Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 144100 dokumen yang sesuai dengan query
cover
Retno Dhita Anjarsari
"PLA merupakan biopolimer yang memiliki sifat yang ramah lingkungan, biokompatibel, biodegradable, dan berasal dari bahan alam terbarukan. PLA dihasilkan dari polimerisasi L-laktida dengan metode pembukaan cincin, yang merupakan metode terbaik untuk menghasilkan PLA dengan berat molekul tinggi, dibantu dengan katalis logam. Namun katalis logam meninggalkan residu yang tidak baik untuk tubuh, sehingga digunakan katalis non-logam salah satunya enzim lipase. Penggunakan lipase sebagai biokatalis untuk sintesis senyawa organik sudah sering dilakukan, karena keberadannya sangat mudah ditemukan salah satunya lipase Candida rugosa. Penambahan solven ionic liquid pada proses sintesis PLA dapat menjaga kestabilan enzim, mencegah denaturasi enzim, dan memeperluas media reaksi mengakibatkan konversi monomer dan berat molekul rata-rata jumlah (Mn) semakin besar. Pada penelitian ini sintesis PLA melalui jalur ROP dilakukan menggunakan lipase Candida rugosa dan pelarut [BMIM][PF6] dilakukan pada suhu 80°C selama 3 hari dengan jumlah katalis 5% (b/b) dapat menghasilkan konversi monomer hingga 99.2% dan nilai Mn mencapai 5508.9 g/mol. Perhitngan konversi monomer dan Mn dilakukan menggunakan data hasil H-NMR.

Polylactic acid (PLA) is a thermoplastic that is used commonly in biomedical applications. It is known for its eco-friendly, biocompatibility, biodegradability, and made of renewable materials. PLA is produced from the polymerization of L-lactide by the ring-opening polymerization (ROP) method. ROP is the best method for producing high molecular weight polymer, assisted by a metal catalyst. However, metal catalyst leaves a harmful residue for medical purpose, so non-metal catalyst is needed. The enzyme is one of the best alternatives, especially lipase. It is easy to find and cheaper than other enzymes. Candida rugosa lipase is used in hydrolysis, esterification, and transesterification reaction. Ionic liquid existence in PLA synthesis plays a role in obtaining a high number average molecular weight (Mn) dan monomer conversion because of its ability to provide enzyme stability, activity, and selectivity and prevent the thermal deactivation of enzymes. In this study, the PLA synthesis via the ROP pathway was carried out using Candida rugosa lipase and [BMIM][PF6] at 80°C for three days, and 5%(b/b) CRL obtained polymer with Mn= 5508.9 g/mol and 99.2% monomer conversion"
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Cynthia Laurent Santoso
"PLA merupakan salah satu polimer yang dapat digunakan sebagai alternatif pengganti plastik karena sifatnya kelebihannya yaitu biodegradabel, biokompatibilitas, kekuatan mekanik, dan kemampuan proses. Proses sintesis PLA akan dilakukan dengan menggunakan jalur Polimerisasi Pembukaan Cincin (PPC) dengan pertimbangan dapat menghasilkan berat molekul PLA yang tinggi dengan bantuan katalis dan pelarut. Katalis yang digunakan adalah katalis Lipase Candida rugosa dan pelarut yang digunakan adalah DMA (dimethylacetamide). Penelitian ini akan dilakukan dengan beberapa variasi yaitu variasi waktu pada 2, 3, 4 hari; variasi suhu pada 60ᵒC, 80ᵒC, 100ᵒC; dan rasio katalis pada 2, 5, dan 10% b/b. PLA yang telah tersintesis akan dilakukan uji karakterisitik yaitu berat molekul rata-rata jumlah (Mn), konversi monomer, dan struktur molekul menggunakan H1 NMR. Hasil penelitian ini berupa spektra NMR dan digunakan untuk menghitung nilai konversi dan Mn PLA. Didapatkan bahwa suhu, rasio katalis, dan waktu reaksi polimerisasi yang optimal adalah pada suhu 80℃, rasio katalis sebesar 5%, dan waktu reaksi 3 hari dengan menghasilkan konversi sebesar 99,48% dan Mn sebesar 1192,07 g/mol.

