Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 183173 dokumen yang sesuai dengan query
cover
Rida Indah Fariani
"Pendidikan vokasi memiliki beberapa karakteristik utama, yaitu (1) berfokus pada perolehan kompetensi dan keterampilan tertentu, dan (2) mengutamakan pengajaran praktis. Dengan karakteristik tersebut, mahasiswa dituntut untuk memenuhi target kompetensi dan keterampilan yang sama yang telah ditetapkan. Disisi lain, adanya keragaman karakteristik mahasiswa dapat menyebabkan perbedaan dalam hal proses belajar. Untuk mencapai target kompetensi yang diharapkan dan mengakomodir keragaman mahasiswa, penggunaan konsep personalized e-learning dapat menjadi pilihan. Sementara itu, dengan karakteristik kurikulum vokasi yang mengutamakan pengajaran praktikum, penggunaan model pembelajaran bauran dapat menjawab tantangan ketika pembelajaran daring tidak dapat sepenuhnya diterapkan pada pendidikan vokasi. Oleh karena itu, penggunaan konsep personalized learning pada pembelajaran bauran dapat menjadi solusi. Dengan demikian penelitian ini bertujuan untuk (1) membangun model personalisasi pembelajaran bauran (p-PB) yakni model yang menggunakan konsep personalized learning dalam konteks kurikulum vokasi yang bersifat serial dan diintegrasikan dengan model pembelajaran bauran; (2) membangun purwarupa sistem berdasarkan model; dan (3) mengukur dampak implementasi sistem terhadap pembelajaran pada pendidikan tinggi vokasi.
Metodologi yang digunakan dalam penelitian ini adalah exploratory sequential mixed method. Metode kualitatif digunakan dalam studi literatur dan evaluasi model, sementara metode kuantitatif digunakan dalam survei mengenai pembelajaran praktikum pada pendidikan tinggi vokasi dan eksperimen dalam melakukan evaluasi pada implementasi sistem p-PB.
Model p-PB yang dikembangkan dalam penelitian ini terdiri dari tiga komponen yakni model mahasiswa, model knowledge, dan model personalisasi. Model mahasiswa mengklasifikasikan mahasiswa berdasarkan tingkat pengetahuan (dasar, menengah, lanjut) dan gaya belajar sesuai teori Felder Silverman Learning Style Model (FSLSM) dengan fokus pada dua gaya dominan. Model knowledge memberikan anotasi pada learning object dengan tingkat kesulitan (mudah, sedang, sulit) dan disesuaikan dengan dimensi dalam teori FSLSM. Pada model personalisasi, strategi personalisasi yang diusulkan mencakup rekomendasi learning object dan sistem umpan balik yang sesuai dengan model mahasiswa. Sistem umpan balik memberikan rekomendasi berdasarkan hasil asesmen dan jika dibutuhkan akan berulang untuk memastikan mahasiswa menguasai kompetensi sebelum melanjutkan modul. Hal ini untuk mengakomodir kurikulum pendidikan tinggi vokasi yang berfokus pada penguasaan kompetensi secara berurutan. Model p-PB diintegrasikan dengan pembelajaran bauran yang mengkombinasikan model station rotation dan flipped classroom, di mana tingkat pengetahuan dijadikan station dalam pengajaran sinkronus dan asinkronus.
Purwarupa sistem p-PB dikembangkan dengan metodologi SDLC. Rekomendasi dan umpan balik yang diberikan menggunakan pendekatan knowledge-based. Knowledge direpresentasikan dengan menggunakan ontologi dan diimplementasikan dengan knowledge graph. Knowledge graph tidak hanya menghubungkan learning object, tingkat kesulitan, gaya belajar, dan hasil asesmen mahasiswa dalam jaringan yang terstruktur, tetapi juga berfungsi sebagai sistem penyimpanan dan pengelolaan data knowledge. Dengan menggunakan knowledge graph, sistem dapat menelusuri jalur yang paling relevan dan efisien untuk memberikan rekomendasi learning object dan umpan balik yang dipersonalisasi.
