Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 179632 dokumen yang sesuai dengan query
cover
Tiara Amelia Valency
"Pemanfaatan karbon aktif dari cangkang sawit sebagai bahan penyerap logam berat pada limbah cair telah dilakukan. Pembuatan karbon aktif disiapkan melalui proses dehidrasi, karbonisasi, dan aktivasi. Proses dehidrasi dilakukan dengan pemanasan pada temperatur 120 ℃, proses karbonisasi dilakukan selama 1 jam melalui pemanasan dengan variasi temperatur 400, 600, and 800 ℃ dengan rendemen arang yang diperoleh pada setiap temperatur yaitu 50.13, 45.66, dan 32.82%. Proses aktivasi dilakukan selama 2 jam pengadukan dan didiamkan selama 24 jam. Proses ini menggunakan aktivator KOH 10%. Distribusi ukuran partikel rata-rata untuk setiap variasi temperatur diperoleh ~39.78, 30.07, dan 12.99 μm. Pola difraksi XRD menunjukkan karbon aktif cangkang sawit memiliki stuktur amorf, dan pada pola XRD dapat dilihat terbentuknya kristal pada sudut 2θ sebesar 22.37%, 22.78%, dan 22.84%. Berdasarkan spektrum FTIR menunjukkan adanya pola serapan karbon aktif spesifik untuk gugus fungsi O-H, C-H, C=C, C-O dan C=O yang masing-masing menunjukkan puncak pada 3.691; 3.620; 2.920; 2.842; 2.382; 2.358; 2.355; 2.052; 1.534; 1.453; 1.052; dan 1.032 cm-1 yang menjadi sidik jari gugus fungsi untuk karbon aktif. Analisa stabilitas termal menunjukkan proses pengurangan massa seiring meningkatnya temperatur. Proses pengujian efektifitas penyerapan dilakukan menggunakan limbah sintesis yang mengandung PbCl2 1% dengan variasi waktu kontak karbon aktif ke dalam limbah cair terdiri dari 1 jam, 2 jam, dan 3 jam untuk setiap sampel. Konsentrasi limbah cair PbCl2 yang diperoleh setelah pengujian penyerapan oleh karbon aktif yang di cek menggunakan Atomic Absorption Spectroscopy (AAS) untuk setiap variasi temperatur dan waktu kontak yaitu pada suhu 400 ℃ diperoleh persentase penyisihan 1.2%, 2.5%, 4.4%, pada suhu 600 ℃ diperoleh persentase penyisihan 7.5%, 12%, 14.4%, pada suhu 800 ℃ diperoleh persentase penyisihan 15%, 22.15%, dan 27.5%. Hasil Scanning Electron Microscpy (SEM) menunjukkan sifat morfologi permukaan karbon aktif untuk setiap sampel, terbentuknya pori-pori yang semakin besar seiring meningkatnya temperatur dan setelah diaktivasi.