PLA is a polymer that can be used as an alternative to fossil-based plastics. PLA is the right solution because of its biodegradability, biocompatibility, mechanical strength, and processability. The PLA synthesis process will be carried out using the Ring Opening Polymerization (PPC) pathway with the consideration can produce a high molecular weight of PLA with the help of catalysts and solvent. This study used a Candida rugosa lipase as a green catalyst and DMA (Dimethylacetamide) as a solvent. The observations were made by varying time at 2, 3, 4 days; temperature at 60ᵒC, 80ᵒC, 100ᵒC; and catalyst ratio at 2, 5, and 10% w/w. The PLA will be characterized which are molecular weight average number (Mn), monomer conversion, and molecular structure using H1 NMR. The results of this study were in the form of NMR spectra and used to calculate the monomer conversion and Mn PLA. It was found that the optimal temperature, catalyst ratio, and polymerization reaction time were at 80℃, the catalyst ratio was 5%, and the reaction time was 3 days with the conversion of 99.48% and Mn of 1192.07 g/mol."
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Paulina Meiliani
"ABSTRAK
Teknologi pelepasan obat jangka panjang diinginkan untuk mengobati penyakit mata, termasuk penyakit retinopati diabetik. Obat ini umumnya disampaikan melalui intraokular menggunakan injeksi intravitreal karena ketidakefektifan dan hambatan dari metode pemberian obat lainnya. Namun, frekuensi injeksi yang tinggi dapat menyebabkan beberapa kerugian, seperti ketidaknyamanan pasien dan beberapa komplikasi. Oleh karena itu, diperlukan sistem yang sempurna untuk mendapatkan pelepasan jangka panjang dan terkontrol. Untuk membentuk sistem seperti itu, Poly Lactic Acid PLA nanopartikel polimer digunakan untuk membungkus obat dexamethasone. Persiapan nanopartikel menggunakan metode penguapan pelarut-emulsifikasi. Selain itu, untuk meningkatkan stabilitas dan interaksi dengan asam hyaluronic dan vitreous, surfaktan kationik DDAB didodecyldimethylammonium bromide ditambahkan untuk modifikasi permukaan. Variasi surfaktan yang digunakan adalah DDAB 0,5 dan PVA-DDAB-0,5 . Uji rilis dilakukan selama 24 hari, dengan interval sampling 48 jam T = 35 C . Data menunjukkan bahwa stabilitas DDAB di permukaan dapat mencapai lebih lama dalam PLA-PVA-DDAB 0,5 dibandingkan dengan PLA-DDAB 0,5 . Setelah 24 hari, pelepasan kumulatif PLA-PVA-DDAB 0,5 mencapai 67,53 sementara PLA-DDAB 0,5 mencapai 89,2.

ABSTRACT
Long term drug release technology is desirable to treat ocular diseases, including diabetic retinopathy disease. The drug is commonly delivered via intraocular using intravitreal injecton due to ineffectiveness and obstacles of other drug delivery methods. However, the high frequency of injection can lead to several disadvantages, such as the patients rsquo inconvenience and several complications. Therefore, a perfect system to obtain long term and controlled release is required. To establish a such system, Poly Lactic Acid PLA polymer nanoparticles is used to encapsulate dexamethasone drug. The preparation of the nanoparticles uses emulsification solvent evaporation method. Moreover, to increase stability and interaction with the hyaluronic acid and vitreous, cationic surfactant DDAB didodecyldimethylammonium bromide is added for surface modification. Variations of surfactant used are DDAB 0.5 and PVA DDAB 0.5 . Release test was conducted for 24 days, with sampling interval of 48 hours T 35 C . The data show that the DDAB stability in the surface can reach longer in PLA PVA DDAB 0.5 comparing to PLA DDAB 0.5 . After 24 days, PLA PVA DDAB 0.5 cumulated release reached up to 67.53 while PLA DDAB 0.5 reached up to 89.2. "