Evaluasi terhadap purwarupa sistem p-PB dilakukan dengan metode eksperimen berupa implementasi sistem dengan menggunakan kelas eksperimen dan kelas kontrol. Eksperimen dilakukan pada dua mata kuliah di salah satu perguruan tinggi vokasi di Jakarta yakni mata kuliah Pemrograman 1 dan Perancangan Proses Manufaktur. Kelas eksperimen menggunakan sistem p-PB dalam pembelajaran, sementara kelas kontrol menggunakan LMS institusi dan tidak menggunakan sistem p-PB. Hasil implementasi menunjukkan kelas eksperimen mencapai tingkat pencapaian hasil belajar yang lebih tinggi secara signifikan dibandingkan dengan kelas kontrol pada kedua mata kuliah yang diuji. Persepsi dan kepuasan mahasiwa mengenai tingkat kegunaan sistem p-PB cukup baik dengan skor SUS 74,36. Dari wawancara mahasiswa didapat sistem dapat meningkatkan pemahaman, kepercayaan diri, dan antusiasme mahasiswa. Dapat dikatakan terdapat pengaruh positif sistem p-PB terhadap hasil belajar dan pengalaman belajar mahasiswa. Hasil penelitian ini dapat dijadikan dasar bagi implementasi pada perkuliahan dan institusi sejenis lainnya.

Vocational education has several main characteristics, namely (1) focusing on the acquisition of specific competencies and skills, and (2) prioritizing practical teaching. With these characteristics, students are required to meet the same competency and skill targets that have been set. On the other hand, the diversity of students’ characterisitcs can lead to differences in the learning process. To achieve the expected competency targets and accommodate student diversity, the use of personalized e-learning concepts can be an option. Meanwhile, given the vocational curriculum's emphasis on practical teaching, the use of blended learning models can address the challenges when online learning cannot be fully applied to vocational education. Therefore, the use of personalized learning concepts in blended learning can be a solution. Thus, this research aims to (1) develop a personalized blended learning (p-BL) model, which uses the personalized learning concept in the context of a vocational curriculum that is sequential and integrated with the blended learning model; (2) develop a system prototype based on the model; and (3) measure the impact of system implementation on learning in vocational higher education.
The methodology used in this research is exploratory sequential mixed method. Qualitative methods are used in literature studies and model evaluation, while quantitative methods are used in surveys on practical learning in vocational higher education and experiments to evaluate the implementation of the p-BL system.
The p-BL model developed in this research consists of three components: the student model, the knowledge model, and the personalization model. The student model classifies students based on knowledge level (basic, intermediate, advanced) and learning style according to the Felder Silverman Learning Style Model (FSLSM) theory with a focus on two dominant styles. The knowledge model annotates learning objects with difficulty levels (easy, medium, hard) and aligns them with dimensions in the FSLSM theory. In the personalization model, the proposed personalization strategies include recommending learning objects and a feedback system tailored to the student model. The feedback system provides recommendations based on assessment results and, if necessary, repeats to ensure students master the competencies before proceeding to the next module. This accommodates the sequential competency mastery focus of vocational higher education curricula. The p-BL model is integrated with blended learning that combines the station rotation model and flipped classroom, where knowledge levels are used as stations in synchronous and asynchronous teaching.
The p-BL system prototype is developed using the SDLC methodology. Recommendations and feedback are provided using a knowledge-based approach. Knowledge is represented using ontology and implemented with a knowledge graph. The knowledge graph connects learning objects, difficulty levels, learning styles, and student assessment results in a structured network and serves as a data storage and management system. Using the knowledge graph, the system can trace the most relevant and efficient paths to provide personalized learning object recommendations and feedback.
The p-BL system prototype evaluation was conducted using experimental methods involving system implementation with an experimental class and a control class. The experiment was carried out in two courses at a vocational higher education institution in Jakarta, namely Programming 1 and Manufacturing & Process Design. The experimental class used the p-BL system in learning, while the control class used the institution's LMS and did not use the p-BL system. The implementation results showed that the experimental class achieved significantly higher learning outcome levels compared to the control class in both tested courses. From 51 students in the experimental class, the student perceptions and satisfaction with the usability of the p-BL system were quite good with a SUS score of 74.36. Interviews with 12 students revealed that the system could enhance students' understanding, confidence, and enthusiasm. It can be said that there is a positive impact of the p-BL system on student learning outcomes and learning experiences. The results of this study can serve as a basis for implementation in similar courses and institutions.
"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2024
D-pdf
UI - Disertasi Membership  Universitas Indonesia Library
cover
Eduardus Dimas Arya Sadewa
"Manajemen pengetahuan banyak digunakan di perusahaan karena memiliki pengaruh signifikan terhadap strategi inovasi dan efektifitas perusahaan. Institusi pendidikan yang merupakan bentuk dari knowledge business merupakan tempat yang tepat bagi perkembangan manajemen pengetahuan. Pendidikan tinggi vokasi yang lebih banyak melakukan praktek dan kerjasama industri dalam meningkatkan kompetensi siswanya memiliki sumber pengetahuan sebagai aset intangible institusi. Dari hasil penelitian sebelumnya, manajemen pengetahuan di pendidikan tinggi vokasi belum terstruktur. Penelitian ini fokus pada pengembangan model sistem manajemen pengetahuan di pendidikan tinggi vokasi. Model menunjukkan hubungan antara faktor lingkungan dan infrastruktur berpengaruh dalam sistem pembelajaran untuk membentuk aliran pengetahuan. Hasil assessment level dan bentuk aliran pengetahuan membentuk strategi manajemen pengetahuan guna merancang program manajemen pengetahuan yang tersusun dalam peta jalan manajemen pengetahuan institusi. Model diujicobakan di institusi Polman astra.

