Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 70984 dokumen yang sesuai dengan query
cover
Muhammad Agil Ghifari
"Penelitian ini berfokus pada pengembangan sistem peringatan dini gempa bumi yang memanfaatkan arsitektur event-driven dan model deep-learning. Tujuannya adalah untuk memodelkan data seismik guna mendeteksi gelombang awal, hiposenter, magnitudo, dan kedalaman gempa. Penulis mengumpulkan data dari ratusan titik seismograf dan mengolahnya dengan model deep-learning untuk menghasilkan prediksi yang akurat. Sistem ini dirancang untuk memberikan visualisasi dan informasi yang mendukung Badan Meteorologi, Klimatologi, dan Geofisika (BMKG) dalam mendeteksi aspek-aspek kritis gempa. Selain itu, penulis mengembangkan sistem terdistribusi untuk mengelola permintaan dan pengolahan data skala besar dengan efisiensi tinggi. Antarmuka pemrograman aplikasi (API) juga disajikan untuk memungkinkan prediksi data yang mudah diakses dan dipahami. Terakhir, integrasi antara model machine learning dengan backend dan frontend dirancang untuk memberikan tampilan yang ramah pengguna. Penelitian ini berkontribusi dalam mengembangkan sistem peringatan dini gempa yang lebih canggih dan responsif, sehingga dapat meningkatkan kesiapan dan keamanan masyarakat dalam menghadapi bencana alam.

This study focuses on the development of an earthquake early warning system utilizing event-driven architecture and deep-learning models. The aim is to model seismic data to detect initial waves, hypocenters, magnitude, and depth of earthquakes. Data from hundreds of seismograph points were collected and processed using deep-learning models to generate accurate predictions. The system is designed to provide visualizations and information to support the Meteorology, Climatology, and Geophysics Agency (BMKG) in detecting critical earthquake aspects. Additionally, a distributed system was developed to manage large-scale data requests and processing efficiently. An Application Programming Interface (API) is also presented for accessible and understandable data predictions. Finally, the integration of machine learning models with backend and frontend is designed to offer a user-friendly display. This research contributes to the development of a more sophisticated and responsive early warning system, enhancing public preparedness and safety in the face of natural disasters."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Agil Ghifari
"Penelitian ini berfokus pada pengembangan sistem peringatan dini gempa bumi yang memanfaatkan arsitektur event-driven dan model deep-learning. Tujuannya adalah untuk memodelkan data seismik guna mendeteksi gelombang awal, hiposenter, magnitudo, dan kedalaman gempa. Penulis mengumpulkan data dari ratusan titik seismograf dan mengolahnya dengan model deep-learning untuk menghasilkan prediksi yang akurat. Sistem ini dirancang untuk memberikan visualisasi dan informasi yang mendukung Badan Meteorologi, Klimatologi, dan Geofisika (BMKG) dalam mendeteksi aspek-aspek kritis gempa. Selain itu, penulis mengembangkan sistem terdistribusi untuk mengelola permintaan dan pengolahan data skala besar dengan efisiensi tinggi. Antarmuka pemrograman aplikasi (API) juga disajikan untuk memungkinkan prediksi data yang mudah diakses dan dipahami. Terakhir, integrasi antara model machine learning dengan backend dan frontend dirancang untuk memberikan tampilan yang ramah pengguna. Penelitian ini berkontribusi dalam mengembangkan sistem peringatan dini gempa yang lebih canggih dan responsif, sehingga dapat meningkatkan kesiapan dan keamanan masyarakat dalam menghadapi bencana alam.

