Model runtun waktu yang paling umum digunakan adalah runtun waktu diskrit yang mengasumsikan peubah yang diuji bersifat kontinu dan menghasilkan nilai kontinu. Padahal dalam banyak penerapan, diperlukan model runtun waktu diskrit yang dapat menangani peubah diskrit dan menghasilkan nilai diskrit juga. Salah satu model runtun waktu yang menangani data count atau bilangan bulat nonnegatif adalah model runtun waktu Integer-valued Autoregressive dengan order p yaitu INAR(p). Model ini dibangun dengan binomial thinning operator yang menerapkan operasi probabilistik dengan distribusi diskrit yang cocok memodelkan data count seperti Poisson dan Binomial. Parameter model akan diestimasi dengan metode Yule-Walker. Dalam penelitian ini, akan dibahas dan dijabarkan karakteristik dari model INAR(p) menggunakan operator binomial thinning. Spesifikasi INAR(p) mengikuti model Autoregressive dengan order p, AR(p). Peramalan INAR(p) menggunakan metode peramalan nilai tengah dengan menghitung probabilitas bersyarat dari setiap bilangan bulat nonnegatif yang mungkin menjadi nilai ramalan, lalu memilih nilai ramalan yang memiliki probabilitas bersyarat kumulatif lebih besar sama dengan 0,5. Model runtun waktu INAR(p) akan diaplikasikan pada data simulasi berjumlah 120 data yang bernilai bilangan bulat nonnegatif.
The most commonly used time series model is the discrete time series which assumes the variables being tested are continuous and produces continuous values. Whereas in many applications, a discrete time series model is needed to handle discrete variables and produce discrete values as well. Time series model that handles count or non-negative integer data is the Integer-valued Autoregressive model with the pth-order or INAR(p). This model is built with binomial thinning operator which implements probabilistic operations with discrete distribution that are suitable to model count data such as Poisson and Binomial. Model parameters will be estimated using the Yule-Walker method. In this research, we will discuss and describe the characteristics of the INAR(p) model using the binomial thinning operator. The INAR(p) specification follows the Autoregressive model with the p-th order, AR(p). Forecasting in INAR(p) uses median forecasting by calculating the conditional probability of each possible nonnegative integer value, then selecting a forecast value with a cumulative conditional probability greater than 0.5. The INAR(p) time series model will be applied to the 120 simulated data with nonnegative integer values.
"Di tengah maraknya wabah virus Corona, penyakit lain yang menjadi salah satu masalah kesehatan utama masyarakat Indonesia dan tidak dapat diabaikan adalah penyakit Demam Berdarah Dengue (DBD). DBD merupakan penyakit infeksi yang disebabkan oleh virus dengue dan ditularkan melalui gigitan nyamuk Aedes aegypti betina. Faktor lain yang berpengaruh dalam penyebaran DBD adalah faktor cuaca, seperti curah hujan yang tinggi, perubahan suhu dan iklim, serta kelembaban udara. Di Indonesia sendiri, peningkatan kasus DBD banyak terjadi pada masa pancaroba. Oleh karena itu, seiring dengan banyaknya kasus DBD yang terjadi saat ini, dibutuhkan upaya pencegahan dan penanganan dini untuk menanggulangi risiko persebarannya. Upaya yang dapat dilakukan antara lain dengan melakukan prediksi jumlah insiden DBD. Pada tugas akhir ini, jumlah insiden DBD diprediksi menggunakan salah satu metode dalam machine learning, yaitu metode Artificial Neural Network - Particle Swarm Optimization (ANN-PSO), di mana yang menjadi variabel prediktornya adalah jumlah insiden DBD dan faktor cuaca (temperatur, curah hujan, dan kelembaan relatif). Fungsi aktivasi yang digunakan pada tugas akhir ini adalah fungsi Tanh (pada hidden layer) dan fungsi ReLU (pada output layer), dengan memperhitungkan parameter jumlah hidden neuron dan ukuran populasi. Kinerja model ANN-PSO yang dibentuk kemudian dievaluasi berdasarkan Mean Squared Error (MSE). Pada tugas akhir ini, model ANN-PSO terbaik yang dihasilkan untuk masing-masing kotamadya di DKI Jakarta memiliki hasil yang berbeda-beda sesuai dengan parameter yang digunakannya, dengan MSE testing paling kecil bernilai 0,0215026 untuk wilayah Jakarta Pusat, sedangkan MSE testing paling besar bernilai 0,0438962 untuk wilayah Jakarta Utara.
During the Coronavirus outbreak, another disease that is also one of the main health problems for the Indonesian people and hence cannot be ignored is Dengue Hemorrhagic Fever (DHF). DHF is an infectious disease caused by dengue virus and is transmitted through the bite of female Aedes aegypti mosquitoes. Another factor that influences the spread of DHF is weather factors, such as high rainfall, changes in temperature and climate, and humidity. In Indonesia, the increase in dengue cases occurred during the transition period. Therefore, in line with the number of dengue cases currently occurring, prevention and early management are needed to mitigate the risk of its spread. Efforts that can be made include predicting the number of dengue incidents. In this final project, the number of dengue incidents is predicted using one of the methods in machine learning, namely the Artificial Neural Network - Particle Swarm Optimization (ANN-PSO) method, where the predictor variables are the number of dengue incidents and weather factors (temperature, rainfall, and relative humidity). The activation functions used in this final project are the Tanh Function (on the hidden layer) and the ReLU Function (on the output layer), and the tuning parameters are the number of hidden neurons and population size. The performance of the ANN-PSO model that was formed evaluated using the Mean Squared Error. In this final project, the best ANN-PSO model produced for each municipality in DKI Jakarta has different results according to the parameters it uses, with the smallest MSE testing value of 0,0215026 for the Central Jakarta area, while the largest MSE testing value was 0,0438962 for the North Jakarta area.
"