Knowledge management extensively applied in enterprise because it significantly effect on enterprise effectiviness and innovation strategy. Education institution as a knowledge business is a suitable form for a knowledge management development. Vocational education with practical approach methods and strong industrial relationship in order to improve their student skills, have plenty of knowledge sources to create knowledge as institutions intangible asset. From prior study, knowledge management system in vocational education is unstructurized. This study focused on knowledge management system model development in higher vocational education institution. The model shown that relation between organization environment and KM infrastructure effect on knowledge flow. KM assessment level and knowledge flow configurate KM strategy to establish KM roadmap. The model tested on Polman Astra institution."
Depok: Fakultas Teknik Universitas Indonesia, 2017
T48764
UI - Tesis Membership  Universitas Indonesia Library
cover
Muhammad Haddad
"Indonesia merupakan negara hukum yang mengadopsi asas Fictie Hukum. Asas tersebut memandang setiap orang tahu hukum tanpa pengecualian. Penyediaan akses yang mudah terhadap produk hukum merupakan konsekuensi dari hal tersebut. Meski telah tersedia beberapa layanan daring pencarian hukum, baik oleh pemerintah maupun swasta, layanan tersebut belum mampu menangkap relasi intradokumen dan antardokumen dengan baik. Dalam meningkatkan sistem pencarian hukum, terdapat knowledge graph (KG) bernama LexID yang menghadirkan representasi peraturan perundang-undangan Indonesia dalam sebuah graf. KG tersebut dikonstruksi dengan pendekatan rule-based. Namun, pendekatan rule-based tidak mudah beradaptasi dengan perubahan dalam format atau konten dokumen dan memerlukan pemeliharaan berkelanjutan. Penelitian ini mengusulkan pendekatan lain dalam konstruksi LexID. Proses konstruksi LexID dilakukan menggunakan pre-trained large language model (LLM) berupa CodeGemma parameter 7B, Code Llama parameter 7B, dan Phi-3 parameter 7B. Jenis prompt yang digunakan, yaitu prompt kode dan teks dengan variasi 1-shot dan 2-shot, sehingga total terdapat dua belas skenario percobaan. Hasil konstruksi KG kemudian dievaluasi terhadap KG LexID dan diukur menggunakan metrik precision, recall, dan skor F1. Dari hasil konstruksi, didapatkan skor F1 hasil dari prompt teks 1-shot: CodeGemma 0.405, CodeLlama 0.452, dan Phi 0.362; skor F1 hasil dari prompt kode 1-shot: CodeGemma 0.645, CodeLlama 0.567, dan Phi 0.526; skor F1 hasil dari prompt teks 2-shot: CodeGemma 0.572, CodeLlama 0.502, dan Phi 0.386; skor F1 hasil dari prompt kode 2-shot: CodeGemma 0.687, CodeLlama 0.583, dan Phi 0.539.

