Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 131653 dokumen yang sesuai dengan query
cover
Alya Azzahra
"Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) merupakan agen penyebab Coronavirus Disease 2019 (COVID-19) yang telah menginfeksi hampir dua ratus juta orang dan menyebabkan hampir empat juta kematian di dunia. Saat ini, belum ada obat yang spesifik ditemukan untuk virus ini. Drug repurposing merupakan salah satu alternatif strategi pengembangan obat di masa pandemi. Pada penelitian ini, non-structural protein 3 (NSP3) dan non-structural protein 13 (NSP13) SARS-CoV-2, yang mengkode papain-like protease dan helikase, terpilih sebagai target potensial yang berperan penting dalam replikasi virus. Drug repurposing berbasis pemodelan farmakofor dilakukan menggunakan program LigandScout. Ligan kokristal NSP3 dan NSP13 SARS-CoV-2 dari Protein Data Bank dipilih sebagai training set. Sebelumnya, sekuens protein disejajarkan dengan Clustal Omega dan interaksi protein-ligan diidentifikasi dengan Protein-Ligand Interaction Profiler. Model farmakofor divalidasi menggunakan test set yang terdiri dari ligan terpilih sebagai senyawa aktif dan decoy dari A Database of Useful Decoys-Enhanced sebagai senyawa inaktif. Model farmakofor NSP3 pada akhirnya tidak terbentuk karena sedikitnya ligan yang tersedia. Model farmakofor NSP13 yang memiliki satu cincin aromatik (AR), satu daerah hidrofobik (H), satu akseptor ikatan hidrogen (HBA), dan satu donor ikatan hidrogen (HBD) dengan penambahan feature tolerance sebesar 0,15 Å dan feature weight sebesar 0,1 pada fitur AR, H, dan HBA menghasilkan nilai AUC100%, EF1%, EF5%, sensitivitas, dan spesifisitas sebesar 0,83; 21,2; 8,8; 0,792; dan 0,790. Model ini digunakan sebagai kueri penapisan terhadap obat yang telah disetujui FDA dari The Binding Database. Ticarcillin, sulfisoxazole, lacosamide, sulfathiazole, cefaclor, penicillin G, cephalexin, carbenicillin, atenolol, dan tolazoline diperoleh sebagai senyawa kandidat dengan pharmacophore-fit score tertinggi.

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), causal agent of Coronavirus Disease 2019 (COVID-19), has infected almost two hundred millions of people and caused nearly four millions of deaths worldwide. Currently, no treatment has been identified to be effective against the virus. In the outbreak, drug repurposing emerges as a promising strategy to develop efficient therapeutics. This study selected SARS-CoV-2 non-structural protein 3 (NSP3) and non-structural protein 13 (NSP13), that encodes papain-like protease and helicase, respectively, as potential targets based on their crucial role in virus replication. Drug repurposing was carried out by LigandScout pharmacophore modeling using SARS-CoV-2 NSP3 and NSP13 co-crystallized ligands from Protein Data Bank as training set. Prior to that, crystal structures were aligned by Clustal Omega and analyzed by Protein-Ligand Interaction Profiler for interaction profiling. Generated pharmacophore model was validated by a test set consisting of above-mentioned ligands as actives and A Database of Useful Decoys-Enhanced decoys as inactives. Unfortunately, NSP3 model cannot be generated due to insufficient ligands. NSP13 model that has one aromatic ring (AR), one hydrophobic area (H), one hydrogen bond acceptor (HBA), and one hydrogen bond donor (HBD) features with 0,15 Å feature tolerance and 0,1 feature weight additions on AR, H, and HBA resulted AUC100%, EF1%, EF5%, sensitivity, and specificity of 0,83; 21,2; 8,8; 0,792; and 0,790. This model was chosen for screening against FDA-approved drugs from The Binding Database. Ticarcillin, sulfisoxazole, lacosamide, sulfathiazole, cefaclor, penicillin G, cephalexin, carbenicillin, atenolol, and tolazoline were obtained as hits with the highest pharmacophore-fit score."
