Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 204969 dokumen yang sesuai dengan query
cover
Kayla Calista Ayal
"Usia biologis mengukur penuaan individu berdasarkan kondisi fisik dan fungsi organ. Meskipun banyak penelitian telah dilakukan untuk memprediksi usia biologis dengan berbagai metode, penerapan metode machine learning masih memiliki ruang untuk penelitian lebih lanjut. Penelitian ini mengimplementasikan dua metode machine learning dengan pendekatan yang berbeda, yaitu metode Support Vector Regression (SVR) dan Light Gradient Boosting Machine (LGBM) dalam memprediksi usia biologis menggunakan data pemeriksaan medis Kementerian Kesehatan tahun 2011 yang mencakup 5960 subjek dan 41 fitur. Proses preprocessing meliputi penyaringan usia kronologis > 30 tahun, pemisahan data berdasarkan jenis kelamin, penanganan missing values dan outlier, serta data encoding. Feature selection menggunakan koefisien korelasi Spearman menghasilkan 8 fitur berbeda untuk setiap jenis kelamin. Data dibagi dengan 90% untuk pelatihan dan 10% untuk pengujian, serta dilakukan tuning hyperparameter menggunakan GridSearchCV. Penelitian ini menggunakan metrik RMSE dan adjusted R-squared, yang dipilih berdasarkan relevansinya dengan tujuan penelitian. Hasil menunjukkan LGBM lebih unggul dari SVR dengan RMSE 7,2064 tahun dan adjusted R-squared 33,36% pada pria, serta RMSE 7,1475 tahun dan adjusted R-squared 22,16% pada wanita. Analisis korelasi menunjukkan hubungan yang wajar antara usia biologis dan usia kronologis serta korelasi yang cukup antara usia biologis dengan biomarker tekanan sistolik dan status hipertensi pada pria, serta tekanan sistolik dan kolesterol pada wanita. Analisis korelasi menunjukkan hubungan signifikan antara usia biologis dengan usia kronologis dan beberapa biomarker. Secara keseluruhan, LGBM lebih efektif dalam memprediksi usia biologis dibandingkan SVR. Hasil dari penelitian diharapkan dapat diaplikasikan dalam kehidupan sehari-hari, seperti membantu perusahaan asuransi menilai kelayakan klaim berdasarkan prediksi usia biologis, serta mendukung keputusan di bidang kesehatan preventif.

Biological age measures an individual's aging based on physical condition and organ function. Although numerous studies have been conducted to predict biological age using various methods, there is still room for further research in the application of machine learning techniques. This study implements two machine learning methods with different approaches, namely Support Vector Regression (SVR) and Light Gradient Boosting Machine (LGBM), to predict biological age using medical examination data from the Ministry of Health in 2011, covering 5960 subjects and 41 features. The preprocessing steps include filtering chronological age > 30 years, segregating data by gender, handling missing values and outliers, and data encoding. Feature selection using Spearman correlation coefficients resulted in 8 different features for each gender. The data was split into 90% for training and 10% for testing, with hyperparameter tuning performed using GridSearchCV. This study used RMSE and adjusted R-squared metrics, selected based on their relevance to the research objectives. The results show that LGBM outperformed SVR with an RMSE of 7.2064 years and an adjusted R-squared of 33.36% for men, and an RMSE of 7.1475 years and an adjusted R-squared of 22.16% for women. Correlation analysis revealed a significant relationship between biological age and chronological age, as well as a reasonable correlation between biological age and biomarkers such as systolic blood pressure and hypertension status in men, and systolic blood pressure and cholesterol in women. Overall, LGBM proved to be more effective in predicting biological age compared to SVR. The results of this study are expected to be applicable in everyday life, such as assisting insurance companies in evaluating claim eligibility based on biological age predictions, as well as supporting decision-making in preventive healthcare."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Salma Mazaya Fasya
"Penuaan merupakan kumpulan perubahan biologis pada tubuh manusia yang terjadi secara bertahap dan dapat meningkatkan risiko terjadinya penyakit bahkan kematian. Hingga saat ini, usia kronologis menjadi indikator penuaan yang paling umum digunakan dalam dunia kesehatan. Akan tetapi, munculnya konsep usia biologis diyakini mampu memberikan pengukuran yang lebih akurat terkait penuaan pada manusia dibandingkan dengan usia kronologis. Usia biologis dipengaruhi oleh berbagai faktor yang disebut biomarker. Penelitian ini berfokus pada prediksi usia biologis berdasarkan usia kronologis dan fitur (biomarker) lainnya dengan memanfaatkan metode machine learning Extreme Gradient Boosting (XGBoost) dan Support Vector Regression (SVR). Dataset yang digunakan berupa data pemeriksaan medis oleh Kementerian Kesehatan RI. Pada dataset tersebut dilakukan data preprocessing, seleksi fitur menggunakan Spearman’s Rank Correlation Coefficient, dan pembangunan model. Model dievaluasi menggunakan metrik evaluasi pada model regresi yaitu Root Mean Square Error (RMSE), Coefficient of Determination , dan Adjusted . Ketiga metrik ini masing-masing menghitung selisih nilai prediksi dengan nilai aktual dan menunjukkan seberapa baik variabel dependen dapat dijelaskan oleh variabel independen pada model. Dengan metode XGBoost diperoleh nilai RMSE 8,0560, 0,2894, dan Adjusted 0,2006 untuk data pria, serta RMSE 6,3851, 0,4252, dan Adjusted 0,3938 untuk data wanita. Dengan metode SVR, diperoleh RMSE 8,0697, 0,2870, dan Adjusted 0,1979 untuk data pria, serta RMSE 6,7147, 0,3643, dan Adjusted sebesar 0,3296. Metode XGBoost lebih unggul dalam memprediksi usia biologis baik pada model pria maupun wanita dibandingkan metode SVR. Usia kronologis dan biomarker (fitur) lainnya terkait kesehatan juga ditemukan berpengaruh positif terhadap usia biologis seorang individu.