2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Alyssa Adyandra
"Polilaktida merupakan polimer yang telah banyak diteliti sebagai material yang dapat digunakan sebagai implan fiksasi pada tubuh manusia dikarenakan memiliki sifat mekanik yang baik dan dapat terdegradasi secara alami pada tubuh manusia dengan menghasilkan produk yang dapat dilakukan metabolisme dengan mudah oleh tubuh. Tetapi, salah satu kelemahan dari penggunaan polilaktida adalah waktu degradasi yang lama sehingga dapat menyebabkan reaksi inflamatori di dalam tubuh manusia. D,Lpolilaktida merupakan polimer polilaktida yang memilki rantai berbentuk ataktis sehingga struktur molekulnya bersifat amorf yang memiliki waktu degradasi yang lebih cepat dibandingkan dengan polilaktida. Penelitian ini bertujuan untuk menganalisa karakteristik sampel yang terbuat dari campuran L-polilaktida (PLLA) dan D,Lpolilaktida (PDLLA) dengan variasi komposisi D,L-polilaktida pada campuran dengan prosentase 10%, 30% dan 50%. Proses pencampuran L-polilaktida dengan D,Lpolilaktida menggunakan metode solution blending. Dilakukan analisis sifat termal, pola kristalinitas, sifat mekanik, serta biodegradabilitas (viskositas, massa dan FTIR) dari produk sampel. Pada campuran PLLA dan PDLLA terjadi penurunan derajat kristalinitas dan kenaikan fasa amorf, akan tetapi terbentuk kristalit stereokompleks yang semakin meningkat seiring dengan meningkatnya komposisi PDLLA. Pencampuran PDLLA pada PLLA akan menurunkan titik leleh (Tm), akan tetapi meningkatkan kestabilan termal dikarenakan stereokompleks yang terbentuk, yang disebabkan ikatan hidrogen antara rantai yang memiliki taksisitas yang berbeda. Penambahan PDLLA pada PLLA dapat meningkatkan %massa yang hilang sehingga meningkatkan laju degradasi dari sampel, dengan mekanisme degradasi terjadi pada bagian amorf dari polimer terlebih dahulu.

Polylactide is a polymer that has been widely studied as a material that can be used as fixation implants in the human body because it has good mechanical properties and can be naturally degraded in the human body by producing products that can be metabolized easily by the body. However, one of the disadvantages of using polylactide is that it takes a long time to degrade so that it can cause inflammatory reactions in the human body. D,L-polylactide is a polylactide polymer that has atactic-shaped chains so that its molecular structure is amorphous which has a faster degradation time than polylactides. This study aims to analyze samples made from a mixture of L-polylactide (PLLA) and D,L-polylactide (PDLLA) with variations in the composition of D,L-polylactide in the mixture with a percentage of 10%, 30% and 50%. The process of mixing L-polylactide with D,L-polylactide using the solution blending method. Analysis of thermal properties, crystallinity patterns, mechanical properties, and biodegradability (viscosity, mass and FTIR) of the sample products was carried out. In a mixture of PLLA and PDLLA there was a decrease in the degree of crystallinity and an increase in the amorphous phase, but stereocomplex crystallites were formed which increased with the increase in the composition of PDLLA. Mixing PDLLA in PLLA will decrease the melting point (Tm), but will increase the thermal stability due to the formed stereocomplex, which is caused by hydrogen between the chains having high taxisivity. The addition of PDLLA to PLLA can increase the % mass loss thereby increasing the rate of degradation of the sample, with the degradation mechanism on the amorphous part of the polymer first."
