Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 128727 dokumen yang sesuai dengan query
cover
Teuku Faiz Aryasena
"Penelitian ini akan berfokus pada evaluasi metode-metode sistem peringatan dini gempa bumi yang telah dipublikasikan oleh peneliti-peneliti lainnya dan dapat diakses secara publik. Tujuan dari adanya penelitian ini adalah untuk mengevaluasi kelebihan dan kekurangan dari masing-masing metode dalam memprediksi gelombang P/S, magnitudo, dan lokasi gempa bumi serta memberikan rekomendasi metode apa yang sebaiknya dikembangkan lebih lanjut, terutama untuk sistem peringatan dini gempa bumi di Indonesia. Penulis mengumpulkan data dari ratusan titik seismograf di Indonesia dan menggunakannya sebagai input untuk metode-metode yang digunakan dalam penelitian ini. Evaluasi yang akan dilakukan adalah evaluasi kuantitatif dengan menggunakan metrik-metrik yang sesuai dengan hasil dari metode-metode yang digunakan. Penelitian ini berkontribusi dalam memberikan rekomendasi sistem peringatan dini gempa bumi untuk Indonesia, sehingga dapat meningkatkan kesiapan dan keamanan masyarakat dalam menghadapi bencana alam.

This research will focus on evaluating earthquake early warning systems that have been published by other researchers and are publicly accessible. The goal of this research is to assess the strengths and weaknesses of each method in predicting P/S waves, magnitude, and earthquake location, as well as to provide recommendations on which methods should be further developed, especially for earthquake early warning systems in Indonesia. I have collected data from hundreds of seismograph stations in Indonesia and used it as input for the methods utilized in this research. The evaluation will be quantitative, using metrics that correspond to the results of the methods employed. This research contributes to providing recommendations for earthquake early warning systems in Indonesia, thereby enhancing the preparedness and safety of the community in facing natural disasters."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Christopher Bagas Laiputra
"Penelitian ini akan berfokus pada evaluasi metode-metode sistem peringatan dini gempa bumi yang telah dipublikasikan oleh peneliti-peneliti lainnya dan dapat diakses secara publik. Tujuan dari adanya penelitian ini adalah untuk mengevaluasi kelebihan dan kekurangan dari masing-masing metode dalam memprediksi gelombang P/S, magnitudo, dan lokasi gempa bumi serta memberikan rekomendasi metode apa yang sebaiknya dikembangkan lebih lanjut, terutama untuk sistem peringatan dini gempa bumi di Indonesia. Penulis mengumpulkan data dari ratusan titik seismograf di Indonesia dan menggunakannya sebagai input untuk metode-metode yang digunakan dalam penelitian ini. Evaluasi yang akan dilakukan adalah evaluasi kuantitatif dengan menggunakan metrik-metrik yang sesuai dengan hasil dari metode-metode yang digunakan. Penelitian ini berkontribusi dalam memberikan rekomendasi sistem peringatan dini gempa bumi untuk Indonesia, sehingga dapat meningkatkan kesiapan dan keamanan masyarakat dalam menghadapi bencana alam.

This research will focus on evaluating earthquake early warning systems that have been published by other researchers and are publicly accessible. The goal of this research is to assess the strengths and weaknesses of each method in predicting P/S waves, magnitude, and earthquake location, as well as to provide recommendations on which methods should be further developed, especially for earthquake early warning systems in Indonesia. I have collected data from hundreds of seismograph stations in Indonesia and used it as input for the methods utilized in this research. The evaluation will be quantitative, using metrics that correspond to the results of the methods employed. This research contributes to providing recommendations for earthquake early warning systems in Indonesia, thereby enhancing the preparedness and safety of the community in facing natural disasters."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Arif Darmawan
"Penentuan waktu tiba gelombang seismik yang akurat dan cepat adalah salah satu tantangan utama dalam berbagai aplikasi seismologi, contohnya seperti aplikasi penentuan lokasi dan relokasi sumber gempa mikro. Dalam dekade terakhir, banyak metode picking otomatis bermunculan yang bertujuan untuk mempermudah dan mempercepat proses pekerjaan penentuan waktu tiba gelombang. Dalam penelitian ini penulis berupaya untuk membuat perangkat lunak picking otomatis waktu tiba gelombang menggunakan algoritma STA-LTA dan AMPA. Hasil dari 𝑡𝑝𝑖𝑐𝑘𝑖𝑛𝑔 menjadi masukan untuk menentukan lokasi hiposenter menggunakan metode GAD. Selanjutnya dihitung pembaharuan model kecepatan 1D menggunakan velest. Hasil dari penelitian ii adalah kita dapat menganalisa tomografi kecepatan dan dapat menganalisa zona rekahan di area panasbumi.