Indonesia operates under a legal system that adopts the principle of Legal Fiction, which posits that every individual is presumed to be aware of the law without exception. Consequently, providing easy access to legal documents is imperative. Despite the availability of several online legal search services offered by both government and private entities, these services have yet to effectively capture intra-document and inter-document relationships. To enhance the legal search system, a knowledge graph (KG) named LexID has been developed to represent Indonesian legislation in a graph format. This KG has traditionally been constructed using a rule-based approach. However, this approach struggles to adapt to changes in document format or content and necessitates continuous maintenance. This study proposes an alternative approach for the construction of LexID utilizing pre-trained large language models (LLMs), specifically CodeGemma with 7 billion parameters, Code Llama with 7 billion parameters, and Phi-3 with 7 billion parameters. The study employs both code and text prompts, with variations of 1-shot and 2-shot, resulting in a total of twelve experimental scenarios. The constructed KG is then evaluated against the existing LexID KG, using precision, recall, and F1 score metrics. The results of the construction indicate the following F1 scores: for 1-shot text prompts, CodeGemma achieved 0.405, Code Llama 0.452, and Phi 0.362; for 1-shot code prompts, CodeGemma achieved 0.645, Code Llama 0.567, and Phi 0.526; for 2-shot text prompts, CodeGemma achieved 0.572, Code Llama 0.502, and Phi 0.386; and for 2-shot code prompts, CodeGemma achieved 0.687, Code Llama 0.583, and Phi 0.539."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ariq Naufal Satria
"Perkembangan teknologi pada bidang pendidikan mendorong terciptanya berbagai inovasi baru seperti e-Learning. Adanya e-Learning memberikan berbagai kemudahan baru dalam proses pembelajaran. Salah satu inovasi yang muncul adalah e-Learning yang mampu menyediakan fasilitas personalisasi bagi penggunanya. Berbagai penelitian telah mencoba membahas pengembangan e-Learning dengan personalisasi. Sayangnya secara umum penelitian yang dilakukan hanya terbatas sampai pada tahap pengembangan desain interaksi. Belum banyak penelitian yang membahas pengembangan sampai pada tahap implementasi aplikasi. Berangkat dari isu tersebut, penelitian ini membahas lebih lanjut pengembangan aplikasi e-Learning yang melakukan personalisasi berdasarkan gaya belajar Felder-Silverman. Penelitian ini menggunakan pendekatan user-centered design dalam implementasinya. Aplikasi yang dikembangkan mengacu kepada desain interaksi penelitian sebelumnya, studi demografi pengguna, dan wawancara eksplorasi pengguna. Aplikasi kemudian dievaluasi oleh partisipan penelitian pada tahap usability testing. Berdasarkan hasil penelitian, aplikasi yang dikembangan telah mendapatkan hasil usability yang baik dari pengguna. Penelitian ini juga mengusulkan rekomendasi perbaikan yang dapat digunakan dalam pengembangan aplikasi personalisasi e-Learning ke depannya.

Various research has discussed the development of personalized e-Learning. One of the main topics of recent research is how personalizing learning styles can improve the user experience of e-Learning applications. Based on the issue, this study is focused on the development of a prototype of a personalized e-Learning application using three Felder-Silverman Learning Styles as a main focus. User-centered design is used in this study as an approach to the development of the e-Learning application. This study analyzes the design of similar personalized e-learning interactions, user learning styles, and various user information obtained from user demographic surveys and user interviews. The demographics of the users studied were computer science students from the University of Indonesia. The application was then evaluated by participants in the usability testing stage. Furthermore, this study also proposes recommendations for improvements that can be used in the development of personalized e-Learning applications in the upcoming studies."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2021
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ariq Naufal Satria
"Perkembangan teknologi pada bidang pendidikan mendorong terciptanya berbagai inovasi baru seperti e-Learning. Adanya e-Learning memberikan berbagai kemudahan baru dalam proses pembelajaran. Salah satu inovasi yang muncul adalah e-Learning yang mampu menyediakan fasilitas personalisasi bagi penggunanya. Berbagai penelitian telah mencoba membahas pengembangan e-Learning dengan personalisasi. Sayangnya secara umum penelitian yang dilakukan hanya terbatas sampai pada tahap pengembangan desain interaksi. Belum banyak penelitian yang membahas pengembangan sampai pada tahap implementasi aplikasi. Berangkat dari isu tersebut, penelitian ini membahas lebih lanjut pengembangan aplikasi e-Learning yang melakukan personalisasi berdasarkan gaya belajar Felder-Silverman. Penelitian ini menggunakan pendekatan user-centered design dalam implementasinya. Aplikasi yang dikembangkan mengacu kepada desain interaksi penelitian sebelumnya, studi demografi pengguna, dan wawancara eksplorasi pengguna. Aplikasi kemudian dievaluasi oleh partisipan penelitian pada tahap usability testing. Berdasarkan hasil penelitian, aplikasi yang dikembangan telah mendapatkan hasil usability yang baik dari pengguna. Penelitian ini juga mengusulkan rekomendasi perbaikan yang dapat digunakan dalam pengembangan aplikasi personalisasi e-Learning ke depannya.