Utilization of activated carbon from palm kernel shells as a heavy metal adsorbent in liquid waste has been carried out. Activated carbon was prepared through a process of dehydration, carbonization, and activation. The dehydration process was carried out by heating at 120 ℃, the carbonization process was carried out for 1 hour through heating with temperature variations of 400, 600, and 800 ℃ with the yield of charcoal obtained at each temperature, namely 50.13, 45.66, and 32.82%. The activation process was carried out for 2 hours of stirring and allowed to stand for 24 hours. This activation process uses 10% KOH activator. The mean particle size distribution for each temperature variation was obtained at ~39.78, 30.07, and 12.99 m. The XRD diffraction pattern showed that the palm kernel shells activated carbon had an amorphous structure, and the XRD pattern showed the formation of crystals at 2θ angles at 22.37%, 22.78%, and 22.84%. Based on the FTIR spectrum, there is a specific active carbon adsorption pattern for the O-H, C-H, C=C, C-O and C=O functional groups, each of which showed a peak at 3,691; 3,620; 2,920; 2,842; 2,382; 2,358; 2,355; 2,052; 1534; 1,453; 1,052; and 1,032 cm-1 which is the fingerprint of the functional group for activated carbon. Thermal stability analysis showed the process of mass reduction with increasing temperature. The process of testing the effectiveness of adsorption was carried out using synthetic waste containing 1% PbCl2 with variations in the contact time of activated carbon into liquid waste consisting of 1 hour, 2 hours, and 3 hours for each sample. The concentration of PbCl2 wastewater obtained after the adsorption test by activated carbon was checked using Atomic Absorption Spectroscopy (AAS) for each variation of temperature and contact time, namely at a temperature of 400 ℃, the percentage removal was 1.2%, 2.5%, 4.4%, at a temperature of 600 ℃. the percentages of removal were 7.5%, 12%, 14.4%, at a temperature of 800 ℃ the percentages of removal were 15%, 22.15%, and 27.5%. Scanning Electron Microscopy (SEM) results showed the morphological properties of the activated carbon surface for each sample, the formation of larger pores with increasing temperature, and after activation."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
cover
Clarissa Dea Muliawan
"Permintaan yang semakin tinggi terhadap kelapa sawit sebagai tanaman industri di Indonesia telah mengakibatkan peningkatan volume limbah kelapa sawit. Limbah padat kelapa sawit, khususnya tempurung kelapa sawit, merupakan salah satu limbah dengan jumlah yang signifikan. Dalam penelitian ini mengedepankan green-recycle oleh karena itu dilakukan pengolahan limbah tempurung kelapa sawit untuk menguragi kadar limbah dengan cara memperoleh karbon aktif yang diaktivasi dengan menggunakan NaOH, yang dapat digunakan sebagai bahan baku untuk sintesis grafena oksida. Proses sintesis grafena oksida dilakukan melalui perlakuan oksidasi menggunakan metode Hummers Modifikasi. Selanjutnya, grafena oksida tereduksi (rGO) diperoleh melalui proses reduksi dengan menggunakan laser engraver. Dilakukan pengujian berupa SEM, FTIR, UV-Visible, dan XRD. Hasil karakterisasi SEM-EDS karbon aktif menunjukkan adanya pori yang besar dan tidak beraturan dengan kandungan karbon, oksigen, natrium, aluminium dan silikon, grafena oksida yang ditunjukkan dengan bentuk flakes yang cukup tebal dengan kandungan karbon dan oksigen, serta rGO terlihat berbentuk flakes seperti grafena oksida namun lebih tipis dan berkerut dan memiliki jarak interlayer. Hasil karakterisasi FTIR menunjukkan karbon aktif memiliki gugus fungsi di karbonil, hidroksil, dan alkana sedangkan grafena oksida memiliki pita serapan di karboksil, karbonil, dan hidroksil sedangkan spektrum yang dihasilkan oleh rGO menunjukkan hilangnya gugus fungsi oksigen yang menandakan proses reduksi telah berhasil. Pengujian UV-Visible menunjukkan waktu reduksi dengan durasi waktu 3 jam merupakan waktu paling efektif untuk mereduksi laser yang dilihat dengan munculnya puncak wavelength di 255 nm. Hasil pengujian XRD yang ditunjukkan dengan berubahnya puncak peak dari 2? = 26,53o (karbon aktif) menjadi 2? = 11,43 o (grafena oksida), dan diakhiri dengan 2? = 25,04o (rGO).