Picking time arrival of seismic wave fastly and accurately is one of the major challenges in seismological applications, for example in finding location and relocation of microeartquake event. In the last decade, many automatic picking methods released in order to make time arrival picking easier and faster. In this thesis, a writer tried to make an automatic picking time arrival software using STALTA and AMPA algorithm. The result of 𝑡𝑝𝑖𝑐𝑘𝑖𝑛𝑔 is using as an input for GAD mothod to locate a hypocenter. Then, a new 1D velocity model is calculated using Velest. The result of this research is we can analyze a velocity tomografi and to analyze a fracture zone in panasbumi area.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2017
T49038
UI - Tesis Membership  Universitas Indonesia Library
cover
Muhammad Dahlan Yasadiputra
"Indonesia merupakan negara rawan gempa karena secara geografis indonesia terletak pada pertemuan empat lempeng tektonik. Karena ini, pengembangan sebuah sistem prediksi real-time gempa bumi yang mencakup wilayah yang luas dengan gempa bumi besar sangat dibutuhkan untuk mengurangi korban jiwa. Penelitian ini mengusulkan pembuatan sistem pendeteksi cepat kedatangan gelombang-p dan penentuan hiposenter dan magnitudo gempa menggunakan deep-learning. Pengembangan sistem berbasis web ini bertujuan untuk memperingati masyarakat agar dapat lebih dini untuk melindungi diri sebelum gempa terjadi. Menggunakan data dari BMKG, data yang kami gunakan mencakupi 1892 set data gempa pada tahun 2009–2017 dan 26 set data gempa dari Katalog BMKG Januari 2019, penelitian ini menggunakan algoritma STA/LTA dalam menemukan P-Arrival dan membandingkan tiga model pembelajaran mesin untuk memprediksi hiposenter gempa dimana model Conv1d digabung dengan LSTM dengan interval waktu 20 detik merupakan skenario model terbaik dengan memiliki mean absolute error sebesar 0.470. Selain itu, penelitian ini berhasil mengimplementasi sistem berbasis web yang dapat menampilkan visualisasi data dengan menggunakan websocket berdasarkan data seismik yang dikumpulkan oleh BMKG. Visualisasi data seismik ini ditampilkan menggunakan dynamic line chart dan peta web interaktif.