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rahmayetty
"ABSTRAK
Sintesis poli asam laktat PLA menggunakan katalis lipase Candida rugosa dilakukan sebagai salah satu upaya untuk menghasilkan plastik biodegradable ramah lingkungan. dan berasal dari sumber daya terbarukan. Penggunaan lipase Candida rugosa sebagai pengganti katalis logam dalam polimerisasi telah berhasil mensintesis poli asam laktat PLA . Pelaksanaan kegiatan penelitian dilakukan melalui 3 tahapan proses. Tahapan awal adalah polikondensasi asam laktat dengan variasi temperatur untuk menghasilkan oligomer OLLA dengan berat molekul berbeda-beda. Tahap berikutnya adalah depolimerisasi dengan variasi temperatur, tekanan, jenis dan konsentrasi katalis serta berat molekul OLLA untuk menghasilkan laktida. Tahap terakhir adalah polimerisasi laktida menggunakan katalis lipase Candida rugosa dengan variasi temperatur dan konsentrasi lipase untuk menghasilkan PLA. Hasil penelitian menunjukkan bahwa polikondensasi pada temperatur konstan 150; 180; 200oC selama 4 jam dan temperatur bertahap 150oC selama 2 jam dan 180oC selama 2 jam menghasilkan OLLA dengan berat molekul Mw/Mn secara berurutan sebesar 1080/380; 1736/893; 2487/1375 dan 2820/2389. Tahap depolimerisasi menghasilkan laktida dengan stereoisomer L-laktida. Yield dan kemurnian laktida tertinggi masing-masing sebesar 78,8 dan 81,03 . Kondisi optimum tahap depolimerisasi adalah pada temperatur 210oC, tekanan 0,1 atm dan menggunakan katalis SnCl2 0,1 b/b serta berat molekul Mw/Mn OLLA sebesar 2820/2389. Polimerisasi pembukaan cincin L-laktida menggunakan katalis lipase Candida rugosa berlangsung optimum pada temperatur 90oC dengan konsentrasi lipase 2 b/b . Berat molekul PLA tertinggi didapatkan sebesar Mw/Mn 5428/2854 dengan yield 92,58 .

ABSTRACT
The synthesis of polylactic acid PLA using Candida rugosa lipase catalyst is performed as one of the efforts to produce environmentally friendly biodegradable plastic and derived from renewable resources. The use of Candida rugosa lipase as a substitute for metal catalyst in polymerization has successfully synthesized polylactic acid PLA . Implementation of research activities conducted through 3 stages of the process. The initial stage is the polycondensation of lactic acid with temperature variations to produce oligomers OLLA of varying molecular weights. The next step is depolymerization with variation of temperature, pressure, type and concentration of catalyst and molecular weight of OLLA to produce lactide. The last stage is lactide polymerization using Candida rugosa lipase catalyst with variation of temperature and lipase concentration to produce PLA. The results showed that polycondensation at constant temperature 150 180 200oC for 4 hours and gradually temperature 150oC for 2 hours and 180oC for 2 hours produced average molecular weight Mw Mn of 1080 380 1736 893 2487 1375 and 2820 2389, respectively. The depolymerization stage produced lactides with l lactide stereoisomers. The highest yields and purity of lactides were 78.8 and 81.03 , respectively. The optimum condition of the depolymerization step was at temperature of 210oC, pressure of 0.1 atm and using SnCl2 0.1 w w catalyst and average molecular weight Mw Mn of OLLA of 2820 2389. The ring opening polymerization of lactides using Candida rugosa lipase catalyst was optimum at 90 C with a lipase concentration of 2 w w . The highest molecular weight of PLA was obtained Mw Mn 5428 2854 and yield of PLA was 92.58 ."
2017
D2293
UI - Disertasi Membership  Universitas Indonesia Library
cover
Nisrina Ulfah Budhyono
"Pada penelitian ini dilakukan preparasi mikrosfer dengan metode evaporasi pelarut. Mikrosfer dibuat dengan memadukan polimer biodegradable poli(D-asam laktat) dan polikaprolakton, dan span 80 sebagai surfaktan. Optimasi pembentukan polipaduan mikrosfer dilakukan dengan memvariasikan konsentrasi surfaktan Span 80 (1,2 x 10-2 M, 2,3 x 10-2 M, 3,5 x 10-2 M, 4,6 x 10-2 M, dan 5,8 x 10-2 M), variasi kecepatan pengadukan tahap dispersi (700 rpm, 900 rpm, 1100 rpm dan 1300 rpm) dan variasi lama waktu pengadukan tahap dispersi (30 menit, 60 menit, dan 120 menit). Karakterisasi mikrosfer yang terbentuk dilakukan dengan FTIR, PSA, dan mikroskop optik.