The growing demand for palm oil as an industrial crop in Indonesia has resulted into the increase in the volume of palm oil waste. Oil palm solid waste, especially oil palm kneel shell, is one of the significant amounts of waste. This study focuses on green recycling and aims to process palm kneel shell waste to reduce waste levels by obtaining activated carbon through NaOH activation, which can be used as raw material for graphene oxide synthesis. The graphene oxide synthesis process was carried out through oxidation treatment using the Modified Hummers method. Furthermore, reduced graphene oxide (rGO) was obtained through a reduction process using a laser engraver. SEM, FTIR, UV-Visible, and XRD tests were conducted. The results of SEM-EDS characterization of activated carbon show the presence of large and irregular pores with carbon, oxygen, natrium, aluminium, and silicon content, graphene oxide, which is indicated by the shape of flakes that are quite thick with carbon and oxygen content, and rGO looks like flakes like graphene oxide but thinner and wrinkled and has interlayer distance. FTIR characterization results show that activated carbon has functional groups in carbonyl, hydroxyl, and alkanes, while graphene oxide has absorption bands in carboxyl, carbonyl, and hydroxyl, while the spectrum produced by rGO shows the loss of oxygen functional groups indicating the reduction process has been successful. UV-Visible testing shows that the laser induced-reduction time of 3 hours is the most effective time to reduce graphene oxide, as seen by the appearance of the peak wavelength at 255 nm. It is strongly indicated by XRD results, 2? shifting from 26.53 ° (active carbon) to 11.43 ° (graphene oxide) and ends with 25.04 °(rGO)."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Puspa Sari Pratiwi
"Arang aktif dari kulit buah pisang merupakan salah satu sumber karbon yang dapat dimanfaatkan untuk sintesis CNT. Kulit buah pisang dapat dijadikan sebagai sumber karbon karena mengandung karbon sekitar 41,37%, hemiselulosa 12,04%, dan lignin 33,79%. Arang aktif kulit buah pisang dicampurkan dengan minyak mineral 2% (1:10) untuk sintesis CNT pada suhu 1000, 1100, dan 1200 °C selama 60 menit menggunakan metode pirolisis. CNT dikarakterisasi dengan beberapa instrumen, yaitu: Transmission Electron Microscopy (TEM), X-Ray Diffraction (XRD), dan Fourier Transform Infra Red (FTIR). Hasil sintesis CNT ditunjukkan oleh terbentuknya CNT yang masih terdapat katalis logam Fe di dalam badan CNT pada suhu 1000°C, bamboo shaped like CNT pada suhu 1100°C, dan CNT yang lebih dominan oleh agregat minyak mineral pada suhu 1200°C.
Activated charcoal from banana peel is a source of carbon that can be used for synthesis of CNT. Banana peel can be used as a carbon source for CNT because it contains carbon approximately 41.37%, 12.04% hemicellulose, and lignin 33.79%. Banana peel activated charcoal and 2% mineral oil (1:10) mixture was used as a precursor for synthesis CNT at temperatures of 1000, 1100, and 1200°C for 60 minutes by pyrolysis method. CNT were characterized by several instruments: Transmission Electron Microscopy (TEM), X-Ray Diffraction (XRD) and Fourier Transform Infra Red (FTIR). The results of the synthesis and characterization of CNT is Fe (metal) inside the hollow of the CNT at 1000°C, bamboo shaped like CNT at 1100°C, and CNT is dominated by oil mineral aggregates at 1200°C."
Depok: Fakultas Teknik Universitas Indonesia, 2014
S54590
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dimas Nurwansyah
"Pemanfaatan limbah tandan kosong kelapa sawit untuk sintesis komposit karbon aktif-Ag/TiO2 untuk purifikasi udara pada ruang medis telah diteliti. Tujuan dari penelitian ini adalah untuk memperoleh komposisi terbaik dari komposit karbon aktif-Ag/TiO2 dalam memurnikan udara ruang medis. Karbon aktif disintesis dari tandan kosong kelapa sawit melalui dua tahapan, karbonisasi dan aktivasi kimia dengan ZnCl2. Kemudian, permukaan karbon aktif diberi perlakuan dengan TEOS untuk memastikan terbentuknya komposit. Komposit Ag/TiO2 disintesis dengan metode photo-assisted deposition PAD. Kinerja Ag/TiO2 diuji untuk mendisinfeksi bakteri E. coli. Sintesis karbon aktif-Ag/TiO2 dilakukan dengan variasi loading karbon aktif sebesar 2, 5 dan 10. Kemampuan karbon aktif-Ag/TiO2 dalam mendegradasi formaldehida juga diuji.