Indonesia is an earthquake-prone country because geographically Indonesia is located at the confluence of four tectonic plates. Therefore, the development of a real-time earthquake prediction system that covers large areas with large earthquakes is urgently needed to reduce fatalities. This study proposes the creation of a rapid detection system for the arrival of p-waves, hypocenters and earthquake magnitudes using deep-learning. The development of this web-based system is aimed at warning people so that they can protect themselves before an earthquake occurs. Using data from BMKG, we used 1892 earthquake data sets in 2009–2017 and 26 earthquake data sets from January 2019 BMKG Catalog, this research uses the STA/LTA algorithm to find P-Arrival and compares three machine learning models to predict the earthquake hypocenter where Conv1d model is combined with LSTM with a time interval of 20 seconds is the best model scenario with a mean absolute error of 0.470. In addition, this research succeeded in implementing a web-based system that can display data visualization using websocket based on seismic data collected by BMKG. This seismic data visualization is displayed using dynamic line charts and an interactive web map."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Aan Nur Wahidi
"Indonesia merupakan negara rawan gempa karena secara geografis indonesia terletak pada pertemuan empat lempeng tektonik. Karena ini, pengembangan sebuah sistem prediksi real-time gempa bumi yang mencakup wilayah yang luas dengan gempa bumi besar sangat dibutuhkan untuk mengurangi korban jiwa. Penelitian ini mengusulkan pembuatan sistem pendeteksi cepat kedatangan gelombang-p dan penentuan hiposenter dan magnitudo gempa menggunakan deep-learning. Pengembangan sistem berbasis web ini bertujuan untuk memperingati masyarakat agar dapat lebih dini untuk melindungi diri sebelum gempa terjadi. Menggunakan data dari BMKG, data yang kami gunakan mencakupi 1892 set data gempa pada tahun 2009–2017 dan 26 set data gempa dari Katalog BMKG Januari 2019, penelitian ini menggunakan algoritma STA/LTA dalam menemukan P-Arrival dan membandingkan tiga model pembelajaran mesin untuk memprediksi hiposenter gempa dimana model Conv1d digabung dengan LSTM dengan interval waktu 20 detik merupakan skenario model terbaik dengan memiliki mean absolute error sebesar 0.470. Selain itu, penelitian ini berhasil mengimplementasi sistem berbasis web yang dapat menampilkan visualisasi data dengan menggunakan websocket berdasarkan data seismik yang dikumpulkan oleh BMKG. Visualisasi data seismik ini ditampilkan menggunakan dynamic line chart dan peta web interaktif.

Indonesia is an earthquake-prone country because geographically Indonesia is located at the confluence of four tectonic plates. Therefore, the development of a real-time earthquake prediction system that covers large areas with large earthquakes is urgently needed to reduce fatalities. This study proposes the creation of a rapid detection system for the arrival of p-waves, hypocenters and earthquake magnitudes using deep-learning. The development of this web-based system is aimed at warning people so that they can protect themselves before an earthquake occurs. Using data from BMKG, we used 1892 earthquake data sets in 2009–2017 and 26 earthquake data sets from January 2019 BMKG Catalog, this research uses the STA/LTA algorithm to find P-Arrival and compares three machine learning models to predict the earthquake hypocenter where Conv1d model is combined with LSTM with a time interval of 20 seconds is the best model scenario with a mean absolute error of 0.470. In addition, this research succeeded in implementing a web-based system that can display data visualization using websocket based on seismic data collected by BMKG. This seismic data visualization is displayed using dynamic line charts and an interactive web map"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2022
MK-pdf
UI - Makalah dan Kertas Kerja  Universitas Indonesia Library
cover
Aan Nur Wahidi
"Indonesia merupakan negara rawan gempa karena secara geografis indonesia terletak pada pertemuan empat lempeng tektonik. Karena ini, pengembangan sebuah sistem prediksi real-time gempa bumi yang mencakup wilayah yang luas dengan gempa bumi besar sangat dibutuhkan untuk mengurangi korban jiwa. Penelitian ini mengusulkan pembuatan sistem pendeteksi cepat kedatangan gelombang-p dan penentuan hiposenter dan magnitudo gempa menggunakan deep-learning. Pengembangan sistem berbasis web ini bertujuan untuk memperingati masyarakat agar dapat lebih dini untuk melindungi diri sebelum gempa terjadi. Menggunakan data dari BMKG, data yang kami gunakan mencakupi 1892 set data gempa pada tahun 2009–2017 dan 26 set data gempa dari Katalog BMKG Januari 2019, penelitian ini menggunakan algoritma STA/LTA dalam menemukan P-Arrival dan membandingkan tiga model pembelajaran mesin untuk memprediksi hiposenter gempa dimana model Conv1d digabung dengan LSTM dengan interval waktu 20 detik merupakan skenario model terbaik dengan memiliki mean absolute error sebesar 0.470. Selain itu, penelitian ini berhasil mengimplementasi sistem berbasis web yang dapat menampilkan visualisasi data dengan menggunakan websocket berdasarkan data seismik yang dikumpulkan oleh BMKG. Visualisasi data seismik ini ditampilkan menggunakan dynamic line chart dan peta web interaktif.

