Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 105960 dokumen yang sesuai dengan query
cover
Owen Susanto
"Dalam beberapa dekade terakhir, teknologi informasi berkembang dengan sangat pesat, hal ini juga diikuti dengan meningkatnya ancaman keamanan teknologi tersebut. Serangan siber seperti hacking, malware, dan pencurian data menjadi masalah yang serius dan merugikan bagi individu ataupun organisasi. Salah satu kelemahan yang sering digunakan untuk menyerang komputer adalah melalui jaringan. Maka, dibuat metode IDS (Intrusion Detection System) yang dapat membantu menjaga keamanan jaringan. Namun, IDS yang umum digunakan memiliki kelemahan dalam melihat pola dari kemiripan. Dari koneksi tersebut dapat dibangun pola antar koneksi sebagai tanda pengenal dini jenis koneksi. Koneksi-koneksi yang dilakukan ini secara natural akan membentuk pola yang saling berhubungan dimana ada sumber dan target koneksi. Maka, dapat digunakan bentuk Graph data, yang memiliki node (simpul) dan edges (sisi) sebagai penanda sumber (host) dan koneksi yang dilakukan. Untuk membantu melihat pola dari Graph data ini, diperlukan bantuan kemampuan machine learning yang dapat membangun model untuk melihat pola tersebut. Akan digunakan arsitektur GNN dan dataset AWID-2 untuk membangun model yang mampu mengelompokkan koneksi secara efisien. Setelah proses pembelajaran selesai, ditemukan bahwa model yang sudah dibangun tersebut memiliki akurasi 0,97, presisi 0,97 serta recall bernilai 0,97, dengan nilai F1 0,97.

In the last few decades, information technology has evolved very rapidly, which has also been accompanied by rising security threats. Cyber-attacks like hacking, malware, and data theft are serious problems and harmful to individuals or organizations. One of the weaknesses that is often used to attack computers is through a network. So, we created an IDS (Intrusion Detection System) method that can help keep the network safe. However, the commonly used IDS has weaknesses in seeing patterns of similarities. These connections will naturally form interrelated patterns where there is a source and a destination of the connection. So, you can use the data Graph form, which has nodes and edges as hosts and connections. To help see the pattern from this Graph data, you need the help of machine learning abilities that can build a model to see that pattern. It will use the GNN model architecture and the AWID-2 dataset to build a model that can efficiently group connections. After the learning process was completed, it was found that the built-in model had an accuracy of 0.97, a precision of 0.97 and a recall value of 0,97, with a value of F1 0.97."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rafa Elmira Afiani
"Internet of Things (IoT) merupakan sebuah teknologi yang memungkinkan perangkat untuk berkomunikasi dan mengirimkan data melalui jaringan tanpa campur tangan manusia. Kompleksitas pada jaringan IoT menyebabkan sistem mengalami kesulitan dalam mendeteksi properti serangan dan memaksa sistem untuk memperkuat keamanannya. Salah satu upaya yang paling sering digunakan untuk pertahanan jaringan IoT adalah Intrusion Detection System (IDS). Penggunaan IDS dapat memberikan peringatan dini dan mampu melakukan pencegahan terhadap potensi serangan pada jaringan. Penelitian ini menggunakan dataset Aegean WIFI Intrusion Dataset (AWID2) yang berisikan lalu lintas trafik internet pada jaringan WIFI. Data AWID2 berisi 2,3 juta records dan dikelompokkan ke dalam empat kelas yaitu normal, impersonation, injection, dan flooding. Penelitian ini dilakukan untuk melakukan klasifikasi jenis serangan siber pada jaringan IoT melalui penerapan teknik machine learning dengan metode Whale Optimization Algorithm – Support Vector Machine (WOA-SVM) dengan kernel RBF dan pendekatan One vs Rest, dimana Whale Optimization Algorithm (WOA) digunakan sebagai optimasi parameter yang digunakan pada metode Support Vector Machine (SVM). Untuk mengatasi permasalahan dimensi data yang tinggi pada dataset yang digunakan, dilakukan seleksi fitur untuk reduksi dimensi data dengan menggunakan metode seleksi fitur filter Information Gain. Kinerja model dievaluasi berdasarkan nilai metrik accuracy, precision, recall, dan F1 Score dengan memperhatikan waktu klasifikasi dan proprosi train-test split berkisar dari 50%-90%. Hasil penelitian menunjukkan bahwa model WOA-SVM memperoleh kinerja terbaik dengan menggunakan 40 fitur terbaik dari hasil seleksi fitur Information Gain menghasilkan tingkat accuracy sebesar 99,5951%, precision sebesar 96,3928%, recall sebesar 99,8888%, F1 Score sebesar 98,0662%, dan waktu klasifikasi selama 16,831 detik. Hasil kinerja model WOA-SVM tersebut lebih baik jika dibandingkan dengan tanpa menggunakan seleksi fitur dan SVM tanpa optimasi parameter WOA.