Hasil karakterisasi BET menunjukkan karbon aktif yang terbentuk memiliki luas permukaan yang tinggi SBET = 657-752 m2/g. Karakterisasi EDX dari karbon aktif menunjukkan kandungan unsur karbon pada karbon aktif mencapai 90. Katalis 3 Ag/TiO2 memiliki kemampuan terbaik dalam mendisinfeksi bakteri E. coli hingga 0 CFU/ml. Kemampuan degradasi fotokatalisis terbaik dari formaldehida dimiliki oleh komposit dengan perbandingan massa KA : Ag : TiO2 sebesar 1 : 1,4 : 47,6. Formaldehida mampu terdegradasi hingga konsentrasi mencapai standar kualitas udara dalam ruang medis di Indonesia sebesar 0,1 ppm. Efek sinergis dari masing-masing penyusun komposit terhadap kinerja komposit juga didiskusikan.

The utilization of waste of palm oil empty bunches for the synthesis of activated carbon composite Ag TiO2 for air purification in medical space has been investigated. The purpose of this study was to obtain the best composition of the activated carbon composite Ag TiO2 in purifying the medical room air. Activated carbon is synthesized from oil palm empty bunches through two stages, carbonization and chemical activation with ZnCl2. Then, the surface of the activated carbon was treated with TEOS to ensure the formation of the composite. Composite Ag TiO2 is synthesized by photo assisted deposition method PAD. Performance of Ag TiO2 was tested to disinfect E. coli bacteria. The synthesis of activated carbon Ag TiO2 was carried out with variations of activated carbon loading of 2, 5 and 10. The ability of activated carbon Ag TiO2 in degrading formaldehyde was also tested under UV radiation.
The BET characterization results show that the activated carbon formed has a high surface area SBET 657 752 m2 g. Characterization of EDX from activated carbon showed carbon content in activated carbon reach 90. The 3 Ag TiO2 catalyst has the best ability to disinfect E. coli bacteria up to 0 CFU ml for 2 hours. The best photocatalytic degradation capability of formaldehyde is owned by 2 activated carbon 3 Ag TiO2 or mass ratio of AC Ag TiO2 is 1 1.4 47.6. Formaldehyde is able to be degraded until concentration reaches the indoor air quality standard in Indonesia at 0.1 ppm. The synergetic effect of each component in the composite will also be dicussed.
"
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Raisa Aulia Hanifah
"Emisi gas buang dari kendaraan bermotor banyak mengandung senyawa yang berbahaya bagi kesehatan manusia maupun lingkungan. Karbon aktif dapat dikembangkan sebagai adsorben guna mendukung upaya penanggulangan pencemaran udara akibat emisi gas kendaraan bermotor. Karbon aktif diproduksi dengan bahan baku biomassa, salah satunya ialah cangkang kelapa sawit yang memiliki kandungan selulosa (6,92%), hemiselulosa (26,16%), dan lignin (53,85%). Karbon aktif berbahan baku limbah cangkang kelapa sawit diproses melalui proses dehidrasi, reduksi, dan diaktivasi kimia menggunakan larutan kalium karbonat (K2CO3) dengan rasio massa 1:1 dan konsentrasi K2CO3 sebesar 20%-w. Selanjutnya, sampel dikarbonisasi pada furnace dengan temperatur 500 ºC dan dilanjutkan dengan aktivasi kimia tahap dua dengan variasi perbandingan massa K2CO3 dan massa bahan baku yang digunakan sebesar 1:1 dan 3:2. Sampel yang telah teraktivasi kimia selanjutnya mengalami aktivasi fisika pada temperatur 750 ºC dan dialiri gas N2 dengan laju 200 ml/menit selama 90 menit. Karbon aktif yang telah disintesis memiliki luas permukaan terbaik pada variasi rasio massa 3:2 yaitu sebesar 1202 m2/g. Modifikasi dilakukan untuk meningkatkan kapasitas adsorpsi dari karbon aktif. Pada penelitian ini, modifikasi dilakukan dengan menyisipkan logam oksida berupa nikel oksida (NiO) ke dalam pori karbon aktif dengan variasi konsentrasi sebesar 0,5%, 1%, 2%. Penyisipan NiO mengurangi luas permukaan karbon aktif hingga 802 m2/g pada variasi konsentrasi 2%. Dari hasil penelitian diketahui bahwa media karbon aktif terimpegrasi NiO 1% yang dipasang pada tabung adsorpsi dapat memberikan hasil penurunan konsentrasi gas CO sebesar 61,95%, HC sebesar 37,96 %, dan CO2 sebesar 48,5 %.