This study focuses on the development of an earthquake early warning system utilizing event-driven architecture and deep-learning models. The aim is to model seismic data to detect initial waves, hypocenters, magnitude, and depth of earthquakes. Data from hundreds of seismograph points were collected and processed using deep-learning models to generate accurate predictions. The system is designed to provide visualizations and information to support the Meteorology, Climatology, and Geophysics Agency (BMKG) in detecting critical earthquake aspects. Additionally, a distributed system was developed to manage large-scale data requests and processing efficiently. An Application Programming Interface (API) is also presented for accessible and understandable data predictions. Finally, the integration of machine learning models with backend and frontend is designed to offer a user-friendly display. This research contributes to the development of a more sophisticated and responsive early warning system, enhancing public preparedness and safety in the face of natural disasters."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Zidan Kharisma Adidarma
"Penelitian ini berfokus pada pengembangan sistem peringatan dini gempa bumi yang memanfaatkan arsitektur event-driven dan model deep-learning. Tujuannya adalah untuk memodelkan data seismik guna mendeteksi gelombang awal, hiposenter, magnitudo, dan kedalaman gempa. Penulis mengumpulkan data dari ratusan titik seismograf dan mengolahnya dengan model deep-learning untuk menghasilkan prediksi yang akurat. Sistem ini dirancang untuk memberikan visualisasi dan informasi yang mendukung Badan Meteorologi, Klimatologi, dan Geofisika (BMKG) dalam mendeteksi aspek-aspek kritis gempa. Selain itu, penulis mengembangkan sistem terdistribusi untuk mengelola permintaan dan pengolahan data skala besar dengan efisiensi tinggi. Antarmuka pemrograman aplikasi (API) juga disajikan untuk memungkinkan prediksi data yang mudah diakses dan dipahami. Terakhir, integrasi antara model machine learning dengan backend dan frontend dirancang untuk memberikan tampilan yang ramah pengguna. Penelitian ini berkontribusi dalam mengembangkan sistem peringatan dini gempa yang lebih canggih dan responsif, sehingga dapat meningkatkan kesiapan dan keamanan masyarakat dalam menghadapi bencana alam.

This study focuses on the development of an earthquake early warning system utilizing event-driven architecture and deep-learning models. The aim is to model seismic data to detect initial waves, hypocenters, magnitude, and depth of earthquakes. Data from hundreds of seismograph points were collected and processed using deep-learning models to generate accurate predictions. The system is designed to provide visualizations and information to support the Meteorology, Climatology, and Geophysics Agency (BMKG) in detecting critical earthquake aspects. Additionally, a distributed system was developed to manage large-scale data requests and processing efficiently. An Application Programming Interface (API) is also presented for accessible and understandable data predictions. Finally, the integration of machine learning models with backend and frontend is designed to offer a user-friendly display. This research contributes to the development of a more sophisticated and responsive early warning system, enhancing public preparedness and safety in the face of natural disasters."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Taufik Pragusga
"Penelitian ini berfokus pada pengembangan sistem peringatan dini gempa bumi yang memanfaatkan arsitektur event-driven dan model deep-learning. Tujuannya adalah untuk memodelkan data seismik guna mendeteksi gelombang awal, hiposenter, magnitudo, dan kedalaman gempa. Penulis mengumpulkan data dari ratusan titik seismograf dan mengolahnya dengan model deep-learning untuk menghasilkan prediksi yang akurat. Sistem ini dirancang untuk memberikan visualisasi dan informasi yang mendukung Badan Meteorologi, Klimatologi, dan Geofisika (BMKG) dalam mendeteksi aspek-aspek kritis gempa. Selain itu, penulis mengembangkan sistem terdistribusi untuk mengelola permintaan dan pengolahan data skala besar dengan efisiensi tinggi. Antarmuka pemrograman aplikasi (API) juga disajikan untuk memungkinkan prediksi data yang mudah diakses dan dipahami. Terakhir, integrasi antara model machine learning dengan backend dan frontend dirancang untuk memberikan tampilan yang ramah pengguna. Penelitian ini berkontribusi dalam mengembangkan sistem peringatan dini gempa yang lebih canggih dan responsif, sehingga dapat meningkatkan kesiapan dan keamanan masyarakat dalam menghadapi bencana alam.