Depok: Fakultas Farmasi Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Alya Azzahra
"Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) merupakan agen penyebab Coronavirus Disease 2019 (COVID-19) yang telah menginfeksi hampir dua ratus juta orang dan menyebabkan hampir empat juta kematian di dunia. Saat ini, belum ada obat yang spesifik ditemukan untuk virus ini. Drug repurposing merupakan salah satu alternatif strategi pengembangan obat di masa pandemi. Pada penelitian ini, non-structural protein 3 (NSP3) dan non-structural protein 13 (NSP13) SARS-CoV-2, yang mengkode papain-like protease dan helikase, terpilih sebagai target potensial yang berperan penting dalam replikasi virus. Drug repurposing berbasis pemodelan farmakofor dilakukan menggunakan program LigandScout. Ligan kokristal NSP3 dan NSP13 SARS-CoV-2 dari Protein Data Bank dipilih sebagai training set. Sebelumnya, sekuens protein disejajarkan dengan Clustal Omega dan interaksi protein-ligan diidentifikasi dengan Protein-Ligand Interaction Profiler. Model farmakofor divalidasi menggunakan test set yang terdiri dari ligan terpilih sebagai senyawa aktif dan decoy dari A Database of Useful Decoys-Enhanced sebagai senyawa inaktif. Model farmakofor NSP3 pada akhirnya tidak terbentuk karena sedikitnya ligan yang tersedia. Model farmakofor NSP13 yang memiliki satu cincin aromatik (AR), satu daerah hidrofobik (H), satu akseptor ikatan hidrogen (HBA), dan satu donor ikatan hidrogen (HBD) dengan penambahan feature tolerance sebesar 0,15 Å dan feature weight sebesar 0,1 pada fitur AR, H, dan HBA menghasilkan nilai AUC100%, EF1%, EF5%, sensitivitas, dan spesifisitas sebesar 0,83; 21,2; 8,8; 0,792; dan 0,790. Model ini digunakan sebagai kueri penapisan terhadap obat yang telah disetujui FDA dari The Binding Database. Ticarcillin, sulfisoxazole, lacosamide, sulfathiazole, cefaclor, penicillin G, cephalexin, carbenicillin, atenolol, dan tolazoline diperoleh sebagai senyawa kandidat dengan pharmacophore-fit score tertinggi.

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), causal agent of Coronavirus Disease 2019 (COVID-19), has infected almost two hundred millions of people and caused nearly four millions of deaths worldwide. Currently, no treatment has been identified to be effective against the virus. In the outbreak, drug repurposing emerges as a promising strategy to develop efficient therapeutics. This study selected SARS-CoV-2 non-structural protein 3 (NSP3) and non-structural protein 13 (NSP13), that encodes papain-like protease and helicase, respectively, as potential targets based on their crucial role in virus replication. Drug repurposing was carried out by LigandScout pharmacophore modeling using SARS-CoV-2 NSP3 and NSP13 co-crystallized ligands from Protein Data Bank as training set. Prior to that, crystal structures were aligned by Clustal Omega and analyzed by Protein-Ligand Interaction Profiler for interaction profiling. Generated pharmacophore model was validated by a test set consisting of above-mentioned ligands as actives and A Database of Useful Decoys-Enhanced decoys as inactives. Unfortunately, NSP3 model cannot be generated due to insufficient ligands. NSP13 model that has one aromatic ring (AR), one hydrophobic area (H), one hydrogen bond acceptor (HBA), and one hydrogen bond donor (HBD) features with 0,15 Å feature tolerance and 0,1 feature weight additions on AR, H, and HBA resulted AUC100%, EF1%, EF5%, sensitivity, and specificity of 0,83; 21,2; 8,8; 0,792; and 0,790. This model was chosen for screening against FDA-approved drugs from The Binding Database. Ticarcillin, sulfisoxazole, lacosamide, sulfathiazole, cefaclor, penicillin G, cephalexin, carbenicillin, atenolol, and tolazoline were obtained as hits with the highest pharmacophore-fit score."