Indonesia is an earthquake-prone country because geographically Indonesia is located at the confluence of four tectonic plates. Therefore, the development of a real-time earthquake prediction system that covers large areas with large earthquakes is urgently needed to reduce fatalities. This study proposes the creation of a rapid detection system for the arrival of p-waves, hypocenters and earthquake magnitudes using deep-learning. The development of this web-based system is aimed at warning people so that they can protect themselves before an earthquake occurs. Using data from BMKG, we used 1892 earthquake data sets in 2009–2017 and 26 earthquake data sets from January 2019 BMKG Catalog, this research uses the STA/LTA algorithm to find P-Arrival and compares three machine learning models to predict the earthquake hypocenter where Conv1d model is combined with LSTM with a time interval of 20 seconds is the best model scenario with a mean absolute error of 0.470. In addition, this research succeeded in implementing a web-based system that can display data visualization using websocket based on seismic data collected by BMKG. This seismic data visualization is displayed using dynamic line charts and an interactive web map."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Supriyanto Rohadi
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2000
S29160
UI - Skripsi Membership  Universitas Indonesia Library
cover
Cikal Luthfi Sugandi
"Skripsi ini membahas mengenai penggunaan metode Nakamura Technique dalam pemetaan risiko kerusakan akibat gempa. Penelitian dilakukan dengan melakukan pengambilan data mikrotremor pada wilayah Universitas Indonesia dan melakukan pengolahan dengan metode Nakamura Technique untuk mendapat nilai frekuensi dominan dan amplifikasi lapisan tanah. Kedua nilai tersebut selanjutnya digunakan untuk menghitung nilai indeks kerentanan seismik lapisan tanah.. Semakin besar nilai indeks kerentanan seismik suatu wilayah maka risiko kerusakan akibat gempa wilayah tersebut semakin besar. Hasil penelitian memperlihatkan bahwa rentang nilai untuk frekuensi dominan, amplifikasi lapisan, dan indeks kerentanan tanah secara runtut adalah 2.36 - 17.69 Hz, 2.03 - 20.59, 1.16 - 42.5. Selain itu penelitian memperlihatkan daerah selatan Universitas Indonesia memiliki risiko kerusakan rendah sedangkan wilayah yang rentan rusak akibat gempa adalah wilayah hutan Universitas Indonesia.

This thesis discusses the use of the Nakamura Technique method in mapping the risk of damage due to earthquakes. The research was conducted by collecting microtremor data in the University of Indonesia area and processing it using the Nakamura Technique method to obtain dominant frequency values and amplification of the soil layer. These two values are then used to calculate the value of the seismic vulnerability index of the soil layer. The greater the value of the seismic vulnerability index of an area, the greater the risk of damage due to earthquakes in the area. The results showed that the range of values for the dominant frequency, layer amplification, and soil susceptibility index is 2.36 - 17.69 Hz, 2.03 - 20.59, 1.16 - 42.5. In addition, research shows that the southern area of the University of Indonesia has a low risk of damage, while the area that is prone to damage due to earthquakes is the forest area of the University of Indonesia."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Irmanda Arfiani Mecca
"Skripsi ini membahas tingkat seismisitas, kerapuhan batuan, dan tingkat periode ulang gempa bumi Jawa bagian barat dengan batas koordinat 105º1’11”-106º7’12” Bujur Timur dan 5º7’50”-7º1’11’’ Lintang Selatan. Analisis pengamatan menggunakan data kejadian gempa bumi selama periode 1981-2021, kedalaman h≤300 km, dan magnitudo 𝑀≥2. Metode yang digunakan adalah Magnitude Frequency Relation (MFR) dengan hasil nilai MC sebesar 4.8. Serta metode Maximum Likelihood dengan hasil nilai b sebesar 0.5 - 1.3 dan nilai a sebesar 3.5 – 8.0. Sedangkan nilai periode ulang gempa bumi yang didapatkan berbeda-beda tergantung besaran magnitudo pada wilayah penelitian. Pada gempa bumi dengan magnitudo 𝑀 = 5.0 dan 𝑀 = 5.5, secara berturutturut memiliki kisaran periode ulang gempa sekitar 1-4 tahun dan 2-7 tahun. Beda halnya dengan gempa bumi magnitudo 𝑀 = 6.0 dan 𝑀 = 6.5, memiliki kisaran periode ulang gempa sekitar 4-14 tahun dan 6-16 tahun.