Exhaust emissions from motor vehicles contain many compounds that are harmful to human health and the environment. Activated carbon can be developed as an adsorbent to support efforts to combat air pollution due to motor vehicle gas emissions. Activated carbon is produced with biomass raw materials, one of which is a palm shell which contains cellulose (6.92%), hemicellulose (26.16%), and lignin (53.85%). Activated carbon made from palm shell waste is processed through the process of dehydration, reduction, and chemical activation using potassium carbonate (K2CO3) solution with a mass ratio of 1:1 and K2CO3 concentration of 20%-w. Furthermore, the sample was carbonized in the furnace at a temperature of 500 ºC and continued with second step chemical activation with a variation in the mass ratio of K2CO3 and the mass of the raw material used was 1:1 and 3:2. Samples that have been chemically activated then undergo physical activation at 750 ºC and flowed with N2 gas at a rate of 200 ml/min for 90 minutes. The synthesized activated carbon has the best surface area at a mass ratio of 3:2 which is 1202 m2/g. Modifications were made to increase the adsorption capacity of activated carbon synthesized. In this study, the modification was carried out by impregnating metal oxides in the form of nickel oxide (NiO) into pores of activated carbon with a concentration variation of 0.5%, 1%, 2%. NiO impregnation reduces the surface area of activated carbon up to 802 m2/g at 2% concentration variation. From the results of the study, the NiO 1% -activated carbon mounted on the adsorption tube can result in a decrease in CO gas concentration of 61.95%, HC of 37.96%, and CO2 of 48,5%."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Randy Anggriany
"Penelitian ini dilakukan untuk mengetahui pengaruh karbon aktif berbahan dasar tempurung kelapa sawit dengan bahan pengaktif ZnCl2 terhadap penurunan konsentrasi gas CO serta penjernihan asap kebakaran. Proses aktivasi dilakukan secara kimia dan fisika. Karbonisasi dilakukan pada suhu 400oC selama 2 jam lalu dilanjutkan dengan aktivasi kimia dengan ZnCl2 dengan konsentrasi 25%. Aktivasi fisika dilakukan dengan mengalirkan gas N2 selama 1 jam pada suhu 850 ºC dan dilanjutkan dengan mengaliri gas CO2 selama 1 jam pada suhu 850 ºC.
Penelitian ini menghasilkan karbon aktif yang memenuhi Standar Industri Indonesia dengan luas permukaan sebesar 743 m2/gram, kadar air 14,5%, dan kadar abu total 9,0%. Selain itu karbon aktif yang dihasilkan juga dapat diaplikasikan untuk mengadsorpsi gas CO dari hasil kebakaran dengan persen adsorpsi gas CO sebesar 11,3% pada ukuran partikel 50-37 μm.

This research was conducted to determine the effect of activated carbon made from coconut palm with ZnCl2 as activating agent to decrease the concentration of CO gas and fire fumes purification. The activation process is done chemically and physically. Carbonization was carried out at 400oC for 2 hours and then followed by chemical activation with ZnCl2 at concentrations of 25%. Physical activation is done by flowing N2 gas for 1 hour at 850ºC and followed by flowing CO2 gas for 1 hour at 850ºC.