The Internet of Things (IoT) is a technology that enables devices to communicate and transmit data over a network without human intervention. The complexity of IoT networks poses challenges in detecting attack properties and necessitates enhanced security measures. One of the most commonly employed defenses for IoT networks is the Intrusion Detection System (IDS). The use of IDS provides early warnings and can prevent potential attacks on the network. This study utilizes the Aegean Wi-Fi Intrusion Dataset (AWID2), which contains internet traffic data on Wi-Fi networks. The AWID2 dataset comprises 2 million records categorized into four classes: normal, impersonation, injection, and flooding. This research aims to classify types of cyber-attacks on IoT networks by applying machine learning techniques using the Whale Optimization Algorithm - Support Vector Machine (WOA-SVM) method with an RBF kernel and a One vs. Rest approach. The Whale Optimization Algorithm (WOA) is used to optimize the parameters employed in the Support Vector Machine (SVM) method. To address the high-dimensional data issue in the dataset, feature selection is performed to reduce data dimensions using the Information Gain filter method. The model's performance is evaluated based on the metrics of accuracy, precision, recall, and F1 Score, considering computation time and train-test split proportions ranging from 50% to 90%. The results indicate that the WOA-SVM model achieves the best performance by using the top 40 features from the Information Gain feature selection, yielding an accuracy of 99.5951%, precision of 96.3928%, recall of 99.8888%, F1 Score of 98.0662%, and a computation time of 16.831 seconds. The performance of the WOA-SVM model is superior compared to models without feature selection and SVM without WOA parameter optimization."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Tubagus Dhafin Rukmanda
"ABSTRAK
PATCHY-SAN adalah sebuah framework untuk sembarang graf yang diajukan oleh Niepert pada tahun 2016. Pada penelitian ini diajukan modifikasi arsitektur dari convolutional neural network CNNs pada PATCHY-SAN menggunakan beberapa representasi dari graf seperti B^i,L^i,N^i dengan B,L,N, berturut-turut adalah matriks betweeness, matriks Laplacian and matriks normalisasi Laplacian dengan i=1,2,3,4,5. Dilakukan beberapa percobaan dari model CNNs dengan 3 layer dan 2 layer. Penelitian ini menggunakan dropout atau batch normalization untuk mengurangi permasalahan internal covariate shift sebagai regularisasi. Berdasarkan percobaan tersebut disimpulkan, penambahan layer, penggunaan dropout dan batch normalization dapat meningkatkan dan juga menurunkan prediksi akurasi, hal ini tergantung dari dataset dan arsitektur CNNs. Representasi graf yang digunakan dalam penelitian ini masih belum bagus untuk membuat PATCHY-SAN learning, karena peningkatan akurasi hanya sebesar - 9 dari benchmark 50 .

ABSTRACT
PATCHY SAN is a framework for learning Convolutional Neural Network CNNs for arbitrary graph proposed by Niepert in 2016. In this paper we propose to modified architecture of Convolutional Neural Network in PATCHY SAN by using some representation of graph such as B i,L i,N i, with B, L, N, is betweeness matrix, Laplacian matrix and normalize Laplacian matrix with i 1,2,3,4,5. We do some experiment of model with 3 convolutional layer and 2 convolutional layer. This research use dropout and batch normalization to reduce internal covariate shift problem as regularizer. In conclusion adding more convolution layer, and use dropout and batch normalization can increase and reduce accuracy, it depend on the architecture of CNNs. Graph representation used in this research still not good to make PATCHY SAN learning, because the accuration increase by 9 from benchmark 50 ."