Aging is a collection of biological changes in the human body that occur gradually and can increase the risk of disease and even death. Until now, chronological age is the most commonly used indicator of aging in the medical sector. However, the emergence of the concept of biological age is believed to be able to provide a more accurate measurement of aging in humans compared to chronological age. Biological age is influenced by various factors called biomarkers. This research focuses on predicting biological age based on chronological age and other features (biomarkers) by utilizing the Extreme Gradient Boosting (XGBoost) and Support Vector Regression (SVR) machine learning methods. The dataset used is medical examination data by the Indonesian Ministry of Health. Data preprocessing was performed on this dataset, followed by feature selection using the Spearman Rank Correlation Coefficient, and subsequent model development. The model is evaluated using evaluation metrics in the regression model, namely Root Mean Square Error (RMSE), Coefficient of Determination , and Adjusted . These three metrics each calculate the difference between the predicted and actual values and indicate how well the dependent variable can be explained by the independent variables in the model. Using the XGBoost method, RMSE values were obtained of 8,0560, 0,2894, and Adjusted 0,2006 for male data, as well as RMSE 6,3851, 0,4252, dan Adjusted 0,3938 for female's data. Using the SVR method, RMSE 8,0697, 0,2870, and Adjusted 0,1979 were obtained for male data, as well as RMSE 6.7147, 0.3643, and Adjusted of 0,3296 for female's data. The XGBoost method demonstrates better performance in predicting biological age for both male and female models compared to the SVR method. Chronological age and other health-related biomarkers (features) were also found to have a positive impact on an individual's biological age."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Angelica Patricia Djaya Saputra
"Penuaan biologis mencerminkan kondisi kesehatan fisik yang sebenarnya karena menilai fungsi organ dan sistem tubuh yang sebenarnya pada setiap individu, berbeda dengan usia kronologis. Penelitian ini mengeksplorasi prediksi usia biologis menggunakan metode Support Vector Regression (SVR) dan Klemera-and-Doubal Method (KDM), yang berfokus pada pengaruh biomarker dan faktor eksternal pada proses penuaan. Pembangunan model memanfaatkan data pemeriksaan medis dari Kementerian Kesehatan Indonesia pada tahun 2011 dimana keterbaharuan dari penelitian ini adalah melibatkan semua fitur yang berperngaruh terhadap usia biologis, termasuk faktor eksternal, tidak hanya biomarker saja. Kemudian, dilakukan pemanfaatan seluruh dataset tanpa membedakan subjek sehat dan tidak sehat. Pada dataset dilakukan data preprocessing agar dataset siap digunakan dengan melakukan filtering usia di atas 30 tahun, pemisahan dataset pria dan wanita, menghapus fitur yang tidak relevan, mengubah tipe data yang tidak sesuai, mengidentifikasi dan melakukan penanganan missing value serta outliers, dan melakukan encoding untuk data beripe kategorikal. Kemudian, dilakukan feature selection dengan menggunakan Spearman’s rank Coefficient Corelation dan pembangunan model SVR dan KDM. Hasil penelitian menunjukkan bahwa terpilih 5 fitur untuk pria dan 6 fitur untuk wanita yang digunakan untuk membangun model SVR dan KDM. KDM menunjukkan performa evaluasi yang cukup baik dalam interpretasi variasi data dengan skor performa RMSE 1,39; R2 0,97; dan Adjusted R2 0,97 untuk pria dan RMSE 1,00; R2 0,99; dan Adjusted R2 0,99 untuk wanita. Metode ini lebih unggul daripada SVR yang cenderung menunjukkan performa yang kurang memuaskan dimana memiliki skor performa RMSE 6,36; R2 0,44; dan Adjusted R2 0,36 untuk pria dan RMSE 5,90; R2 0,57; dan Adjusted R2 0,53 untuk wanita. Berdasarkan hasil analisis dari berbagai teknik analisis yang dilakukan (analisis evaluasi performa, analisis hubungan usia kronologis dengan usia biologis, dan analisis evaluasi dengan melihat pola hasil estimasi) terlihat bahwa metode KDM lebih unggul dalam memprediksi usia biologis dibandingkan dengan SVR, terutama dalam hal konsistensi dan akurasi. Selain itu, analisis hubungan setiap fitur dengan usia biologis untuk tiap model menggambarkan pengaruh fitur-fitur tersebut terhadap fungsi organ tubuh seseorang.