Depok: Fakultas Farmasi Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Farhan Eviansyah
"PCSK9 atau Proprotein Convertase Subtilisin Kexin 9 merupakan protein manusia yang memiliki peran dalam regulasi lipid dengan meningkatkan konsentrasi LDL dalam tubuh. Terjadinya kenaikan lipid dalam tubuh melebihi kadar normal dapat menyebabkan penyakit dalam tubuh. Saat ini telah terdapat beberapa obat untuk mengobati penyakit karena kelebihan kadar lipid tetapi masih sangat terbatas obat yang bekerja untuk menghambat aktivitas dari PCSK9 sebagai salah satu cara pengobatan. Pencarian obat untuk menghambat PCSK9 dapat dilakukan melalui penggunaan kembali obat dengan menggunakan pemodelan farmakofor. Pada penelitian ini digunakan senyawa training set dan test set PCSK9 dari beberapa dokumen paten dan senyawa decoy set dari DUDE. Senyawa test set dan decoy set digunakan untuk memvalidasi model yang terbentuk. Senyawa training set digunakan untuk membentuk model farmakofor dengan menggunakan perangkat lunak LigandScout. Hasil dari pembentukan, validasi dan optimasi diperoleh model farmakofor terbaik hasil modifikasi feature weight +0.1, memiliki 1 fitur gugus aromatis, 1 fitur hidrofobik, 1 fitur gugus akseptor ikatan hidrogen, dan 1 fitur gugus donor ikatan hidrogen, dengan nilai AUC100% sebesar 0,93; nilai EF1% dan EF5% sebesar 34,0 dan 6,00; nilai sensitivitas sebesar 1; dan nilai spesifisitas sebesar 0,857. Model farmakofor terpilih dijadikan sebagai kueri penapisan virtual database obat FDA-approved dari BindingDB dengan hasil penapisan didapatkan 12 senyawa hasil pemeringkatan terbaik berdasarkan nilai pharmacophore fit score tertinggi yaitu gefitinib, clozapine, carbamazepine, phenylephrine hydrochloride, phenelzine sulfate, bupropion hydrobromide, guanfacine hydrochloride, zaleplon, dapagliflozine, methamphetamine hydrochloride, amoxicillin, lorcaserine hydrochloride. 12 senyawa hasil pemeringkatan dari penelitian adalah senyawa kandidat obat inhibitor PCSK9.

PCSK9 or Proprotein Convertase Subtilisin Kexin 9 is a human protein that has a role in lipid regulation by increasing the concentration of LDL in the body. The occurrence of an increase in lipids in the body beyond normal levels can cause disease. Currently, there are several drugs to treat disease due to excess lipid levels, but there are still limited drugs that work to inhibit the activity of PCSK9 as a treatment method. The search for drugs to inhibit PCSK9 can be done through drug repurposing using pharmacophore modeling. In this research, the training and PCSK9 test set from several patent documents and the decoy set compound from DUDE used. A test and decoy set compound were used to validate the generated pharmacophore model. The training set compound was use to generated a pharmacophore model using the LigandScout. The results of generation, validation, and optimization of the pharmacophore model obtained the best pharmacophore model modified by feature weight +0.1, which has four feature (1AR, 1H, 1HBA, 1HBD). The value of AUC 100% 0,93; EF1% and EF5% value are 34,0 and 6,00; sensitivity and specificity values are 1 and 0,857. The selected pharmacophore model was used as a virtual screening query for the FDA-approved drug database from BindingDB. The result of the screening obtained 12 compounds with the best ranking based on the highest Pharmacophore fit score, that is gefitinib, clozapine, carbamazepine, phenylephrine hydrochloride, phenelzine sulfate, bupropion hydrobromide, guanfacine hydrochloride, zaleplon, dapagliflozin, methamphetamine hydrochloride, amoxicillin, lorcaserine hydrochloride."
Depok: Fakultas Farmasi Universitas ndonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Klebl, Bert.