Hasil dari penelitian ini menunjukkan bahwa kondisi optimum mikrosfer yang baik adalah dengan menggunakan Span 80 pada konsentrasi 5,8 x 10-2 M, kecepatan pengadukan tahap dispersi sebesar 1300 rpm dan lama waktu pengadukan dispersi 60 menit. Kondisi tersebut menghasilkan mikrosfer dengan persen padatan mikrosfer besar (93 ± 2%) dan ukuran yang seragam.

In this study, microspheres were prepared by solvent evaporation method. Microspheres were prepared by blending two biodegradable polymers; poly(D-lactic acid) and polycaprolactone and using span 80 as surfactant. Microspheres polyblend were optimized at various concentrations of span 80 (1,2 x 10-2 M, 2,3 x 10-2 M, 3,5 x 10-2 M, 4,6 x 10-2 M, dan 5,8 x 10-2 M), various stirring speeds during dispersion (700 rpm, 900 rpm, 1100 rpm, and 1300 rpm), and also at various stirring times during dispersion (30 minutes, 60 minutes, and 120 minutes). Characterizations of microsphere obtained were observed by FTIR, PSA and optical microscope.
The overall results in this study showed that the formula which used 5,8 x 10-2 M span 80, stirring speed at 1300 rpm and stirring time for 60 minutes at dispersion phase produced microsphere with high percentage of microsphere particles (93 ± 2%) and had the most uniform sizes.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Simarmata, Benjamin Wijaya
"Pengembangan rekayasa jaringan pada makhuk hidup berkembang sangat pesat. Berbagai metode dan bahan telah diteliti untuk mencari parameter dan metode terbaik untuk menghasilkan rekayasa jaringan. Terdapat kesulitan dalam proses pembuatan perancah tulang (bone scaffold) akibat desain tulang yang kompleks, sehingga pada penelitian ini dilakukan sintesis perancah tulang menggunakan 3D-Printing (3DP) untuk menghasilkan perancah tulang dengan ukuran porositas yang seragam dan terhubung dengan baik agar dapat mendukung pertumbuhan jaringan sel tulang. Penelitian ini menggunakan polylactic acid dan polyamide66-carbon filler dengan tujuan untuk mengetahui pengaruh persentase pengisi (infill percentage) pada 3DP sebesar 40%, 50% dan 60% terhadap kekuatan mekanik dan laju degradasi. Kenaikan persentase pengisi akan menghasilkan nilai kekuatan tekan yang tinggi, namun memiliki ukuran porositas yang rendah. Analisis laju degradasi dilakukan menggunakan media r-SBF dengan pengamatan 7 dan 14 hari. Spesimen dengan porositas tinggi akan memiliki laju degradasi yang tinggi. PLA dengan pengisi 40% memiliki persentase degradasi tertinggi 5.5% dengan waktu perendaman 14 menindikasikan terjadinya degradasi menyeluruh (bulk degradation), sedangkan yang terendah pada pengisi 60% PA66-CF 7 hari sebesar 0,85 % mengindikasikan terjadi erosi permukaan (surface erosion). Penggunaan PA66-CF dapat meningkatkan proses pengikatan mineral kalsium (Ca) dan fosfor (P) yang berguna saat proses penyembuhan tulang.