The biological aging reflects the actual physical health condition as it assesses the real function of organs and body systems in each individual, different from chronological age. This research explores the prediction of biological age using the Support Vector Regression (SVR) method and the Klemera-and-Doubal Method (KDM), focusing on the influence of biomarkers and external factors on the aging process. The model development utilized medical examination data from the Indonesian Ministry of Health in 2011, where the novelty of this research is involving all features that affect biological age, including external factors, not just biomarkers. Then, the entire dataset was utilized without distinguishing between healthy and unhealthy subjects. In the dataset, data preprocessing was performed to make the dataset ready to use by filtering ages above 30 years, separating datasets for men and women, removing irrelevant features, changing inappropriate data types, identifying and handling missing values and outliers, and encoding for categorical data. Subsequently, feature selection was conducted using Spearman's Rank Coefficient Correlation, and then the SVR and KDM models were built. The research results showed that 5 features for men and 6 features for women were selected to build the SVR and KDM models. KDM showed fairly good evaluation performance in interpreting data variations with performance scores of RMSE 1.39, R^2 0.97, and Adjusted R^2 0.97 for men and RMSE 1.00, R^2 0.99, and Adjusted R^2 0.99 for women. This method outperformed SVR, which tended to show less satisfactory performance with performance scores of RMSE 6.36, R^2 0.44, and Adjusted R^2 0.36 for men and RMSE 5.90, R^2 0.57, and Adjusted R^2 0.53 for women. Based on the analysis results from various techniques performed (performance evaluation analysis, analysis of the relationship between chronological age and biological age, and evaluation analysis by looking at the pattern of estimation results), it appears that the KDM method is superior in predicting biological age compared to SVR, especially in terms of consistency and accuracy. In addition, the analysis of the relationship of each feature with biological age for each model illustrates the influence of these features on the organ function of an individual."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nadia Hartini Kusumawijaya
"Penuaan adalah salah satu faktor utama resiko terjadinya penyakit dan kematian. Laju
penuaan individu dengan usia kronologis yang sama terbukti bervariasi. Maka dari
itu, muncul kebutuhan untuk alat pengukuran penuaan yang lebih akurat, robust, dan
dapat diandalkan dibandingkan usia kronologis, yakni usia biologis. Pada penelitian
ini, penulis membangun model menggunakan Metode Random Forest Regression (RF)
dan Metode Support Vector Regression (SVR) untuk memprediksi umur biologis pada
data pemeriksaan medis, menilai dan mengevaluasi hasil kinerjanya, serta melakukan
komparasi kinerja kedua metode. Terkait metode yang digunakan, Metode RF adalah
metode yang mengaplikasikan Teknik Ensemble Learning dengan cara menggabungkan
beberapa decision tree untuk menghasilkan prediksi. Sedangkan, Metode SVR adalah
metode yang berkerja dengan cara membangun hyperplane atau kumpulan hyperplane
dalam ruang berdimensi tinggi yang dapat digunakan untuk regresi linier atau nonlinier.
Dataset yang digunakan adalah data medis yang berasal dari Kementrian Kesehatan
Republik Indonesia. Pada dataset dilakukan data preprocessing, yakni data diproses pada
aspek missing values handling, encoding, dan outliers detection and outliers handling.