"This timely guide to kinase inhibitor drug development is the first to cover the entire drug pipeline, from target identification to compound development and clinical application. Edited by the pioneers in the field, on the drug development side this ready reference discusses classical medicinal chemistry approaches as well as current chemical genomics strategies. On the clinical side, both current and future therapeutic application areas for kinase inhibitor drugs are addressed, with a strong focus on oncology drugs.
Backed by recent clinical experience with first-generation drugs in the battle against various forms of cancer, this is crucial reading for medicinal, pharmaceutical and biochemists, molecular biologists, and oncologists, as well as those working in the pharmaceutical industry.
"
Weinheim: Wiley-VCH, 2011
e20394589
eBooks  Universitas Indonesia Library
cover
Azkal Azkiya
"Coronavirus disease (COVID-19) adalah penyakit pernapasan menular yang disebabkan oleh jenis coronavirus baru. Penyakit ini sebelumnya disebut dengan 2019-nCoV atau 2019 novel coronavirus. Virus penyebab COVID-19 ini adalah SARS-CoV-2. Terdapat varian SARS-CoV-2 lain yang memiliki potensi berdampak besar bagi kesehatan masyarakat seperti Lambda dan Mu. Ada pula kelompok varian SARS-CoV-2 under monitoring yang belum diketahui dampak dan bentuk penyebarannya di tingkat masyarakat. Kappa, Iota, dan Epsilon merupakan beberapa contoh varian yang termasuk ke dalam kelompok tersebut. World Health Organization (WHO) terus melakukan pengawasan kemunculan varian SARS-CoV-2 yang baru. Varian SARS-CoV-2 yang telah diketahui penularan dan dampaknya cukup signifikan pada masyarakat hingga saat ini adalah Alpha, Beta, Delta, Gamma, dan Omicron. Penelitian ini menggunakan data dari kelima varian SARS-CoV-2 tersebut. Penelitian ini mengimplementasikan program unsupervised dari machine learning yaitu simulasi proses clustering untuk mengelompokkan varian SARS-CoV-2. Dilakukan ekstraksi fitur terhadap data sekuens protein SARS-CoV-2 menggunakan package discere dalam bahasa pemrograman Python. Melalui proses ekstraksi fitur dihasilkan 27 fitur data sekuens protein SARS-CoV-2 yang siap digunakan. Elbow method kemudian diimplementasikan terhadap data untuk mengetahui jumlah pembentukan cluster yang optimal untuk digunakan pada clustering. Berdasarkan elbow method didapatkan jumlah cluster optimal untuk simulasi clustering sebanyak  dan dilakukan juga simulasi dengan  untuk memberi kesempatan kepada seluruh varian untuk membentuk clusternya sendiri.  Metode clustering yang digunakan pada penelitian ini adalah spectral clustering. Cluster yang dihasilkan kemudian dievaluasi menggunakan metrik evaluasi silhouette score serta melihat runtime pada setiap simulasi yang dilakukan. Hasil silhouette score untuk simulasi dengan  bernilai 0,614 dan untuk simulasi dengan  yang bernilai 0,631. Durasi rata-rata runtime mencatat bahwa simulasi dengan  dengan 6,566 detik lebih baik dibanding simulasi dengan  dengan 7,529 detik. Berdasarkan hasil tersebut, spectral clustering dapat dilakukan terhadap varian SARS-CoV-2 dengan pemilihan jumlah cluster  menggunakan elbow method.