This study focuses on the development of an earthquake early warning system utilizing event-driven architecture and deep-learning models. The aim is to model seismic data to detect initial waves, hypocenters, magnitude, and depth of earthquakes. Data from hundreds of seismograph points were collected and processed using deep-learning models to generate accurate predictions. The system is designed to provide visualizations and information to support the Meteorology, Climatology, and Geophysics Agency (BMKG) in detecting critical earthquake aspects. Additionally, a distributed system was developed to manage large-scale data requests and processing efficiently. An Application Programming Interface (API) is also presented for accessible and understandable data predictions. Finally, the integration of machine learning models with backend and frontend is designed to offer a user-friendly display. This research contributes to the development of a more sophisticated and responsive early warning system, enhancing public preparedness and safety in the face of natural disasters."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Melki Adi Kurniawan
"Mengembangkan onsite-EEW (Earthquake Early Warning) merupakan masalah yang menantang karena keterbatasan waktu dan jumlah informasi yang dapat dikumpulkan sebelum peringatan dikeluarkan. Pendekatan yang dapat dilakukan untuk mencegah bencana akibat gempabumi adalah dengan memprediksi tingkat percepatan tanah di suatu lokasi menggunakan sinyal gelombang-P awal dan memberikan peringatan sebelum puncak percepatan tanah yang besar terjadi. Dalam kondisi sebenarnya, keakuratan prediksi merupakan masalah yang paling penting untuk sistem peringatan dini gempabumi. Pada penelitian ini mengimplementasi metode berbasis kecerdasan buatan untuk memprediksi tingkat getaran gempabumi secara dini, ketika gelombang P tiba di stasiun seismik. Sebuah model CNN dibangun untuk membuat prediksi dengan menggunakan small window 3 detik awal gelombang P dari rekaman accelerometer. Model ini dibangun dengan dataset dengan input gelombang seismik dengan variasi 3,2 dan 1 detik data gempabumi di wilayah Jawa Barat 2017 hingga 2023 dengan pembagian 80% data latih,, 10% data validasi dan 10% data uji . Dari evaluasi model terbaik, skema yang diusulkan mendapatkan akurasi 99.30%±0.63% dengan data uji.

Developing onsite-EEW (Earthquake Early Warning) is a challenging problem due to the limited time and amount of information that can be gathered before a warning is issued. A possible approach to preventing earthquake-induced disasters is to predict the level of ground acceleration at a site using early P-wave signals and provide warnings before large ground acceleration peaks occur. In actual conditions, the accuracy of prediction is the most important issue for earthquake early warning systems. This study implements an artificial intelligence-based method to predict the level of earthquake tremors early, when P-waves arrive at seismic stations. A CNN model is built to make predictions using a small window of the first 3 seconds of P-waves from accelerometer recordings. The model was built with a dataset with seismic wave input with 3,2 and 1 second variations of earthquake data in the West Java region from 2017 to 2023 with a division of 80% training data, 10% validation data and 10% test data. From the evaluation of the best model, the proposed scheme obtained an accuracy of 99.30%±0.63% with test data."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Rayhan Ameriazandy
"Berkedip merupakan fungsi regular dari badan manusia yang secara tidak sadar melakukan penutupan secara cepat terhadap kelopak mata. Berkedip biasanya dilakukan untuk membersihkan mata dengan mengeluarkan debu dan menjaga mata agar tetap lembab, kedipan mata juga dapat digunakan untuk menandakan kelelahan dari seseorang. Oleh karena itu pendeteksian kedipan mata menjadi salah satu cara yang paling efektif agar dapat mendeteksi kelelahan. Pada penelitian ini penulis mengklasifikasikan kedipan mata menggunakan metode convolutional neural network (CNN) dengan arsitektur Cascading MobileNet yang terdiri dari 2 arsitektur yaitu MobileNet dan MobileNetV2 yang digunakan untuk melatih model untuk mendeteksi keadaan mata seseorang. Dataset yang digunakan adalah Closed Faces in The Wild Dataset (CEW) yang dibuat oleh "Xiaoyang Tan" dari Nanjing University of Aeronautics and Astronautics. Hasil dari skripsi ini berhasil mendeteksi keadaan mata berupa mata terbuka dan mata tertutup, dengan nilai akurasi sebesar 96.18% untuk training dan 97.12% untuk validasi.