This research produces activated carbon which follows Indonesian Industry Standard with surface area 743 m2/gram, water content 14.5%, and total ash content 9.0%. The activated carbon produced can also be applied to adsorb CO gas from the fire with the percent adsorption of CO gas by 11.3% in the particle size of 50-37 μm.
"
Depok: Fakultas Teknik Universitas Indonesia, 2013
S46908
UI - Skripsi Membership  Universitas Indonesia Library
cover
Afdhal Hanafi
"Limbah kulit durian dipilih menjadi bahan baku pembuatan karbon aktif sebagai adsorben gas buang CO dan hidrokarbon karena mengandung selulosa yang tinggi serta diproduksi dalam jumlah yang tinggi yaitu mencapai 700 ribu ton per tahun. Metode aktivasi limbah kulit durian dilakukan malalui aktivasi kimia dan fisika. Aktivasi kimia menggunakan H3PO4 sebagai activating agent sedangkan aktivasi fisika menggunakan N2. Karbon aktif hasil aktivasi kimia fisika ini akan dimodifikasi dengan MgO agar kapasitas adsorpsi dalam menyerap CO dan hidrokarbon dapat meningkat. Karakterisasi yang digunakan adalah uji bilangan iod, SEM dan EDX untuk mengetahui luas permukaan, topografi dan kandungan pada karbon aktif.
Melalui pengujian bilangan iod didapatkan luas permukaan terbaik dengan modifikasi MgO pada rasio 70:30 yaitu sebesar 1149,48 m2/g. Untuk aktivasi kimia fisika, modifikasi MgO rasio 80:20 dan modifikasi MgO rasio 90:10 berturut turut didapatkan luas permukaan sebesar 798 m2/g, 890,23 m2/g dan 859,91 m2/g. Persen penurunan konsentrasi CO dan hidrokarbon terbaik yaitu dengan menggunakan karbon aktif hasil modifikasi MgO rasio 70:30 dengan panjang tabung adsorpsi 5 cm yaitu sebesar 99,14 untuk CO dan 87,73 untuk hidrokarbon.

Durian Shell waste is selected as raw material for making activated carbon as CO and hydrocarbon adsorbent because it contains high cellulose and produced in high number until 700 thousand tons per year. The activation method of durian shell by using chemical and physical acvtivation. Chemical activation using H3PO4 as activating agent and physical activation using N2. The activated carbon from chemical physical activation will modified by MgO to increase adsorption capacity in adsorbing CO and hydrocarbon. Characterization of active carbon used iod number, SEM and EDX to know surface area, topography and the content of activated carbon.
The best surface area from testing iod number is activated carbon with modified MgO ratio 70 30 that have a surface area of 1149.48 m2 g. For the activation of chemical physical, MgO modified ratio 80 20 and MgO modified 90 10 respectively obtained a surface area of 798 m2 g, 890.23 m2 g and 859.91 m2 g. the capacity adsorption is the best by using activated carbon modified MgO ratio 70 30 with 5 cm tube adsorption that is 99.14 for CO and 87.73 for hydrocarbons. Keywords CO and hydrocarbon gases, activated carbon, activation method, modified active carbon, characterization of activated carbon."
Depok: Fakultas Teknik Universitas Indonesia, 2017
S66931
UI - Skripsi Membership  Universitas Indonesia Library
cover
Yoga Tamala
"Dalam penelitian ini dilakukan pembuatan karbon aktif yang berbahan baku dari cangkang sawit dan melihat pengaruh aktivasi kimia dan fisika terhadap sifat karbon aktif yang dihasilkan. Karbonisasi dilakukan pada suhu 400oC. Pada aktivasi kimia digunakan aktivator H3PO4 4M , sedangkan pada aktivasi fisika digunakan aliran gas N2 dan gas CO2 yang laju alirnya divariasikan ( 100 mL/menit, 200 mL/menit, 300 mL/menit dan 400 mL/menit). Karakterisasi karbon aktif yang dipelajari dalam penelitian ini adalah rendemen, kadar air, kadar zat mudah menguap, kadar abu dan bilangan iodin.