Recent technological developments in the field of education trigger many innovations, one of the best examples are the emergence of e-Learning. E-Learning provides conveniences in the learning process. One of the innovations is e-Learning that capable to provide personalization for its users. Various research has discussed the development of personalized e-Learning. Unfortunately, most of the research stopped at the interaction design development stage. There are not many studies that studied the application until the implementation stage. Based on the issue, this study focused on the development of personalized e-Learning applications. In this case, the personalized factor is based on Felder-Silverman Learning Styles. This study uses a user-centered design approach in its implementation. The application was developed based on the interaction design of previous research, user demographic, and user interviews. The application was then evaluated by participants in the usability testing stage. Based on the research results, the application has good usability results from the users. Furthermore, this study also proposes recommendations for improvements that can be used in the development of personalized e-Learning applications in the upcoming studies."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Aulia Nur Fadhilah
"Indonesia merupakan negara hukum yang mengadopsi asas Fictie Hukum. Asas tersebut memandang setiap orang tahu hukum tanpa pengecualian. Penyediaan akses yang mudah terhadap produk hukum merupakan konsekuensi dari hal tersebut. Meski telah tersedia beberapa layanan daring pencarian hukum, baik oleh pemerintah maupun swasta, layanan tersebut belum mampu menangkap relasi intradokumen dan antardokumen dengan baik. Dalam meningkatkan sistem pencarian hukum, terdapat knowledge graph (KG) bernama LexID yang menghadirkan representasi peraturan perundang-undangan Indonesia dalam sebuah graf. KG tersebut dikonstruksi dengan pendekatan rule-based. Namun, pendekatan rule-based tidak mudah beradaptasi dengan perubahan dalam format atau konten dokumen dan memerlukan pemeliharaan berkelanjutan. Penelitian ini mengusulkan pendekatan lain dalam konstruksi LexID. Proses konstruksi LexID dilakukan menggunakan pre-trained large language model (LLM) berupa CodeGemma parameter 7B, Code Llama parameter 7B, dan Phi-3 parameter 7B. Jenis prompt yang digunakan, yaitu prompt kode dan teks dengan variasi 1-shot dan 2-shot, sehingga total terdapat dua belas skenario percobaan. Hasil konstruksi KG kemudian dievaluasi terhadap KG LexID dan diukur menggunakan metrik precision, recall, dan skor F1. Dari hasil konstruksi, didapatkan skor F1 hasil dari prompt teks 1-shot: CodeGemma 0.405, CodeLlama 0.452, dan Phi 0.362; skor F1 hasil dari prompt kode 1-shot: CodeGemma 0.645, CodeLlama 0.567, dan Phi 0.526; skor F1 hasil dari prompt teks 2-shot: CodeGemma 0.572, CodeLlama 0.502, dan Phi 0.386; skor F1 hasil dari prompt kode 2-shot: CodeGemma 0.687, CodeLlama 0.583, dan Phi 0.539.

Indonesia operates under a legal system that adopts the principle of Legal Fiction, which posits that every individual is presumed to be aware of the law without exception. Consequently, providing easy access to legal documents is imperative. Despite the availability of several online legal search services offered by both government and private entities, these services have yet to effectively capture intra-document and inter-document relationships. To enhance the legal search system, a knowledge graph (KG) named LexID has been developed to represent Indonesian legislation in a graph format. This KG has traditionally been constructed using a rule-based approach. However, this approach struggles to adapt to changes in document format or content and necessitates continuous maintenance. This study proposes an alternative approach for the construction of LexID utilizing pre-trained large language models (LLMs), specifically CodeGemma with 7 billion parameters, Code Llama with 7 billion parameters, and Phi-3 with 7 billion parameters. The study employs both code and text prompts, with variations of 1-shot and 2-shot, resulting in a total of twelve experimental scenarios. The constructed KG is then evaluated against the existing LexID KG, using precision, recall, and F1 score metrics. The results of the construction indicate the following F1 scores: for 1-shot text prompts, CodeGemma achieved 0.405, Code Llama 0.452, and Phi 0.362; for 1-shot code prompts, CodeGemma achieved 0.645, Code Llama 0.567, and Phi 0.526; for 2-shot text prompts, CodeGemma achieved 0.572, Code Llama 0.502, and Phi 0.386; and for 2-shot code prompts, CodeGemma achieved 0.687, Code Llama 0.583, and Phi 0.539."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Halif