Blinking is a regular function of the human body which unconsciously closes the eyelids quickly. Blinking is usually done to clean the eyes by removing dust and keeping the eyes moist, blinking can also be used to signify tiredness of a person. Therefore, blink detection is one of the most effective ways to detect fatigue. In this study, the authors classify eye blinks using the convolutional neural network (CNN) method. with Cascading MobileNet architecture which consists of 2 architecture, MobileNet and MobileNetV2 that being used to train the model to detect eye condition. The dataset we used is Closed Faces in The Wild Dataset (CEW) created by “Xiaoyang Tan” from Nanjing University of Aeronautics and Astronautics. The result of this thesis has successfully detected eye condition in the form of open eyes and closed eyes, with an accuracy of 96.18% for training and 97.12% for validation."
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Cressia Nauli Agustin
"Permasalahan penumpukan sampah menjadi isu global yang mendesak, memerlukan solusi inovatif untuk deteksi dan klasifikasi yang efisien. Dalam konteks ini, deteksi objek sampah menggunakan deep learning menawarkan potensi besar. Namun, pengembangan model neural network tunggal yang kompleks seringkali menghadapi tantangan keterbatasan kinerja, terutama ketika dihadapkan pada dataset yang terbatas. Penelitian ini bertujuan untuk mengembangkan model deep learning yang robust untuk deteksi objek sampah pada dataset terbatas (TrashNet) dengan memanfaatkan metode ensemble. Pendekatan ensemble, khususnya strategi weighted average, diimplementasikan untuk mengkombinasikan prediksi dari beberapa arsitektur Convolutional Neural Network (CNN) yang berbeda, seperti Xception, ResNet, dan VGG. Model-model dasar ini dilatih secara independen dan bobot optimal untuk setiap model ditentukan melalui proses validasi silang untuk memaksimalkan akurasi. Hasil eksperimen menunjukkan bahwa model ensemble dengan weighted average secara signifikan meningkatkan performa deteksi objek sampah dibandingkan dengan model tunggal. Peningkatan ini ditunjukkan melalui metrik evaluasi seperti akurasi, presisi, recall, dan F1-score yang lebih tinggi. Analisis mendalam mengungkapkan bahwa metode ensemble efektif dalam mengatasi bias dan variasi yang mungkin ada pada model individual, menghasilkan prediksi yang lebih stabil dan akurat pada dataset terbatas. Studi ini menunjukkan bahwa pendekatan ensemble meningkatkan akurasi klasifikasi menjadi 83.27%, atau meningkat ³ 3.35%.

The escalating problem of waste accumulation presents a pressing global issue, demanding innovative solutions for efficient detection and classification. In this context, waste object detection using deep learning offers significant potential. However, developing complex single neural network modelsnetworks often faces performance limitations, especially when confronted with limited datasets. This research aims to develop a robust deep-learning model for waste object detection on limited datasets (TrashNet) by leveraging an ensemble method. The ensemble approach, specifically the weighted average strategy, is implemented to combine predictions from several different Convolutional Neural Network (CNN) architectures, such as Xception, ResNet, and VGG. These base models are trained independently, and optimal weights for each model are determined through a cross-validation process to maximize accuracy. Experimental results demonstrate that the ensemble model with weighted averaging significantly improves waste object detection performance compared to single models. This improvement is shown through higher evaluation metrics such as accuracy, precision, recall, and F1-score. In-depth analysis reveals that the ensemble method is effective in mitigating biases and variations that may exist in individual models, leading to more stable and accurate predictions on limited datasets. This study demonstrates that the ensemble approach improves the classification accuracy to 83.27%, or an increase of ³ 3.35%."