2017
S70160
UI - Skripsi Membership  Universitas Indonesia Library
cover
Chelvian Aroef
"ABSTRAK
Pada era modern ini, semakin banyak jenis penyakit yang baru dengan gejala yang berbeda beda juga. Teknologi dituntut bisa memainkan peran untuk membantu penelitian pada bidang kesehatan. Stroke merupakan salah satu penyakit yang memiliki angka kematian tertinggi di dunia. Stroke terjadi karena terganggunya pasokan darah menuju otak sehingga otak mengalami kekurangan oksigen dan nutrisi. Stroke bisa dibagi menjadi berdasarkan bagaimana stroke terjadi, stroke hemoragik dan stroke iskemik. Stroke hemoragik terjadi karena pecahnya pembuluh darah yang menuju otak, sedangkan stroke iskemik terjadi karena terjadinya penyumbatan yang mengganggu pasokan darah ke otak. Jika penyumbatan terjadi pada daerah otak, maka disebut infark serebri. Dalam studi ini digunakan metode Convolutional Neural Network untuk mengklasifikasikan data gambar infark serebri yang nantinya akan dibandingkan dengan metode Neural Network. Didapatkan dari hasil performa metode Convolutional Neural Network lebih baik jika dibandingkan dengan metode Neural Network untuk pengklasifikasian data gambar infark serebri."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hutagalung, Dwight J.O.
"Penyakit kardiovaskular, khususnya aritmia, merupakan salah satu penyebab utama kematian di dunia. Aritmia terjadi akibat gangguan irama jantung yang dapat dideteksi menggunakan Elektrokardiogram (EKG), yang dideteksi dengan menganalisa perubahan atau kejanggalan dari sinyal EKG yang dilihat oleh pengamat. Namun, sinyal EKG seringkali tidak akurat karena bersifat non-linear dan memiliki amplitudo rendah, sehingga perubahan kecil mungkin dilalaikan oleh mata telanjang manusia. Oleh karena itu, diperlukan metode yang lebih efektif dalam mengklasifikasikan aritmia. Penelitian ini mengusulkan penggunaan metode Bidirectional Recurrent Convolutional Neural Network (BiRCNN) untuk klasifikasi sinyal EKG. Metode BiRCNN menggabungkan Convolutional Neural Network (CNN) yang mengekstraksi fitur morfologi sinyal EKG dan Recurrent Neural Network (RNN) yang menangkap informasi temporal dari detak jantung. Gabungan kedua metode ini diharapkan dapat memberikan hasil yang akurat dan konsisten. Data yang digunakan dalam penelitian ini berasal dari Basis Data MIT-BIH Arrhythmia, yang terdiri dari ribuan rekaman detak jantung normal dan aritmia. Data yang digunakan melalui tahap praproses dengan memilih segmen sinyal EKG dengan 187 titik waktu, dengan normalisasi pada semua data agar berada dalam rentang amplitudo yang sama. Untuk mengatasi ketidakseimbangan kelas dalam dataset, metode SMOTE digunakan untuk meningkatkan jumlah sampel kelas minoritas hingga mencapai 100% dari jumlah sampel kelas mayoritas, sehingga memastikan distribusi data yang lebih seimbang. Evaluasi kinerja model dilakukan menggunakan metrik akurasi, sensitivitas, spesifisitas, dan nilai AUC-ROC. Hasil penelitian dari lima simulasi pembangunan model menunjukkan bahwa metode BiRCNN memiliki kinerja yang baik dalam klasifikasi aritmia, dengan rata-rata nilai akurasi sebesar 98.25%, sensitivitas sebesar 94.67%, spesifisitas sebesar 98.70%, dan AUC-ROC sebesar 99.44%. Berdasarkan hasil penelitian tersebut, metode ini mampu mengidentifikasi aritmia secara konsisten dengan ketepatan yang cukup baik.