"Indonesia merupakan negara hukum yang mengadopsi asas Fictie Hukum. Asas tersebut memandang setiap orang tahu hukum tanpa pengecualian. Penyediaan akses yang mudah terhadap produk hukum merupakan konsekuensi dari hal tersebut. Meski telah tersedia beberapa layanan daring pencarian hukum, baik oleh pemerintah maupun swasta, layanan tersebut belum mampu menangkap relasi intradokumen dan antardokumen dengan baik. Dalam meningkatkan sistem pencarian hukum, terdapat knowledge graph (KG) bernama LexID yang menghadirkan representasi peraturan perundang-undangan Indonesia dalam sebuah graf. KG tersebut dikonstruksi dengan pendekatan rule-based. Namun, pendekatan rule-based tidak mudah beradaptasi dengan perubahan dalam format atau konten dokumen dan memerlukan pemeliharaan berkelanjutan. Penelitian ini mengusulkan pendekatan lain dalam konstruksi LexID. Proses konstruksi LexID dilakukan menggunakan pre-trained large language model (LLM) berupa CodeGemma parameter 7B, Code Llama parameter 7B, dan Phi-3 parameter 7B. Jenis prompt yang digunakan, yaitu prompt kode dan teks dengan variasi 1-shot dan 2-shot, sehingga total terdapat dua belas skenario percobaan. Hasil konstruksi KG kemudian dievaluasi terhadap KG LexID dan diukur menggunakan metrik precision, recall, dan skor F1. Dari hasil konstruksi, didapatkan skor F1 hasil dari prompt teks 1-shot: CodeGemma 0.405, CodeLlama 0.452, dan Phi 0.362; skor F1 hasil dari prompt kode 1-shot: CodeGemma 0.645, CodeLlama 0.567, dan Phi 0.526; skor F1 hasil dari prompt teks 2-shot: CodeGemma 0.572, CodeLlama 0.502, dan Phi 0.386; skor F1 hasil dari prompt kode 2-shot: CodeGemma 0.687, CodeLlama 0.583, dan Phi 0.539.

Indonesia operates under a legal system that adopts the principle of Legal Fiction, which posits that every individual is presumed to be aware of the law without exception. Consequently, providing easy access to legal documents is imperative. Despite the availability of several online legal search services offered by both government and private entities, these services have yet to effectively capture intra-document and inter-document relationships. To enhance the legal search system, a knowledge graph (KG) named LexID has been developed to represent Indonesian legislation in a graph format. This KG has traditionally been constructed using a rule-based approach. However, this approach struggles to adapt to changes in document format or content and necessitates continuous maintenance. This study proposes an alternative approach for the construction of LexID utilizing pre-trained large language models (LLMs), specifically CodeGemma with 7 billion parameters, Code Llama with 7 billion parameters, and Phi-3 with 7 billion parameters. The study employs both code and text prompts, with variations of 1-shot and 2-shot, resulting in a total of twelve experimental scenarios. The constructed KG is then evaluated against the existing LexID KG, using precision, recall, and F1 score metrics. The results of the construction indicate the following F1 scores: for 1-shot text prompts, CodeGemma achieved 0.405, Code Llama 0.452, and Phi 0.362; for 1-shot code prompts, CodeGemma achieved 0.645, Code Llama 0.567, and Phi 0.526; for 2-shot text prompts, CodeGemma achieved 0.572, Code Llama 0.502, and Phi 0.386; and for 2-shot code prompts, CodeGemma achieved 0.687, Code Llama 0.583, and Phi 0.539."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Haddad
"Indonesia merupakan negara hukum yang mengadopsi asas Fictie Hukum. Asas tersebut memandang setiap orang tahu hukum tanpa pengecualian. Penyediaan akses yang mudah terhadap produk hukum merupakan konsekuensi dari hal tersebut. Meski telah tersedia beberapa layanan daring pencarian hukum, baik oleh pemerintah maupun swasta, layanan tersebut belum mampu menangkap relasi intradokumen dan antardokumen dengan baik. Dalam meningkatkan sistem pencarian hukum, terdapat knowledge graph (KG) bernama LexID yang menghadirkan representasi peraturan perundang-undangan Indonesia dalam sebuah graf. KG tersebut dikonstruksi dengan pendekatan rule-based. Namun, pendekatan rule-based tidak mudah beradaptasi dengan perubahan dalam format atau konten dokumen dan memerlukan pemeliharaan berkelanjutan. Penelitian ini mengusulkan pendekatan lain dalam konstruksi LexID. Proses konstruksi LexID dilakukan menggunakan pre-trained large language model (LLM) berupa CodeGemma parameter 7B, Code Llama parameter 7B, dan Phi-3 parameter 7B. Jenis prompt yang digunakan, yaitu prompt kode dan teks dengan variasi 1-shot dan 2-shot, sehingga total terdapat dua belas skenario percobaan. Hasil konstruksi KG kemudian dievaluasi terhadap KG LexID dan diukur menggunakan metrik precision, recall, dan skor F1. Dari hasil konstruksi, didapatkan skor F1 hasil dari prompt teks 1-shot: CodeGemma 0.405, CodeLlama 0.452, dan Phi 0.362; skor F1 hasil dari prompt kode 1-shot: CodeGemma 0.645, CodeLlama 0.567, dan Phi 0.526; skor F1 hasil dari prompt teks 2-shot: CodeGemma 0.572, CodeLlama 0.502, dan Phi 0.386; skor F1 hasil dari prompt kode 2-shot: CodeGemma 0.687, CodeLlama 0.583, dan Phi 0.539.