Coronavirus disease (COVID-19) is an infectious respiratory disease caused by a new type of coronavirus. This disease was previously called 2019-nCoV or 2019 novel coronavirus. The virus that causes COVID-19 is the SARS-CoV-2. There are several variants of SARS-CoV-2 that have the potential to have a major impact on public health, such as Lambda and Mu. There is also a group of variants of SARS-CoV-2 under monitoring whose impact and form of spread are unknown at the community level. Kappa, Iota, and Epsilon are some examples of variants that belong to this group. The World Health Organization (WHO) continues to monitor the emergence of a new variant of SARS-CoV-2. The variants of SARS-CoV-2 that are known to transmit and have a significant impact on society so far are Alpha, Beta, Delta, Gamma and Omicron. This study uses data from that five variants of SARS-CoV-2. This study implements an unsupervised program from machine learning, which is a simulation of the clustering process to group variants of SARS-CoV-2 . Feature extraction was carried out on the SARS-CoV-2 protein sequence data using discere package in the Python programming language. Through the feature extraction process, 27 features of the SARS-CoV-2 protein sequence data were produced which were ready for use. The elbow method is then implemented on the data to find out the optimal number of cluster formations for use in clustering. Based on the elbow method, the optimal number of clusters for the clustering simulation is  and a simulation with  is also carried out to provide an opportunity for all variants to form their own clusters. The clustering method used in this study is spectral clustering. The resulting clusters are then evaluated using the silhouette score evaluation metric and looking at the runtime in each simulation that is performed. The results of the silhouette score for the simulation with  is worth 0.614 and for the simulation with  it is worth 0.631. The average duration of the runtime noted that the simulation with  with 6.566 seconds was better than the simulation with  with 7.529 seconds. Based on these results, spectral clustering can be carried out on the SARS-CoV-2 variant by selecting the number of  clusters using the elbow method.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ig Satrio Wicaksono
"Pada akhir tahun 2019, telah muncul suatu tipe virus korona baru yaitu SARS-CoV-2 yang menyebabkan pandemik global dengan tingkat kematian yang relatif sangat tinggi. Dikarenakan oleh belum adanya obat maupun vaksin yang efektif untuk mengobati virus ini maka diperlukan suatu senyawa yang bisa menginhibisi protein yang berperan dalam infeksi virus SARS-CoV-2. Virus SARS-CoV-2 terdiri dari beberapa protein penyusun. Salah satu protein yang berperan penting adalah protein nukleokapsid (NP). Protein ini berperan dalam proses transkripsi maupun replikasi dari RNA virus SARS-CoV-2. Oleh karena itu, protein ini memiliki potensi untuk dijadikan target protein yang akan diinhibisi. Pada penelitian ini akan dilakukan pemanfaatan senyawa bahan alam yang dapat menginhibisi protein target tersebut sehingga dapat mengurangi dampak dari pandemik global ini. Struktur tiga dimensi (3D) dari NP dimodel melalui sekuen yang diunduh melalui basis data GenBank. Struktur protein kemudian dioptimisasi dan dikarakterisasi untuk mengetahui keakurasian struktur hasi homologi model. Kemudian, penapisan dilakukan terhadap basis data senyawa bahan alam yang berasal dari NPASS dengan menggunakan Astex’s Rule of Three (RO3) dan sifat toksisitas untuk mendapatkan senyawa fragmen. Kemudian dilakukan simulasi penambatan molekul senyawa-senyawa fragmen ini terhadap sisi ikat dari NP menggunakan perangkat lunak MOE 2014.09. Kemudian setelah didapatkan delapan ligan terbaik, ligan-ligan tersebut ditumbuhkan dengan menggunakan proses penumbuhan fragmen yang menghasilkan 14.332 senyawa yang nantinya akan dievaluasi melalui simulasi penambatan molekul sekali lagi. Simulasi ini menghasilkan 40 ligan terbaik dengan nilai energi bebas Gibbs terendah terhadap struktur ptorein. Ligan terpilih diprediksi sifat farmakologinya secara komputasi, dan menghasilkan 2 ligan (CFG-17 dan NFG-11) yang memiliki sifat farmakologis yang baik. Kedua ligan ini divalidasi interaksinya dengan menggunakan simulasi dinamika molekul dan menunjukkan stabilitas interaksi yang baik sebagai kandidat obat untuk terapi SARS-CoV-2.