Kemudian, dilakukan feature selection menggunakan Spearman’s Rank Correlation
Coefficient. Setelah itu, dilakukan pembangunan model dengan Metode RF dan model
dengan Metode SVR secara terpisah untuk masing - masing jenis kelamin. Terakhir,
performa model dievaluasi dan dibandingkan kinerjanya menggunakan metrik evaluasi
Root Mean Square Error (RMSE), Coefficient of Determination (R2), Adjusted R2, dan
running time. Metode RF menggunakan hyperparameter terbaik {’max depth’: 15,
’n estimators’: 1150} untuk dataset pria, dan {’max depth’: 15, ’n estimators’: 1250}
untuk dataset wanita. Sedangkan, Metode SVR menggunakan hyperparameter terbaik
{’C’: 2,’epsilon’: 0,2, ’gamma’: ’scale’, ’kernel’: ’rbf’, ’tol’: 0,005} untuk dataset pria,
dan {’C’: 3, ’epsilon’: 0,2, ’gamma’: ’scale’, ’kernel’: ’rbf’, ’tol’: 0,005} untuk dataset
wanita. Metode RF memiliki kinerja yang cukup baik, dengan nilai RMSE = 7,532; R2
= 0,403; Adjusted R2 = 0,351; running time = 0,154 untuk pria dan RMSE = 6,889;
R2 = 0,340; Adjusted R2 = 0,264; running time = 0,179 untuk wanita. Selain itu, SVR
juga memiliki performa yang cenderung sama namun sedikit lebih buruk, dengan nilai
RMSE = 7,692; R2 = 0,376; Adjusted R2 = 0,321; running time = 0,035 untuk pria dan
RMSE = 6,905; R2 = 0,337; Adjusted R2 = 0,306; running time = 0,080 untuk wanita.
Berdasarkan analisis kinerja model yang dilakukan pada penelitian ini model yang
dibangun dengan Metode Random Forest Regression lebih unggul dalam memprediksi
usia biologis dibandingkan dengan Metode Support Vector Regression.

Aging is one of the main risk factors for disease and death. The aging rate of individ- uals of the same chronological age has been shown to vary. So therefore, a need arises for a more accurate, robust, and reliable aging measurement tool than chronological age, namely biological age. In this research, the author build a model using the Random For- est Regression (RF) Method and the Support Vector Regression (SVR) Method to predict biological age from patient clinical data, assess and evaluate the performance results, and compare the performance of the two models. Regarding the method used, the Random Forest Regression Method is a method that applies the Ensemble Learning Technique by combining several decision trees to produce predictions. Meanwhile, the Support Vector Regression Method is a method that works by building a hyperplane or collection of hy- perplane in high-dimensional space which can be used for linear or nonlinear regression. The dataset used is medical data originating from the Ministry of Health of the Republic of Indonesia. On the dataset, data preprocessing is carried out, namely the data is processed in the aspects of missing values handling, encoding, and outliers detection and outliers handling. Then, feature selection is carried out using Spearman’s Rank Correlation Co- efficient. After that, machine learning model using RF Method and machine learning model using SVR Method were created separately for each gender. Finally, the model performance is evaluated and its performance compared using evaluation metrics, namely Root Mean Square Error (RMSE), Coefficient of Determination (R2), and Adjusted R2, as well as running time. The RF Method used best hyperparameters {’max depth’: 15, ’n estimators’: 1150} for the male dataset, and {’max depth’: 15, ’n estimators’: 1250 } for the female dataset. Meanwhile, the SVR Method used best hyperparameters {’C’: 2, ’epsilon’: 0.2, ’gamma’: ’scale’, ’kernel’: ’rbf’, ’toll’: 0.005} for the male dataset, and {’C’: 3, ’epsilon’: 0, 2, ’gamma’: ’scale’, ’kernel’: ’rbf’, ’toll’: 0.005} for female dataset. The result is that the model built using the RF Method has quite good performance, with an RMSE value of = 7.532; R2 = 0.403; Adjusted R2 = 0.351; running time = 0.154 for men and RMSE = 6.889; R2 = 0.340; Adjusted R2 = 0.264; running time = 0.179 for women. Apart from that, SVR also has performance that tends to be the same but slightly worse, with an RMSE value of = 7,692; R2 = 0.376; Adjusted R2 = 0.321; running time = 0.035 for men and RMSE = 6.905; R2 = 0.337; Adjusted R2 = 0.306; running time = 0.080 for women. Based on the model performance analysis carried out in this research, the model built using the Random Forest Regression Method is superior in predicting biological age compared to the Support Vector Regression Method."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Assyifa Ulhusna
"Credit scoring adalah sebuah sistem yang digunakan kreditor seperti bank dan perusahaan asuransi untuk menentukan apakah pemohon kredit termasuk dalam grup good credit yakni grup yang kemungkinan besar akan membayar utangnya tepat waktu atau bad credit yang merupakan grup dengan kemungkinan besar tidak membayar utangnya tepat waktu. Salah satu metode yang paling sering digunakan dalam pembuatan model credit scoring adalah binary logistic regression.  Namun, seiring dengan kemajuan komputasi, banyak metode lain yang berkembang saat ini untuk dipakai dalam pembuatan model credit scoring yakni, metode gradient boosting. Pada skripsi ini dilakukan implementasi metode binary logistic regression dan gradient boosting dalam pemodelan credit scoring. Hasil yang didapatkan dengan menggunakan data 537.667 debitur dengan rincian 535.705 good credits dan 1.962 bad credits adalah pada data train penggunaan gradient boosting memberikan nilai tingkat akurasi 79,65%, uji KS 0,5389 dan AUROC/AUC 0,8393. Sementara pada data test penggunaan gradient boosting memberikan nilai tingkat akurasi 79,92%, uji KS 0,5345 dan AUROC/AUC 0,8313.  Nilai-nilai tersebut lebih tinggi dibandingkan dengan penggunaan binary logistic regression baik pada data train maupun data test. Berdasarkan nilai uji AUC, metode gradient boosting tergolong klasifikasi yang baik, sedangkan metode binary logistic regression> tergolong klasifikasi yang cukup. Hasil simulasi ini menunjukkan untuk data yang digunakan, metode gradient boosting memberikan hasil yang lebih baik dari sisi akurasi, uji KS, dan AUROC/AUC daripada binary logistic regression. Dengan kata lain, metode gradient boosting dapat meningkatkan discriminant power, yakni kemampuan untuk membandingkan target yang lebih baik dibandingkan dengan metode binary logistic regression.