Depok: Fakultas Teknik Universitas Indonesia, 2025
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Salsabila Aurellia
"Vital sign merupakan parameter fisiologis yang penting dalam melihat adanya gangguan pada tubuh seseorang. Maka dari itu kebutuhan peralatan dalam pemeriksaan vital sign sangat tinggi. Saat ini vital sign dapat diketahui dengan cara pemeriksaan non-contact. Pemeriksaan vital sign dengan non-contact dapat menggunakan Photoplethysmography (PPG). Saat ini PPG sendiri telah banyak dikembangkan agar dapat membaca keseluruhan vital sign seperti detak jantung, tekanan darah, dan juga konsenstrasi oksigen di dalam darah (SpO2). Pada penelitian ini dirancang pengembangan PPG dengan bantuan pencitraan dalam membaca vital sign. Dataset yang digunakan pada penelitian ini adalah dataset yang berasal dari pengukuran langsung yang telah dirancang agar dapat diproses menjadi sinyal Imaging Photoplethysmography (IPPG) yang baik. Dataset terdiri dari 13 orang laki-laki dan 17 orang perempuan. Dataset yang didapatkan akan dibagi menjadi beberapa scene yang kemudian diproses dalam metode yang diusungkan yaitu Discrete Fourier Transform (DFT) dan Deep Learning yaitu Convolutional Neural Network (CNN). Hasil penelitian ini berupa nilai RMSE dan MAE dimana saat penggunaan DFT menghasilkan masing masing 3,39 dan 1,38 dan dengan metode CNN arsitektur PhysNet menghasilkan 8,2151 dan 2,5976 untuk detak jantung, 3,3311 dan 1,0534 untuk tekanan darah, serta 3,6044 dan 1,1398 untuk SpO2.

Vital sign is an important physiological parameter in seeing a disturbance in a person's body. Therefore the need for equipment in vital sign examination is very high. Currently vital signs can be identified with non-contact examination. Examination of vital signs with non-contact can use Photoplethysmography (PPG). Currently PPG itself has been developed a lot so that it can read all vital signs such as heart rate, blood pressure, and also the concentration of oxygen in the blood (SpO2). In this study, the development of PPG was designed with the help of imaging in reading vital signs. The dataset used in this study is a dataset derived from direct measurements that have been designed to be processed into a good Imaging Photoplethysmography (IPPG) signal. The dataset consists of 13 men and 17 women. The dataset obtained will be divided into several scenes which are then processed using the proposed method, namely the Discrete Fourier Transform (DFT) and Deep Learning, namely the Convolutional Neural Network (CNN). The results of this study are RMSE and MAE values where when using the DFT they produce 3.39 and 1.38 respectively and with the PhysNet architecture CNN method they produce 8.2151 and 2.5976 for heart rate, 3.3311 and 1.0534 for blood pressure , and 3.6044 and 1.1398 for SpO2."
Depok: Fakultas Teknik Universitas Indonesia, 2023
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Ari Hermawan
"[ABSTRAK
Perkembangan sistem informasi saat ini menyebabkan sistem informasi yang
digunakan dalam sebuah organisasi terus bertambah dan semakin kompleks. Hal
ini juga memunculkan fenomena meningkatnya jumlah data yang diolah dan
dihasilkan oleh sistem informasi. Kondisi ini membawa tantangan baru dalam
pengawasan operasional sistem informasi, seperti keterlambatan peringatan
kesalahan atau membanjirnya jumlah peringatan yang tidak tepat sasaran.
Penelitian ini bertujuan membangun sebuah sistem pengawasan aplikasi pada
sistem informasi di PT. XYZ menggunakan Event Driven Architecture dan Machine Learning. Pengembangan ini menggunakan perangkat lunak R dan TIBCO StreamBase.