Indonesia operates under a legal system that adopts the principle of Legal Fiction, which posits that every individual is presumed to be aware of the law without exception. Consequently, providing easy access to legal documents is imperative. Despite the availability of several online legal search services offered by both government and private entities, these services have yet to effectively capture intra-document and inter-document relationships. To enhance the legal search system, a knowledge graph (KG) named LexID has been developed to represent Indonesian legislation in a graph format. This KG has traditionally been constructed using a rule-based approach. However, this approach struggles to adapt to changes in document format or content and necessitates continuous maintenance. This study proposes an alternative approach for the construction of LexID utilizing pre-trained large language models (LLMs), specifically CodeGemma with 7 billion parameters, Code Llama with 7 billion parameters, and Phi-3 with 7 billion parameters. The study employs both code and text prompts, with variations of 1-shot and 2-shot, resulting in a total of twelve experimental scenarios. The constructed KG is then evaluated against the existing LexID KG, using precision, recall, and F1 score metrics. The results of the construction indicate the following F1 scores: for 1-shot text prompts, CodeGemma achieved 0.405, Code Llama 0.452, and Phi 0.362; for 1-shot code prompts, CodeGemma achieved 0.645, Code Llama 0.567, and Phi 0.526; for 2-shot text prompts, CodeGemma achieved 0.572, Code Llama 0.502, and Phi 0.386; and for 2-shot code prompts, CodeGemma achieved 0.687, Code Llama 0.583, and Phi 0.539."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Haddad
"Indonesia merupakan negara hukum yang mengadopsi asas Fictie Hukum. Asas tersebut memandang setiap orang tahu hukum tanpa pengecualian. Penyediaan akses yang mudah terhadap produk hukum merupakan konsekuensi dari hal tersebut. Meski telah tersedia beberapa layanan daring pencarian hukum, baik oleh pemerintah maupun swasta, layanan tersebut belum mampu menangkap relasi intradokumen dan antardokumen dengan baik. Dalam meningkatkan sistem pencarian hukum, terdapat knowledge graph (KG) bernama LexID yang menghadirkan representasi peraturan perundang-undangan Indonesia dalam sebuah graf. KG tersebut dikonstruksi dengan pendekatan rule-based. Namun, pendekatan rule-based tidak mudah beradaptasi dengan perubahan dalam format atau konten dokumen dan memerlukan pemeliharaan berkelanjutan. Penelitian ini mengusulkan pendekatan lain dalam konstruksi LexID. Proses konstruksi LexID dilakukan menggunakan pre-trained large language model (LLM) berupa CodeGemma parameter 7B, Code Llama parameter 7B, dan Phi-3 parameter 7B. Jenis prompt yang digunakan, yaitu prompt kode dan teks dengan variasi 1-shot dan 2-shot, sehingga total terdapat dua belas skenario percobaan. Hasil konstruksi KG kemudian dievaluasi terhadap KG LexID dan diukur menggunakan metrik precision, recall, dan skor F1. Dari hasil konstruksi, didapatkan skor F1 hasil dari prompt teks 1-shot: CodeGemma 0.405, CodeLlama 0.452, dan Phi 0.362; skor F1 hasil dari prompt kode 1-shot: CodeGemma 0.645, CodeLlama 0.567, dan Phi 0.526; skor F1 hasil dari prompt teks 2-shot: CodeGemma 0.572, CodeLlama 0.502, dan Phi 0.386; skor F1 hasil dari prompt kode 2-shot: CodeGemma 0.687, CodeLlama 0.583, dan Phi 0.539.