Credit scoring is a system used by creditors such as banks and insurance companies to determine whether credit applicants are included in the good credit group, namely the group that is most likely to pay its debts on time or the bad credit group which is the group that is most likely to not pay its debts on time. One of the most frequently used methods in making credit scoring models is binary logistic regression. However, along with the progress of computation, many other methods are currently being developed to be used in making credit scoring models, namely, the gradient boosting method. In this thesis, we will compare the binary logistic regression and gradient boosting methods in credit scoring model. The results obtained using data from 537,667 debtors with details of 535,705 good credits and 1,962 bad credits are the train data using gradient boosting gives an accuracy rate of 79.65%, KS test 0.5389 and AUROC/AUC 0.8393. Meanwhile, the test data using gradient boosting gives an accuracy rate of 79.92%, KS test 0.5345, and AUROC/AUC 0.8313. These values ​​are higher than the use of binary logistic regression in both the train and test data. Based on the AUC test value, the gradient boosting method is a good classifier, while the binary logistic regression method is an acceptable classifier. The results of this simulation show that for the data used, the gradient boosting method gives better results in terms of accuracy, KS test, and AUROC/AUC than binary logistic regression. In other words, the gradient boosting method can increase discriminant power or the ability to compare targets better than the binary logistic regression method."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Annisa Zahra
"Penuaan adalah proses alami yang secara bertahap menurunkan kondisi fisik dan menyebabkan kemunculan berbagai penyakit, yang pada akhirnya dapat mengurangi rentang hidup makhluk hidup serta berujung pada kematian. Dalam konteks ini, usia biologis berperan sebagai indikator penting yang mampu mengevaluasi proses penuaan dan prediksi penyakit lebih efektif dibandingkan dengan usia kronologis. Hal ini dikarenakan usia biologis juga memperhatikan kondisi fisiologis individu, bukan hanya mengukur lamanya hidup seseorang sejak lahir. Penelitian ini berfokus pada proses penuaan alami yang tidak dipengaruhi oleh penyakit. Dengan demikian, model ini dapat dijadikan alat untuk mengidentifikasi individu yang jalur penuaannya menyimpang dari jalur penuaan yang sehat. Penelitian ini menggunakan metode Support Vector Regression dan Principal Component Analysis untuk memprediksi usia biologis berdasarkan biomarker klinis yang berkontribusi terhadap proses penuaan. Data yang digunakan pada penelitian ini adalah data medis yang berasal dari Kementerian Kesehatan Republik Indonesia. Pada dataset, dilakukan data preprocessing yang meliputi pengubahan tipe data, penghapusan kolom yang tidak digunakan, penyaringan usia partisipan, pembentukan data sintetis, dan pemisahan dataset pria dan wanita. Selanjutnya, dilakukan feature selection, uji multikolinearitas, dan pembentukan model menggunakan metode Support Vector Regression dan Principal Component Analysis. Performa dari model yang dibentuk, dievaluasi menggunakan Root Mean Squared Error dan Coefficient of Determination. Untuk model yang menggunakan metode Support Vector Regression, didapatkan nilai RMSE = 5, 228 dan r2 = 0, 807 pada model pria, serta nilai RMSE = 1, 798 dan r2 = 0, 959 pada model wanita. Sementara itu, model yang menggunakan metode Principal Component Analysis didapatkan nilai RMSE = 6, 835 dan r2 = 0, 751 pada model pria dan nilai RMSE = 5, 35 dan r2 = 0, 874 pada model wanita. Berdasarkan analisis kinerja model yang dilakukan pada penelitian ini, model dengan metode Support Vector Regression lebih unggul dalam memprediksi usia biologis dibandingkan dengan metode Principal Component Analysis.