Hasil penelitian menunjukkan bahwa karbon aktif terbaik berdasarkan daya jerap iodinnya adalah karbon yang mengalami aktivasi kimia (perendaman H3PO4) dan aktivasi fisika dengan menggunakan gas N2 dengan laju alir sebesar 100 mL/menit dilanjutkan gas CO2 dengan laju alir sebesar 200 mL/menit. Karbon ini memiliki bilangan iodin sebesar 678,15 mg/g dengan rendemen sebesar 63,02%, kadar air 14,11%, kadar zat mudah menguap 28,57%, dan kadar abu 4,17%.

In this research be held the making of activated carbon by using palm empty bunches (PEB) as the primery ingredients and to see the effect of chemical and physical activation towards the condition of activated carbon produced. Carbonization is done in the temperature of 400oC. In the chemical activation H3PO4 4M is used as activator, meanwhile, in physical activation N2 and CO2 gases is used while varying the speed of flow (100 mL/min, 200 mL/min, 300 mL/min and 400 mL/min). The characteristic of activated carbon that will be studied in this research is yield, humidity, volatile matter, percentage of ash and iodin number.
The result shows that the best activated carbon is based on the iodin number is the carbon that have been through the chemical activation ( H3PO4 soaking) and physical activation by using N2 gas with the speed of flow 200 ml/min. This carbon has the iodin number for 678.15 mg/g with yield 63.02%, water content 14.11%, volatile matter 28.57%, and ash content 4.17%.
"
Depok: Fakultas Teknik Universitas Indonesia, 2013
S47731
UI - Skripsi Membership  Universitas Indonesia Library
cover
Shinta Leonita
"Pada penelitian ini limbah fenol didegradasi menggunakan teknik ozonasiadsorpsi dengan GAC (Granular Activated Carbon) dalam reaktor unggun diam berpemutar. Saat penelitian, dilakukan proses penyisihan menggunakan teknik ozonasi tanpa adsorpsi dan adsorpsi tanpa ozonasi sebagai pembanding. Sementara variasi dosis GAC, pH awal fenol dan kecepatan pemutar hanya dilakukan pada teknik ozonasi-adsorpsi.
Hasil penelitian menunjukkan bahwa teknik ozonasi-adsorpsi terbukti lebih unggul dalam mendegradasi fenol. Pada kondisi operasi yang sama teknik ozonasi-adsorpsi mampu menyisihkan fenol sebanyak 78,62% dibandingkan ozonasi tanpa adsorpsi (53,15%) dan adsorpsi tanpa ozonasi (36,67%). Peningkatan persentase penyisihan fenol pada teknik ozonasi-adsorpsi berbanding lurus dengan penambahan dosis GAC, pH larutan, dan kecepatan pemutar.

In this study, phenols in liquid waste is degradated using ozonationadsorption technique with GAC (Granular Activated Carbon) in a packed bed rotating reactor. During research, we also use single ozonation and single adsorption techniques for comparison. Meanwhile, variations of GAC dose, initial pH of phenols and packed bed rotator speed is only done on ozonation-adsorption technique.
The results showed that ozonation-adsorption technique proved more superior in degrading phenols. At the same operating conditions ozonationadsorption technique capable of removing 78.62% phenols as compared ozonation without adsorption (53.15%) and adsorption without ozonation (36.67%). The increasing percentage of degradated phenol in ozonation-adsorption technique is proportional to the addition of GAC dose, solution pH, and packed bed rotator speed.
"
Depok: Fakultas Teknik Universitas Indonesia, 2013
S52433
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>