Cardiovascular disease, particularly arrhythmia, is one of the leading causes of death in the world. Arrhythmias occur due to heart rhythm disturbances that can be detected using an Electrocardiogram (ECG), detected by analyzing the changes or irregularities in the ECG signal seen by the observer. However, ECG signals are often inaccurate because they are non-linear and have low amplitude, so small changes may be overlooked by the naked human eye. Therefore, a more effective method of classifying arrhythmias is needed. This research proposes the use of Bidirectional Recurrent Convolutional Neural Network (BiRCNN) method for ECG signal classification. The BiRCNN method combines a Convolutional Neural Network (CNN) that extracts morphological features of ECG signals and a Recurrent Neural Network (RNN) that captures temporal information of the heartbeat. The combination of these two methods is expected to provide accurate and consistent results. The data used in this study comes from the MIT-BIH Arrhythmia Database, which consists of thousands of normal and arrhythmic heartbeat recordings. The data used went through a preprocessing stage by selecting ECG signal segments with 187 time points, with normalization on all data to be in the same amplitude range. To overcome the class imbalance in the dataset, the SMOTE method was applied to increase the number of minority class samples to 100% of the number of majority class samples, thus ensuring a more balanced data distribution. Model performance evaluation was performed using accuracy, sensitivity, specificity, and AUC-ROC value metrics. The results of five model fitting simulations showed that the BiRCNN method performed well in arrhythmia classification, with an average accuracy value of 98.25%, sensitivity of 94.67%, specificity of 98.70%, and AUC-ROC of 99.44%. Based on the results, this method is able to identify arrhythmias consistently with fairly good accuracy."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Adinda Maharani Dwi Yuan Syah
"ABSTRAK
Daerah perbatasan perairan Indonesia merupakan salah satu wilayah yang rentan akan kegiatan ilegal yang dapat merugikan negara. Oleh karena itu, perlu adanya pengawasan untuk setiap objek yang melewati perbatasan perairan tersebut. Pengawasan dapat dilakukan dengan pendeteksian jenis kapal yang melewati area perbatasan antar negara. Saat ini di Indonesia sudah terdapat pendeteksian khusus untuk mendeteksi adanya kapal perang asing. Selain kapal perang, kapal nelayan juga perlu dilakukan pengawasan untuk mencegah adanya illegal fishing. Pendeteksian kapal perang dan kapal nelayan dapat dilakukan dengan menggunakan mesin. Mesin dapat diprogram untuk menjalani perintah secara berulang kali, hal tersebut disebut sebagai Machine Learning, yang merupakan salah satu bidang dari Artificial Intelligence. Metode untuk memprogram pembelajaran mesin tersebut disebut dengan Deep Learning. Deep learning bekerja dengan membentuk hubungan antara neuron seperti layaknya cara kerja otak manusia atau biasa disebut dengan neural network.Salah satu jenis dari neural network yang terkenal adalah Convolutional Neural Network(CNN). CNN digunakan untuk simulasi pendeteksian kapal nelayan dan kapal militer dengan hasil keluaran berupa nilai akurasi training, akurasi validasi, dan juga prediksi. CNN juga ditambahkan additional layer, yaitu dropout dan batch normalization untuk meningkatkan ketepatan prediksi. Hasil yang didapatkan adalah pengaruh dari parameter layer dan dataset yang digunakan terhadap nilai akurasi pada pelatihan program. Dari simulasi didapatkan nilai akurasi yang paling baik dengan penggunaan pooling layer jenis max pooling dengan penggunaan layer tambahan berupa batch normalization dan dropout.

ABSTRACT
Indonesia's waters border is one of the areas that are vulnerable to illegal activities that can disserve the country. Detecting types of ships that cross border areas between countries is needed. Controlling can use machine thats automatically detect the object can do detection of warships and fishing boats. The concept is called machine learning. Machine learning is one of the types of Artificial Intelligence. The method for programming the machine learning is called Deep Learning. Deep learning works by forming relationships between neurons like the way the human brain works or commonly called a neural network. Convolutional Neural Network (CNN) is the famous method for deep learning. CNN is used to simulate the detection of fishing vessels and military vessels with the output in the form of training accuracy, validation accuracy, and the final prediction. CNN can also added an additional layer, namely dropout and batch normalization to improve the accuracy of predictions. The results obtained are the effect of the layer and dataset parameters used on the accuracy value in the training program. The best accuracy is obtained by using max pooling for pooling layer with additional layers of batch normalization and dropout."