Aging is a natural process that gradually deteriorates physical condition and leads to the emergence of various diseases, ultimately reducing the lifespan of living beings and leading to death. In this context, biological age acts as an important indicator capable of evaluating the aging process and predicting diseases more effectively than chronological age. This is because biological age also considers an individual's physiological condition, not just measuring the length of time of person's life since birth. This research focuses on the natural aging process that is not influenced by disease. Thus, this model can be used as a tool to identify individuals whose aging path deviates from a healthy aging trajectory. This study uses Support Vector Regression and Principal Component Analysis methods to predict biological age based on clinical biomarkers that contribute to the aging process. The data used in this study are medical data from the Ministry of Health of the Republic of Indonesia. In the dataset, data preprocessing is performed, which includes changing data types, removing unused columns, filtering participant ages, forming synthetic data, and separating datasets for men and women. Next, feature selection, tests of multicollinearity, and model formation using the Support Vector Regression and Principal Component Analysis methods are conducted. The model formed is evaluated using Root Mean Squared Error and Coefficient of Determination. For the model using the Support Vector Regression method, RMSE=5,228 and r^2=0,807 were obtained for the men model, while an RMSE=1,798 and r^2=0,959 were obtained for the women model. Conversely, for the model using the Principal Component Analysis method, an RMSE=6,835 and r^2=0,751 were obtained for the men model, and an RMSE=5,35 and r^2=0,874 for the women model. Based on the performance analysis conducted in this study, the model using the Support Vector Regression method outperforms the Principal Component Analysis method in predicting biological age."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Adhitya Dwi Nugraha
"Ledakan batu merupakan kecelakaan destruktif yang cukup sering terjadi pada tambang bawah tanah. Seiring dengan berkembangnya teknologi, machine learning hadir sebagai alternatif solusi yang dapat dimanfaatkan dalam langkah preventif atas kasus ledakan batu. Penelitian ini menggunakan GWO-SVM dan XGBoost sebagai model machine learning dalam klasifikasi ledakan batu dan intensitasnya pada tambang bawah tanah. Grey Wolf Optimization (GWO) digunakan sebagai optimizer dari parameter SVM. Intensitas ledakan batu dibedakan atas tidak ada ledakan batu, lemah, sedang dan kuat. Dalam implementasi model, digunakan 467 kasus ledakan batu yang dikumpulkan dari berbagai sumber. Fitur yang digunakan pada penelitian ini meliputi tegangan maksimal tangensial, kekuatan tekan uniaksial, kekuatan tarik uniaksial, koefisien tegangan, koefisien kerapuhan batuan, dan indeks regangan elastis. Sebelum implementasi model dilakukan data preprocessing yang meliputi imputasi missing values, menghapus outlier, normalisasi fitur dan resampling data. Kinerja model dievaluasi berdasarkan nilai metrik accuracy, precision, recall, dan f1-score dengan memerhatikan running time dan proporsi data training berkisar dari 50% hingga 90%. Hasil penelitian menunjukkan bahwa GWO-SVM mengungguli XGBoost baik dalam klasifikasi ledakan batu dengan accuracy 98.0392%, precision 97.8495%, recall 98.2609%, dan f1-score 98.0161% serta klasifikasi intensitas ledakannya dengan accuracy 75.8242%, precision 75.1473%, recall 75.3115%, dan f1-score 75.2150%.