This thesis discusses the level of seismicity, rock fragility, and the rate of return period for West part of the Java’s earthquake with coordinate boundaries of 105º1’11”- 106º7’12” East Longitude and 5º7’50”-7º1’11’’ South Latitude. Observational analysis uses earthquake data for the period 1981-2021, depth h≤300 km, and magnitude 𝑀≥2. The methods are used Magnitude Frequency Relation (MFR) with MC value of 4.8, also the Maximum Likelihood method with the results of a b value of 0.5 - 1.3 and a value of 3.5 – 8.0. While the value of the earthquake return period obtained varies depending on the magnitude of the study area. Earthquakes with a magnitude of 𝑀 = 5.0 and 𝑀 = 5.5, respectively, have an earthquake return period range of about 1-4 years and 2-7 years. Unlike the case with earthquakes of magnitude 𝑀 = 6.0 and 𝑀 = 6.5, they have a return period of around 4-14 years and 6-16 years."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Mia Rizkinia
"Kegiatan penangkapan ikan di laut memerlukan aplikasi teknologi yang memberikan informasi pendukung yang menyeluruh, mencakup wilayah yang luas dan dalam waktu yang cepat untuk efisiensi dan efektivitas penangkapan ikan. Hasil scan satelit NOAA/AVHRR-APT dapat dimanfaatkan untuk keperluan ini dengan melakukan pengolahan datanya terlebih dahulu. Penelitian ini menggunakan data mentah dari transmisi analog tipe Automatic Picture Transmission (APT) satelit NOAA/AVHRR yang di-decode menjadi digital dengan software WxtoImg. Pengolahan citra dilakukan menggunakan software perangkat lunak komputasi matematis dengan masukan berupa data level 2.
Pengolahan data level 0 menjadi data level 2 ini dilakukan pada WxtoImg. Untuk membuat peta isotherm permukaan laut dan menetukan letak geografis daerah potensi ikan dibutuhkan persamaan yang menghubungkan antara suhu dengan piksel citra. Karena itu, dengan WxtoImg data di- enhancement menjadi citra yang dapat diolah dengan perangkat lunak komputasi matematis dengan persamaan yang menghubungkan antara suhu dan piksel citra. Enhancement bisa dilakukan secara otomatis dengan fasilitas enhancement sea surface temperature (SST) pada WxtoImg dengan acuan hubungan piksel dan suhu dari enhancement curve WxtoImg. Hasil enhancement berupa suhu permukaan laut akan dianalisis keunggulan dan kelemahannya jika dibandingkan dengan menggunakan citra hasil pada utilitas contrast enhance channel B only, yang dalam hal ini menggunakan kanal 4 saja. Dari penggunaan dua jenis data yang berbeda ini, juga bisa diperoleh letak geografis daerah perbedaan suhu permukaan laut dengan algoritma yang dikembangkan.

In order to increase the productivity of fish cultivation, a comprehensive information on fishery area is very vital. Using NOAA/AVHRR-APT, remote sensing satellite data could be converted into the Sea Surface Temperature (SST) could be one of the most effective solution to help the fishermen. In this research, the Automatic Picture Transmission (APT) data broadcasted from the satellite was decoded to level-2 digital imagery using WxtoImg software. To convert this image into the SST profile, image processing technique was implemented.
The result is the SST isotherm map and the geographical location of fishery potential area which is derived from the differences of temperature area. A mathematical correlation function between the pixel values and the SST was derived from the enhancement curve used in the software. The SST as the enhancement output will be analyzed and compared to the result of contrast enhancement of channel 4 only. Using these two variations of data, geographical location of different SST area could be obtained.
"
Depok: Fakultas Teknik Universitas Indonesia, 2008
S40476
UI - Skripsi Open  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>