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Abitya Bagaskara
"Demensia adalah suatu istilah umum yang menggambarkan penurunan kemampuan mengingat yang cukup parah. Demensia paling umum disebabkan oleh alzheimer yang mana diagnosisnya seringkali sulit dan telat dilakukan. Padahal, pada tahap demensia sangat ringan merupakan tahap yang paling efektif dilakukan. Oleh karena itu, akan menjadi suatu keuntungan yang sangat besar apabila berhasil mendiagnosis pada tahap awal. Pendekatan paling populer untuk melakukan diagnosis pada demensia adalah dengan machine learning yang kemudian diperdalam kembali dengan deep learning. Sudah banyak arsitektur pada deep learning, di mana yang paling terkenal digunakan untuk klasifikasi berbentuk gambar adalah Convolutional Neural Network (CNN). Salah satu contoh turunan dari CNN adalah VGG di mana pertama kali diusulkan oleh tim dari Universitas Oxford. Pendekatan dengan arsitektur VGG dilakukan dalam skripsi ini, di mana menggunakan VGG-16 dan VGG-19. Hasil dari skripsi ini berhasil mendeteksi 4 kelas (sangat ringan, ringan, cukup, dan orang normal) dengan capaian akurasi di atas 89% untuk seluruh skenario, bahkan beberapa sampai 99%. Nilai akurasi tertinggi tercatat mencapai 99.68% untuk training dan 99.36% untuk validasi. Tidak hanya akurasi, pada skripsi ini juga akan menganalisis berdasar confusion matrix, presisi, recall, dan F1 Score sehingga bisa lebih mendalam analisis pendeteksiannya untuk tiap kelasnya.

Dementia is a general term that describes a severe impairment of memory. Dementia is most commonly caused by Alzheimer's and diagnosis is often difficult and late. In fact, the very mild stage of dementia is the most effective stage to do. Therefore, it will be a huge advantage if the diagnosis is successful at an early stage. The most popular approach to diagnosing dementia is machine learning which is then deepened by deep learning. There have been many architectures in deep learning, where the most well-known being used for image classification is the Convolutional Neural Network (CNN). One example of a derivative from CNN is VGG which was first proposed by a team from the University of Oxford. Approach to the VGG architecture is carried out in this thesis, which uses VGG-16 and VGG-19. The results of this thesis have successfully detected 4 classes (very light, light, moderate, and normal people) with accuracy above 89% for all scenarios, even some up to 99%. The highest accuracy value was recorded at 99.68% for training and 99.36% for validation. Not only accuracy, but this thesis will also analyze based on confusion matrix, precision, recall, and F1 Score so that the detection analysis can be more in-depth for each class."
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dewita Oktavia Nuur Marwan
"Internet of Things (IoT) merupakan sebuah konsep di mana berbagai perangkat komputasi saling terhubung melalui internet dan memiliki kemampuan untuk mengumpulkan atau mengirimkan data. Perluasan dan kecepatan perangkat komputasi menggunakan jaringan Wi-Fi dapat menghasilkan data yang kompleks dan berdimensi tinggi pada sistem IoT. Data yang berdimensi tinggi dapat menimbulkan beberapa kendala dan perangkat IoT akan menghindari untuk melakukan tugas yang komputasinya berat. Semakin kompleksnya sistem IoT, semakin sulit bagi sistem untuk mengidentifikasi dan menemukan serangan siber. Salah satu upaya yang paling umum digunakan untuk melindungi sistem IoT adalah Intrusion detection system (IDS). Pada penelitian ini dilakukan model berbasis machine learning untuk mengembangkan IDS menggunakan dataset AWID2 dengan tipe “CLS” yang berisikan 2 juta lalu lintas trafik pada jaringan WI-Fi yang dikelompokkan ke dalam empat kelas yaitu, normal, impersonation, injection, dan flooding. Random forest merupakan salah satu teknik ensemble atau gabungan dari sejumlah model decision tree yang memiliki keunggulan-keunggulan dibandingkan dengan metode machine learning lainnya, yaitu dapat mencegah terjadinya overfitting, memiliki waktu komputasi yang rendah, dan memiliki kemampuan lebih baik dalam mengelola dataset yang tidak seimbang. Untuk mengatasi data berdimensi tinggi, dilakukan seleksi fitur mutual information pada algoritma random forest untuk mendapatkan hasil model klasifikasi yang optimal. Hasil dari penelitian menunjukkan bahwa metode seleksi fitur mutual information dengan menggunakan 30 fitur terbaik pada algoritma random forest dengan hyperparameter-tuning random search terbukti dapat meningkatkan performa model klasifikasi dan efisiensi waktu jika dibandingkan menggunakan algoritma random forest tanpa seleksi fitur. Nilai metrik yang diperoleh oleh kombinasi tersebut adalah dengan nilai accuracy = 99,95276%, macro average F1-score = 99,76335%, macro average recall = 99,97962%, dan macro average presicion = 99,54935% dengan waktu prediksi 6,112 detik.