ABSTRACT
Advancement in information system nowadays has generated more
quantities and complexities of an organization?s information system. This fact
also leads to a phenomenon of the increase of data volume being processed and
also generated by any information system. This condition has brought a new
challenge in the operation and monitoring of the information systems, such as
delays in failure alert and also floods of incorrect alerts.
This research aims to build a monitoring system for applications in the PT.
XYZ information systems, using Event Driven Architecture and Machine Learning techniques. This development is done using R software and also TIBCO StreamBase. , Advancement in information system nowadays has generated more
quantities and complexities of an organization’s information system. This fact
also leads to a phenomenon of the increase of data volume being processed and
also generated by any information system. This condition has brought a new
challenge in the operation and monitoring of the information systems, such as
delays in failure alert and also floods of incorrect alerts.
This research aims to build a monitoring system for applications in the PT.
XYZ information systems, using Event Driven Architecture and Machine Learning techniques. This development is done using R software and also TIBCO StreamBase. ]"
2015
TA-Pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Alzy Maulana Bermanto
"Sistem pengenalan wajah (face recognition system) merupakan salah satu sistem yang dibangun berdasarkan pre-trained model. Sistem ini memanfaatkan teknik biometrik yang menggunakan wajah sebagai pengenalan atau identifikasi seseorang. Implementasi sistem pengenalan wajah dapat diaplikasikan dalam berbagai macam aplikasi seperti sistem absensi untuk mengecek kehadiran, sistem monitoring pengunjung di tempat wisata ataupun tempat-tempat publik, hingga dapat digunakan untuk mengenali tingkah laku seseorang untuk analisis-analisis yang dibutuhkan di berbagai bidang. Dalam penelitian ini, akan diimplementasikan sistem pengenalan wajah untuk sistem absensi menggunakan metode pembelajaran deep learning. Proses training data dan validasi hasil pengenalan wajah akan dibandingkan antara model CNN (Convolutional Neural Network) berarsitektur ResNet-50 dengan VGG16 yang telah dilatih sebelumnya menggunakan dataset Open Data Science (ODSC) untuk mendapatkan model perancangan sistem wajah terbaik. Simulasi real-time dilakukan dengan menggunakan model latih dengan validasi akurasi tertinggi sebesar 98.2%. Model latih yang digunakan dalam simulasi adalah ResNet-50 dengan dataset B sebagai data training serta learning rate sebesar 0.01. Hasil analisis menunjukkan bahwa proses training menggunakan model ResNet-50 jauh lebih ringan dan memberikan hasil model pelatihan dengan validasi akurasi yang lebih tinggi dibanding dengan model VGG16 yang membutuhkan banyak resource selama proses training berlangsung. Pengujian real-time yang dilakukan menunjukkan bahwa model ResNet-50 akan akurat jika memperhatikan beberapa kondisi yang diperlukan seperti jarak deteksi harus 50 hingga 100 cm dari kamera deteksi dan posisi wajah harus lurus menghadap kamera deteksi.

The face recognition system is a system that is built based on a pre-trained model. This system utilizes biometric techniques that use the face as an identification or authentication of a person. The facial recognition system can be applied in various applications such as attendance systems to check attendance, visitor monitoring systems at tourist attractions or public places, and to identify a person's behavior for the analyzes needed in various fields. In this study, a facial recognition system will be implemented for the attendance system using deep learning methods. To obtain the best system design, training, and validation of facial recognition results will be compared between the CNN (Convolutional Neural Network) model with the ResNet-50 and VGG16, which has been previously trained using the Open Data Science (ODSC) dataset. Real-time simulations were carried out using a training model with the highest validation accuracy of 98.2%. The training model used in the simulation is ResNet-50 with dataset B as training data and a learning rate of 0.01. The analysis results show that the training process using the ResNet-50 model is much lighter and provides results with higher accuracy validation than the VGG16 model, which requires a lot of resources during the training process. Real-time testing has shown that the ResNet-50 model will be accurate if it considers several conditions, such as the detection distance must be 50 to 100 cm from the detection camera, and the face position must be in a straight facing towards the detection camera."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>