Rockburst is a destructive accident that frequently occurs in underground mines. With the advancement of technology, machine learning has emerged as an alternative solution that can be utilized to measures against rockbursts. This research employs GWO-SVM and XGBoost as machine learning models for the classification of rockburst and its intensity in underground mines. Grey Wolf Optimization (GWO) is used as an optimizer for SVM parameters. The intensity of a rockburst is classified into four categories: no rockburst, weak, moderate, and strong. The implementation of the model utilizes 476 cases of rockburst collected from various sources. The features used in this study include maximum tangential stress, uniaxial compressive strength, uniaxial tensile strength, stress coefficient, rock brittleness coefficient, and elastic strain index. Before implementing the model, data preprocessing is conducted, which includes imputing missing values, removing outliers, feature normalization, and data resampling. The performance of the model is evaluated based on metrics such as accuracy, precision, recall, and f1-score with various training data proportions ranging from 50% to 90%. The research results indicate that GWO-SVM outperforms XGBoost in both the classification of rockburst with 98.0392% accuracy, 97.8495% precision, 98.2609% recall, and 98.0161% f1-score as well as intensity with 75.8242% accuracy, 75.1473% precision, 75.3115% recall, and 75.2150% f1-score.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dilla Fadlillah Salma
"Kepemilikan dan penggunaan kendaraan mobil memiliki berbagai risiko negatif, seperti terjadinya kecelakaan. Untuk mengurangi beban risiko tersebut, perusahaan menjual produk asuransi mobil. Asuransi mobil merupakan salah satu produk perusahaan asuransi kendaraan yang bertujuan sebagai upaya perlindungan pemilik kendaraan mobil dari kerugian finansial yang terjadi pada kendaraan yang diasuransikannya. Untuk menawarkan produk asuransi, beberapa perusahaan menggunakan teknik penjualan dengan cara cold calling. Teknik penjualan tersebut akan lebih efektif menjual produk asuransi jika terlebih dahulu data nasabah calon pembeli asuransi diprediksi atau diklasifikasi ke dalam kelas membeli atau tidak membeli.
Pada skripsi ini, dilakukan klasfikasi dengan metode Support Vector Machine (SVM), Random Forest (RF),dan Logistic Regression (LR) dengan implementasi metode seleksi fitur One Dimensional Naïve Bayes Classifier (1-DBC). Data yang diperoleh berjumlah 4000 data dengan total 18 fitur. Diperoleh hasil bahwa akurasi SVM lebih tinggi dibandingkan dengan kedua metode lainnya. Selain itu, mplementasi metode seleksi fitur telah berhasil meningkatkan akurasi dari metode Random Forest, dan Logistic Regression. Dengan implementasi 1-DBC, ketiga metode klasifikasi memperoleh hasil akurasi tertinggi pada penggunaan 15 fitur.

Ownership and use of car vehicles have a variety of negative risks, such as accidents. To reduce the risk burden, the company sells car insurance products. Car insurance is one of the products of a vehicle insurance company that aims to protect vehicle owners from financial losses that occur on their insured vehicles. To offer insurance products, some companies use sales techniques using cold calling. The sales technique will be more effective in selling insurance products if first the prospective customer buyer data is predicted or classified into the class of buying or not buying.
In this paper, classification is done using the method of Support Vector Machine (SVM), Random Forest (RF), and Logistic Regression (LR) by implementing the One Dimensional NaA-ve Bayes Classifier (1-DBC) feature selection method. The data obtained amounted to 4000 data with a total of 18 features. The results were obtained that the accuracy of SVM was higher compared to the other two methods. In addition, the implementation of the feature selection method has succeeded in increasing the accuracy of the Random Forest, and Logistic Regression. With the implementation of 1-DBC, the three classification methods obtained the highest accuracy results with the use of 15 features.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Andie Setiyoko
"Penelitian ini bertujuan untuk menganalisis pendekatan aproksimasi minimax, LS-SVM, dan GPR untuk proses pemodelan semivariogram pada metode kriging. Proses ini adalah bagian tahap dalam operasi kriging yang biasanya dilakukan untuk proses interpolasi dan fusi. Kriging sendiri telah banyak digunakan untuk memprediksi nilai spasial yang terbukti lebih baik dalam memprediksi proses dibandingkan dengan metode deterministik, di mana kriging dikategorikan sebagai pada metode interpolasi stokastik. Pendekatan konvensional untuk proses pemodelan semivariogram menggunakan metode weighted least square dengan menggunakan fungsi tertentu. Fungsi yang tersedia untuk metode ini antar lain stable, exponential, spherical, dan lain-lain. Beberapa pembaharuan untuk kasus pemodelan semivariogram saat ini telah dibuat dengan menggunakan teknik regresi seperti LS-SVM. Selain itu sebagai bagian dari kebaruan, pendekatan aproksimasi minimax, LS-SVM, dan GPR yang diusulkan untuk kasus ini dapat meningkatkan akurasi pada hasil interpolasi, dalam hal ini diimplementasikan pada metode ordinary kriging. Pendekatan baru, yang dapat disebut sebagai minimax kriging ini dapat mengurangi eror. Minimax berkontribusi pada prediksi bobot nilai semivariogram lebih baik daripada weighted least square dan proses komputasi yang lebih cepat daripada metode berbasis SVM dan GPR.