The outbreak of COVID-19 caused by the SARS-CoV-2 virus caused a global pandemic that affects the worldwide. Because of the lacking effective prescribed drugs or vaccines as a therapeutic strategy, there is a need to identify a novel inhibitor to inhibit a protein that plays a vital role in the infection of SARS-CoV-2. The Nucleocapsid protein (NP) of the SARS-CoV-2 is a protein that is necessary for viral RNA replication and transcription. Thus, in this study, a three-dimensional (3D) NP structure was modeled using the protein sequences of NP obtained from the GenBank database. After that, the modeled protein structure was characterized and optimized. The natural compound databases obtained from the NPASS database were screened based on Astex’s Rule of Three and toxicity filter to gain lead-like fragments. The filtered fragments were docked into the binding site of the NP utilizing MOE 2014.09 software. Then potential eight potential lead-like fragments were grown to generate 14,332 new ligands by utilizing DataWarrior software. Then molecular docking simulation was performed once again with the same protocol as the first molecular docking simulation. The simulation resulted in 40 best ligands with the lowest value of Gibbs free energy binding to NP. The selected ligands were subjected to the computational pharmacological properties prediction using several tools and resulted in two compounds candidate with favorable interaction and ADME-Tox properties. Then these two compounds were further analyzed with the molecular dynamic simulation."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
cover
Devia Puspita Natalicka
"Salah satu terapi COVID-19 adalah plasma konvalesen yang disiapkan Unit Transfusi Darah dari donor yang telah sembuh dari COVID-19. Plasma konvalesen mengandung antibodi netralisasi yang menghambat interaksi antara protein S dengan reseptor ACE2 dengan persyaratan minimal titer 1:160 sehingga diperlukan sistem deteksi antibodi netralisasi seperti tes serologi berbasis ELISA kompetitif yang mudah, murah, cepat dan tidak membutuhkan BSL 3 atau 2. Uji ini membutuhkan protein rekombinan spike S1 yang dapat diekspresikan pada sistem ekspresi mamalia. Penelitian ini bertujuan untuk mendeteksi antibodi spesifik SARS-CoV-2 pada plasma konvalesen COVID-19 menggunakan protein rekombinan Spike S1.Penelitian ini menggunakan plasmid pD609 sebagai vektor ekspresi yang terdapat gen spike S1. DNA ditransfeksi secara transien ke sel CHO. Immunostaining dilakukan setelah transfeksi untuk melihat ekspresi protein rekombinan spike S1 pada sel CHO. Supernatan media sel CHO post transfeksi dianalisis dengan western blot dan ELISA untuk melihat reaktifitas terhadap serum konvalesen COVID-19. Hasil immunostaining menunjukkan plasmid pD609 S1 Spike Foldon-His dapat mengekspresikan protein rekombinan spike S1 SARS-CoV-2 pada sel CHO. Hasil Western Blot dan ELISA menunjukkan supernatan media sel kultur CHO post transfeksi reaktif terhadap serum konvalesen COVID-19. Protein rekombinan spike S1 memiliki potensi untuk dikembangkan dan digunakan dalam uji antibodi spesifik namun hasil ekspresi protein masih rendah.

One of the therapies for COVID-19 is convalescent plasma prepared by the Blood Transfusion Unit from donors who have recovered from COVID-19. Convalescent plasma contains neutralizing antibodies that inhibit the interaction between S protein and ACE2 receptors with a minimum requirement of a titer of 1:160 so that a neutalizing antibody detection system is needed such as a competitive ELISA-based serological test that is easy, inexpensive, fast, and does not require BSL 3 or 2. S1 spike recombinant protein that can be expressed in mammalian expression systems. This study aims to detect SARS-CoV-2 specific antibodies in COVID-19 convalescent plasma using recombinant Spike S1 protein. This study used the pD609 plasmid as an expression vector containing the spike S1 gene. DNA was transiently transfected into CHO cells. Immunostaining was performed after transfection to see the expression of the S1 spike recombinant protein in CHO cells. The post-transfected CHO cell media supernatans were analyzed by western blot and ELISA to see the reactivity to COVID19 convalescent serum. Immunostaining results showed that the plasmid pD609 S1 Spike Foldon-His could express the SARS-CoV-2 spike S1 recombinant protein in CHO cells. The results of Western blot and ELISA showed that the post-transfection CHO cell culture media supernatant was reactive to COVID-19 convalescent serum. S1 spike recombinant protein has the potential to be developed and used in specific antibody assays, but the results of protein expression is still low."