Indonesia operates under a legal system that adopts the principle of Legal Fiction, which posits that every individual is presumed to be aware of the law without exception. Consequently, providing easy access to legal documents is imperative. Despite the availability of several online legal search services offered by both government and private entities, these services have yet to effectively capture intra-document and inter-document relationships. To enhance the legal search system, a knowledge graph (KG) named LexID has been developed to represent Indonesian legislation in a graph format. This KG has traditionally been constructed using a rule-based approach. However, this approach struggles to adapt to changes in document format or content and necessitates continuous maintenance. This study proposes an alternative approach for the construction of LexID utilizing pre-trained large language models (LLMs), specifically CodeGemma with 7 billion parameters, Code Llama with 7 billion parameters, and Phi-3 with 7 billion parameters. The study employs both code and text prompts, with variations of 1-shot and 2-shot, resulting in a total of twelve experimental scenarios. The constructed KG is then evaluated against the existing LexID KG, using precision, recall, and F1 score metrics. The results of the construction indicate the following F1 scores: for 1-shot text prompts, CodeGemma achieved 0.405, Code Llama 0.452, and Phi 0.362; for 1-shot code prompts, CodeGemma achieved 0.645, Code Llama 0.567, and Phi 0.526; for 2-shot text prompts, CodeGemma achieved 0.572, Code Llama 0.502, and Phi 0.386; and for 2-shot code prompts, CodeGemma achieved 0.687, Code Llama 0.583, and Phi 0.539."
Fakultas Ilmu Komputer Universitas Indonesia, 2024
S-pdf
Unggah3  Universitas Indonesia Library
cover
Muhammad Haddad
"Indonesia merupakan negara hukum yang mengadopsi asas Fictie Hukum. Asas tersebut memandang setiap orang tahu hukum tanpa pengecualian. Penyediaan akses yang mudah terhadap produk hukum merupakan konsekuensi dari hal tersebut. Meski telah tersedia beberapa layanan daring pencarian hukum, baik oleh pemerintah maupun swasta, layanan tersebut belum mampu menangkap relasi intradokumen dan antardokumen dengan baik. Dalam meningkatkan sistem pencarian hukum, terdapat knowledge graph (KG) bernama LexID yang menghadirkan representasi peraturan perundang-undangan Indonesia dalam sebuah graf. KG tersebut dikonstruksi dengan pendekatan rule-based. Namun, pendekatan rule-based tidak mudah beradaptasi dengan perubahan dalam format atau konten dokumen dan memerlukan pemeliharaan berkelanjutan. Penelitian ini mengusulkan pendekatan lain dalam konstruksi LexID. Proses konstruksi LexID dilakukan menggunakan pre-trained large language model (LLM) berupa CodeGemma parameter 7B, Code Llama parameter 7B, dan Phi-3 parameter 7B. Jenis prompt yang digunakan, yaitu prompt kode dan teks dengan variasi 1-shot dan 2-shot, sehingga total terdapat dua belas skenario percobaan. Hasil konstruksi KG kemudian dievaluasi terhadap KG LexID dan diukur menggunakan metrik precision, recall, dan skor F1. Dari hasil konstruksi, didapatkan skor F1 hasil dari prompt teks 1-shot: CodeGemma 0.405, CodeLlama 0.452, dan Phi 0.362; skor F1 hasil dari prompt kode 1-shot: CodeGemma 0.645, CodeLlama 0.567, dan Phi 0.526; skor F1 hasil dari prompt teks 2-shot: CodeGemma 0.572, CodeLlama 0.502, dan Phi 0.386; skor F1 hasil dari prompt kode 2-shot: CodeGemma 0.687, CodeLlama 0.583, dan Phi 0.539.

Indonesia operates under a legal system that adopts the principle of Legal Fiction, which posits that every individual is presumed to be aware of the law without exception. Consequently, providing easy access to legal documents is imperative. Despite the availability of several online legal search services offered by both government and private entities, these services have yet to effectively capture intra-document and inter-document relationships. To enhance the legal search system, a knowledge graph (KG) named LexID has been developed to represent Indonesian legislation in a graph format. This KG has traditionally been constructed using a rule-based approach. However, this approach struggles to adapt to changes in document format or content and necessitates continuous maintenance. This study proposes an alternative approach for the construction of LexID utilizing pre-trained large language models (LLMs), specifically CodeGemma with 7 billion parameters, Code Llama with 7 billion parameters, and Phi-3 with 7 billion parameters. The study employs both code and text prompts, with variations of 1-shot and 2-shot, resulting in a total of twelve experimental scenarios. The constructed KG is then evaluated against the existing LexID KG, using precision, recall, and F1 score metrics. The results of the construction indicate the following F1 scores: for 1-shot text prompts, CodeGemma achieved 0.405, Code Llama 0.452, and Phi 0.362; for 1-shot code prompts, CodeGemma achieved 0.645, Code Llama 0.567, and Phi 0.526; for 2-shot text prompts, CodeGemma achieved 0.572, Code Llama 0.502, and Phi 0.386; and for 2-shot code prompts, CodeGemma achieved 0.687, Code Llama 0.583, and Phi 0.539."
Fakultas Ilmu Komputer Universitas Indonesia, 2024
S-pdf
Unggah3  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>