectiveness and accuracy of facial recognition systems, and using a different kind of methods, such as RetinaNet, FaceNet, MobileNet, OpenCV, R-CNN, RefineDet, and YOLOv5. This research will used YOLOv5 algorithm for face mask detection system which can define 3 different classes and multi-object. YOLOv5 is a machine learning framework for object detection in real-time. The datasets that used was collected from several other datasets with total of 4900 images. Different test scenarios with different parameters completed and the dataset without augmentation with batch size 32 scenarios is the best results, with precision score 95,9%, recall score 95,7%, and mAP score 95,7%."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership Universitas Indonesia Library
Muhammad Rafii Zain
"Bahasa Isyarat Indonesia atau BISINDO adalah bahasa yang sering ditemukan di kalangan Teman Tuli maupun Teman Inklusi dibentuk oleh Teman Tuli dan muncul secara alami berdasarkan pengamatan Teman Tuli yang menyebabkan BISINDO sendiri memiliki variasi atau dialek di berbagai daerah dan BISINDO disampaikan dengan gerakan dua tangan. BISINDO sendiri dapat digunakan sebagai dataset pada metode deep learning seperti LSTM. Di mana pada BISINDO terdapat gerakan dinamis yang membuatnya sulit untuk dilakukan dengan metode CNN. Dengan LSTM dan menggabungkan nya dengan library dari MediaPipe dan Streamlit kita dapat membuat model deep learning yang dapat mendeteksi gerakan secara real-time, akurasi yang baik dan dapat diakses melalui browser. Pada penelitian dibuat rancangan dan pengujian untuk mendeteksi BISINDO secara real-time dengan metode LSTM di bantu dengan library MediaPipe Holistic untuk mendeteksi landmark dari wajah, pose, dan tangan serta Streamlit untuk dapat membuat model diakses melalui browser. Metrik evaluasi yang digunakan pada penelitian ini adalah data dari akurasi, validasi akurasi, loss, validasi loss, confusion matrix, dan classification report untuk mendapatkan data presisi, recall, akurasi, dan f1-score. Pada training model dengan 130 epochs didapat loss 6.19%, akurasi 98.23%, validasi loss 4.58%, dan validasi akurasi 100% serta pengujian model secara real-time yang berhasil dilakukan dengan Visual Studio Code dan browser dengan Streamlit.
Indonesian Sign Language or BISINDO is a language that is often found among Deaf Friends and Inclusion Friends formed by Deaf Friends and appears naturally based on the observations of Deaf Friends which causes BISINDO itself to have variations or dialects in various regions. BISINDO is conveyed with two hand gestures. BISINDO itself can be used as a dataset in deep learning methods such as LSTM. Whereas in BISINDO there is a dynamic movement which makes it difficult to do with the CNN method. With LSTM and combining it with libraries from MediaPipe and Streamlit, we can create deep learning models that can detect motion in real-time, have good accuracy, and can be accessed via a browser. In this research, a design and test were made to detect BISINDO in real-time with the LSTM method assisted by the MediaPipe Holistic library to detect landmarks from faces, poses, and hands and Streamlit to be able to make models accessible via a browser. The evaluation metrics used in this study are data from accuracy, accuracy validation, losses, validation losses, confusion matrices, and classification reports to obtain data on precision, gain, accuracy, and f1-score. The training model with 130 epochs obtained 6.19% loss, 98.23% accuracy, 4.58% loss validation, and 100% accuracy validation and real-time model testing which was successfully carried out with Visual Studio Code and a browser with Streamlit."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership Universitas Indonesia Library
Schoeffler, James D.
Long Beach: IEEE Computer Society, 1974
001.6 SCH t
Buku Teks SO Universitas Indonesia Library
Chichester: John Wiley & Sons, 1993
004.33 REA
Buku Teks SO Universitas Indonesia Library
Calvez, Jean Paul
Chichester: John Wiley & Sons, 1993
004.33 CAL e
Buku Teks SO Universitas Indonesia Library