Jakarta: Fakultas Kedokteran Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Situmeang, Jason Nimrod Joshua
"

Penelitian ini bertujuan untuk melakukan pengelompokan varian virus SARS-CoV-2 melalui proses clustering menggunakan metode unsupervised learning. Data yang digunakan adalah sekuens protein SARS-CoV-2 yang diekstraksi fiturnya menggunakan paket Discere dalam bahasa pemrograman Python. Sebanyak 27 fitur dihasilkan dan diseleksi dengan metode seleksi fitur Least Absolute Shrinkage and Selection Operator (LASSO). Metode Elbow digunakan untuk menentukan jumlah cluster yang optimal. Dalam penelitian ini, digunakan metode clustering K-Means dan Balanced Iterative Reducing and Clustering using Hierarchies (BIRCH). Evaluasi hasil clustering dilakukan menggunakan metrik evaluasi Silhouette Score dan Davies-Bouldin Index, serta memperhatikan waktu runtime untuk setiap simulasi. Hasil evaluasi kemudian dibandingkan untuk melihat perbedaan performa antara kedua metode clustering yang digunakan, serta pengaruh seleksi fitur terhadap performa clustering. Hasil terbaik diperoleh pada simulasi dengan metode clustering BIRCH + LASSO, dengan nilai Silhouette Score 0,74186 untuk jumlah cluster k=4 dan 0,73207 untuk k=5. Nilai Davies-Bouldin Index terbaik juga diperoleh pada simulasi tersebut, yaitu 0,42697 untuk k=4 dan 0,37949 untuk k=5. Waktu runtime terbaik tercatat pada simulasi dengan metode K-Means + LASSO, yaitu 0,21551 detik untuk k=4 dan 0,17539 detik untuk k=5. Dapat disimpulkan bahwa metode BIRCH menghasilkan cluster yang lebih baik berdasarkan metrik evaluasi, namun K-Means memberikan proses clustering yang lebih cepat. Seleksi fitur dengan metode LASSO juga membantu meningkatkan performa clustering.


This study aims to perform clustering of SARS-CoV-2 virus variants using unsupervised learning methods. The data used consists of SARS-CoV-2 protein sequences whose features are extracted using the Discere package in the Python programming language. A total of 27 features are generated and selected using the Least Absolute Shrinkage and Selection Operator (LASSO) feature selection method. The Elbow method is employed to determine the optimal number of clusters for the clustering process. The clustering methods used in this research are K-Means clustering and Balanced Iterative Reducing and Clustering using Hierarchies (BIRCH). The clustering results are evaluated using the Silhouette Score and Davies-Bouldin Index metrics, while also considering the runtime for each simulation. The evaluation results are then compared to examine the performance differences between the two clustering methods and the impact of feature selection on clustering performance. The best Silhouette Score is obtained in the simulation using the BIRCH + LASSO clustering method, with a value of 0.74186 for k=4 and 0.73207 for k=5. The best Davies-Bouldin Index is also achieved in the same simulation, with values of 0.42697 for k=4 and 0.37949 for k=5. The fastest runtime is recorded in the simulation using the K-Means + LASSO method, with a time of 0.21551 seconds for k=4 and 0.17539 seconds for k=5. In conclusion, the BIRCH method yields better clustering results based on the evaluation metrics, while K-Means provides faster clustering processes. The LASSO feature selection method also aids in improving clustering performance.

"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
"With chapters provided by international leading experts, this book covers the recent advances in protein and peptide mass spectrometry. Focusing on the pharmaceutical industry, it addresses both emerging techniques, including imaging mass spectrometry, ion mobility, and microwave-assisted mass spectrometry, and recent applications, including pharmaceutical analysis throughout the drug development cycle. The book stresses practice and applications, providing real world examples from industry contributors. After overviewing methodology and discussing recent studies, the remaining chapters address newer techniques for determining protein structure, interactions with peptides, proteins, and ligands, and protein folding and unfolding."
Hoboken: John Wiley & Sons, 2012
e20394585
eBooks  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>