The Internet of Things (IoT) is a concept where various computing devices are interconnected via the internet and have the capability to collect or transmit data. The expansion and speed of computing devices using Wi-Fi networks generate complex and high-dimensional data in IoT systems. High-dimensional data in datasets pose several challenges, as IoT devices tend to avoid tasks that are computationally intensive. As IoT systems become more complex, it becomes increasingly difficult for the system to identify and detect cyber attacks. One of the most common efforts to protect IoT systems is the Intrusion Detection System (IDS). In this study, a machine learning-based model is developed to create an IDS using the AWID dataset with the “CLS” type, which contains 2 million network traffic records on Wi-Fi networks categorized into four classes: normal, impersonation, injection, and flooding. Random forest is an ensemble technique or a combination of multiple decision tree models that has advantages over other machine learning methods, such as preventing overfitting, having low computational time, and having better capabilities in handling imbalanced datasets. To address high-dimensional data, mutual information feature selection is applied to the random forest algorithm to achieve optimal classification model results. The results of the study indicate that the mutual information feature selection method using the top 30 features in the random forest algorithm with random search hyperparameter tuning can improve the performance of the classification model and time efficiency compared to using the random forest algorithm without feature selection. The metrics obtained by this combination are accuracy = 99.95276%, macro average F1-score = 99.76335%, macro average recall = 99.97962%, and macro average precision = 99.54935% with a prediction time of 6.112 seconds."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Mega Oktafiani Putri
"Media sosial telah menjadi fenomena dunia, lebih dari 80% pengguna Internet adalah penguna media sosial. Ketika terjadi sebuah bencana, kebutuhan informasi akan meningkat. Twitter merupakan salah satu sumber informasi populer terutama di Indonesia yang tercatat sebagai negara pengguna twitter terbanyak di asia. Oleh karena itu dibutuhkan sebuah sistem yang dapat mengekstraksi informasi dari media sosial. Penelitian ini menawarkan sebuah sistem yang dapat mendeteksi topik pada media sosial twitter dengan merepresentasikan konten media sosial twitter ke graph jaringan kompleks menggunakan pengimplentasian metode pembentukan graph (pengolahan bahasa natural dan konsep graph) dan metrik pengkukur jaringan kompleks sebagai acuan analisa.
Sistem analisa media sosial pada penelitian ini terdiri dari 3 buah subsistem yaitu crawler dengan mengunakan perangkat lunak the archvist, graph converter berupa perangkat lunak Textttogexf untuk Bahasa Indonesia yang diimplementasikan pada bahasa pemrograman Ruby berdasarkan perangkat lunak Textttogexf untuk Bahasa Jepang, dan perangkat lunak untuk memvisualisasikan graph (gephi dan gvedit). Berdasarkan hasil pengujian, metode pembobotan yang paling baik untuk media sosial twitter adalah pembobotan RIDF dan pendefinisian dokumen berdasarkan kategori (persentase keberhasilan: 89%). Pada penelitian ini, topik umum mengenai pilkada 2012 dan 13 sub topik berhasil diekstraksi dari set data banjir Jakarta.

Social media had become worldwide phenomena. More than 80% of Internet?s users are social media?s users. When a disaster occurred, information needs will rise. Twitter is one of popular information resource especially in Indonesia. Because of that, twitter?s information extraction system was needed. This research proposes a system that can detect topic in social media twitter by representing its content as a complex network graph using the implementation of natural language processing, graph concept, and complex network analysis.
This system consists of 3 subsystems which are crawler, graph converter, and application for graph visualization. The Graph visualization is done using Gephi and Graphviz. From testing result, we reach 89% success rate of keyword extraction using RIDF term weighting method and collecting messages by certain category. General topic about governor election and 13 subtopics was successfully extracted from set data flood in Jakarta.