This study aims to analyze the approach of Minimax, LS-SVM, and GPR approximation for the semivariogram modeling process in the kriging method. This process is part of the stage in kriging operations that are usually carried out for interpolation and fusion processes. Kriging itself has been widely used to predict spatial values which are proven to be better in predicting processes compared to deterministic methods, where kriging is categorized as a stochastic interpolation method. The conventional approach to the semivariogram modeling process uses the weighted least square method using certain functions. Functions available for this method include stable, exponential, spherical, and others. Several updates to the case of semivariogram modeling have now been made using regression techniques such as LS-SVM. Apart from that as part of the novelty, the proposed Minimax, LS-SVM, and GPR approximation approaches for this case can improve the accuracy of the interpolation results, in this case implemented in the ordinary kriging method. This new approach, which can be called minimax kriging, can reduce errors. Minimax contributes to the predicted weighting of semivariogram values better than weighted least square and faster computing processes than SVM and GPR-based methods."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2020
D-Pdf
UI - Disertasi Membership  Universitas Indonesia Library
cover
Kheisya Amanda
"Dalam industri perbankan, penilaian kredit yang akurat merupakan kunci dalam mengelola risiko kredit. Perkembangan ekonomi digital telah membawa inovasi dalam proses pemberian kredit yang ditandai dengan munculnya Layanan Jasa Pinjam Meminjam Uang Berbasis Teknologi Informasi. Hal ini membuat bank dihadapkan pada tantangan penilaian kredit yang lebih kompleks. Seiring perkembangan ilmu pengetahuan dan teknologi, algoritma machine learning telah terbukti memiliki kinerja yang unggul dalam proses penilaian kelayakan kredit. Penelitian ini menggunakan dua algoritma boosting, yaitu AdaBoost dan XGBoost dalam klasifikasi kinerja pembayaran pinjaman kredit. Kinerja pembayaran pinjaman kredit dibedakan menjadi dua kelas, yaitu Good dan Bad dengan kriteria Good adalah debitur yang melakukan pembayaran pinjaman kredit tidak lebih dari 3 bulan dari batas jatuh tempo dan Bad adalah debitur yang melakukan pembayaran pinjaman kredit lebih dari 3 bulan dari batas jatuh tempo. Dalam implementasi metode, digunakan data riwayat pembayaran pinjaman kredit khususnya untuk produk Kredit Usaha Mikro (KUM) digital yang diperoleh dari PT Bank X Tbk. dengan jumlah data berjumlah 2190 observasi. Jumlah observasi yang termasuk dalam kelas Good mencapai 89,36% dari total keseluruhan observasi, menyisakan 10,64% yang termasuk dalam kelas Bad. Pada penelitian ini digunakan metode Syntetic Minority Oversampling Technique (SMOTE) untuk mengatasi dataset yang tidak seimbang. Kinerja metode dievaluasi menggunakan nilai metrik accuracy, sensitivity, specificity, dan AUC-ROC dengan mempertimbangkan proporsi data training yang berbeda, mulai dari 50% sampai dengan 90%. Untuk meningkatkan keandalan hasil, simulasi metode dilakukan sebanyak lima kali. Hasil penelitian ini menunjukkan bahwa XGBoost mengungguli AdaBoost dalam klasifikasi kinerja pembayaran pinjaman kredit, terbukti dari perolehan kinerja yang lebih baik pada mayoritas metrik evaluasi dan kelima simulasi yang dilakukan, dengan rata-rata accuracy sebesar 87,71%, sensitivity sebesar 92,29%, specificity sebesar 44,21%, dan AUC-ROC sebesar 81,16%.

In the banking industry, accurate credit assessment is key to managing credit risk. The development of the digital economy has brought innovations in the credit granting process, marked by the emergence of Financial Technology-Based Money Lending Services. This presents banks with more complex credit assessment challenges. With the advancement of science and technology, machine learning algorithms have proven to be superior in the process of creditworthiness assessment. This research utilizes two boosting algorithms, namely AdaBoost and XGBoost, in classifying credit loan payment performance. The performance of credit loan payments is divided into two classes: Good and Bad, where Good refers to debtors who make credit loan payments no more than 3 months past the due date, and Bad refers to those making payments more than 3 months past the due date. In the implementation of the method, data on credit loan payment history, specifically for digital Micro Business Credit (KUM) products obtained from PT Bank X Tbk., were used, totaling 2190 observations. The number of observations classified as Good accounted for 89.36% of the total, leaving 10.64% in the Bad category. This study employed the Synthetic Minority Oversampling Technique (SMOTE) to address the imbalanced dataset. The performance of the method was evaluated using the metrics of accuracy, sensitivity, specificity and AUC-ROC, considering different proportions of training data, ranging from 50% to 90%. To enhance the reliability of the results, the method simulation was conducted five times. The findings indicate that XGBoost outperforms AdaBoost in classifying credit loan payment performance, as evidenced by its superior performance across all evaluation metrics and all five simulations, achieving an average accuracy of 87.71%, sensitivity of 92.29%, specificity of 44,12%, and AUC-ROC of 81.16%."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>