"
Depok: Fakultas Teknik Universitas Indonesia, 2012
S42095
UI - Skripsi Open  Universitas Indonesia Library
cover
Ahmad Prasetya
"Berdasarkan dari situs arsip Mahkamah Agung, saat ini terdapat 64 laporan kasus penjualan daging ayam bangkai di Indonesia. Hal ini menjadi persoalan karena bisa jadi masih banyak kasus yang tidak terungkap karena belum memiliki instrumen atau alat ukur untuk mengetahui perbedaan dari daging ayam bangkai ataupun sehat. Salah satu teknik pengukuran yang sedang berkembang dengan menggunakan citra. Teknik pengukuran citra sangatlah efisien untuk melakukan pengukuran karena tidak memerlukan alat dan bahan tambahan serta tidak menghancurkan terlebih dahulu sampelnya. Salah satu pengambilan citra dengan menggunakan hiperspektral merupakan teknik yang cukup baik karena hiperspektral memiliki band yang bervariatif dan dapat melakukan pendeteksian multi parameter. Citra hiperspektral memiliki spektrum yang luas dari spektrum citra RGB. Spektrum tersebut dapat menjadikan informasi yang digunakan dalam melakukan pengukuran kadar dalam suatu objek. Namun, dalam pengukuran menggunakan hiperspektral membutuhkan biaya yang tinggi dan membutuhkan penyimpanan data yang besar. Oleh Karena itu, salah satu metode yang di lakukan adalah melakukan rekonstruksi dari bentuk citra RGB menjadi citra Hiperspektral. Citra RGB dapat digunakan dalam kehidupan sehari – hari dan penyimpanan dari citra RGB lebih kecil ukurannya. Maka, Penelitian ini melakukan Implementasi Dual Dense Convolutional Neural Network  untuk Rekonstruksi citra Visible Nearinfrared dan Klasifikasi Daging Ayam Bangkai. Dual Dense CNN merupakan gabungan dari Dense Block CNN untuk melakukan rekontruksi citra hiperspektral dari RGB dan DenseNet untuk klasifikasi citra hiperspektral. Variasi jumlah band target rekonstruksi dilakukan dengan tujuan memperoleh performa model terbaik pada model rekonstruksi dan klasifikasi. Performa model rekonstruksi terbaik diperoleh pada jumlah band 112 dengan nilai RMSE sebesar 0.0012 dan nilai MAE sebesar 0.0269. Sedangkan performa model klasifikasi terbaik direntang band 224 dengan akurasi training varietas ayam 86,00% dan status daging 97,65% serta memiliki nilai presisi dari varietas 91,00% dan 98,00% untuk status daging. Hasil pengujian dengan sistem klasifikasi dan rekonstruksi arsitektur Dual Dense CNN dapat dilakukan dengan citra RGB.

Until now, Indonesia has reported 64 cases of selling carcass chicken meat. This is a problem because there may still be many cases that are not uncovered because they do not yet have instruments or measuring instruments to find out the difference between carcass and healthy chicken meat. One measurement technique that is being developed is using imagery. Image measurement techniques are very efficient for making measurements because they do not require additional tools and materials and do not destroy the sample first. One of the image capture using Hyperspectral is a fairly good technique because Hyperspectral has varied bands and can perform multi-parameter detection. Hyperspectral image has a broad spectrum of the RGB image spectrum. The spectrum can make information used in measuring levels in an object. However, measurements using hyperspectral require high costs and require large data storage. Therefore, one of the methods used is to perform a reconstruction from the form of an RGB image to a hyperspectral image. RGB images can be used in everyday life and storage of RGB images is smaller in size. So, this research implements the Dual Dense Convolutional Neural Network for Visible Nearinfrared Image Reconstruction and Classification of Carrion Chicken Meat. Dual Dense CNN is a combination of Dense Block CNN to perform hyperspectral image reconstruction from RGB and DenseNet for hyperspectral image classification. Variation of the number of reconstruction target bands was carried out with the aim of obtaining the best model performance in the reconstruction and classification models. The best reconstruction model performance is obtained in the number of bands 112 with an RMSE value of 0.0012 and an MAE value of 0.0269. While the performance of the best classification model spanned band 224 with a training accuracy of 86.00% for chicken varieties and 97.65% for meat status and had a precision value of 91.00% for varieties and 98.00% for meat status. The results of testing the classification modeling and reconstruction of the Dual Dense CNN architecture can be done with RGB images."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>