The development of tissue engineering in living humans is growing very rapidly. Various methods and materials have been researched to find the best parameters and methods to produce tissue engineering. There are difficulties in the process of making bone scaffolds due to the complex design of the bones, so in this research, a bone scaffold was synthesized using 3D-Printing (3DP) to produce bone scaffolds with uniform porosity size and well connected to support growth bone cells. This study used polylactic acid and polyamide66-carbon filler to determine the effect of 40%, 50% and 60% infill percentage on 3DP on mechanical strength and degradation rate. Increasing the percentage of filler will result in a high compressive strength value, but has low porosity size. Rate of degradation was carried out using r-SBF with observations of 7 and 14 days. Specimens with high porosity have a high rate of degradation. PLA with 40% filler has the highest degradation percentage of 5.5% with an immersion time of 14 indicating bulk degradation, while the lowest at 60% PA66-CF 7 days at 0.85% indicates surface erosion. PA66-CF can increase the binding process of calcium (Ca) and phosphorus (P) minerals which are useful during the bone healing process."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Zikrina
"Penelitian ini membahas tentang realisasi hasil multimaterial scaffold yang menggunakan bahan dua buah Polimer PLA (Polylactic acid) yang belum diketahui mekanikal propertinya, dengan variasi volume tertentu dengan tujuan untuk mendapatkan sifat dan struktur mekanikal yang sesuai sebagai scaffold yang akan di aplikasikan dalam bone block. Variasi pengujian dilakukan dengan memberikan perbedaan volume PLA dan PLA ini bertujuan untuk membandingkan mechanical properties multimaterial scaffold yang akan dibentuk. Variasi parameter tersebut akan menghasilkan scaffold dengan porositas dan nilai elastic modulus (Em) yang di dapat melalui uji tekan (compressive test). Fabrikasi yang dilakukan menggunakan FDM (Fuse Deposition Modelling) tricolour dibantu dengan CAD software dalam proses perancangannya. Berdasarkan penelitian yang dilakukan, single material scaffold dan multi material scaffold memiliki porositas berkisar 25-75%. Dan modulus elastisitas yang didapat dari pengujian tekan pada single material scaffold menujukkan untuk scaffold PLA a sebesar 62,02 Mpa dan scaffold PLA b sebesar 31,01 Mpa. Dan untuk multimaterial scaffold didapat modulus elastisitas dari 48 – 59 Mpa.

This study discusses the realization of multi scaffold material using two polymer material PLA (Poly(lactic) acid) is not known mechanical properties, with a variation of a certain volume in order to obtain mechanical properties and structure suitable as a scaffold that will be applied in the bone block. Variations testing is done by giving the difference volume PLA α and β PLA aims to compare the mechanical properties multi material scaffold to be formed. Variations of these parameters will result in scaffold porosity and elastic modulus value (Em) in the can through the pressure test (compressive test). Fabrication is carried out using FDM (Fuse Deposition Modeling) tricolor aided by CAD software in the design process. Based on the research conducted, single and multi material scaffold material scaffold material has a porosity ranging from 25-75%. And modulus of elasticity are obtained from the test tap on single scaffold material for PLA scaffold shows amounted to 62.02 Mpa and a PLA scaffold b amounted to 31.01 Mpa. And for multi material obtained scaffold modulus of elasticity of 48-59 Mpa.
"
Depok: Fakultas Teknik Universitas Indonesia, 2015
S59241
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rizqa Dhafiningtia
"Mikrosfer dari campuran poli asam laktat PLA dan poli ? ?-kaprolakton PCL disiapkan menggunakan metode penguapan pelarut emulsi air dalam minyak w / o . Campuran PLA / PCL dirumuskan dengan komposisi 60:40 b / b dan Nonidet RK-18 digunakan sebagai emulsifier. Penelitian ini mengamati distribusi ukuran partikel mikrosfer dengan memvariasikan Nonidet RK-18 volume 0,5 ml, 1,0 ml, 1,5 ml, 2,0 ml, dan 2,5 ml , kecepatan pengadukan emulsi 700 rpm, 800 rpm, dan 900 rpm , dan waktu pengadukan dispersi 30 menit, 90 menit, dan 120 menit. Mikrosfer dikarakterisasi menggunakan FTIR dan PSA. Bentuk fisik mikrosfer diamati menggunakan mikroskop optik juga.
Spektra IR campuran PLA / PCL menunjukkan bahwa hanya interaksi fisik yang terjadi di antara mereka. Selain itu, hasil penelitian ini menunjukkan bahwa ketika 2,0 ml Nonidet RK-18 ditambahkan, distribusi ukuran seragam dari mikrosfer yang terbentuk diamati pada 31,50 ? m. Selanjutnya, mikrosfer yang terbentuk melalui kecepatan pengadukan emulsi pada 900 rpm mengungkapkan bahwa mikrosfer yang terbentuk memiliki distribusi ukuran seragam pada 31,50 ? m, sedangkan distribusi ukuran seragam pada 34,58 ? m diamati pada mikrosfer yang terbentuk selama waktu pengadukan dispersi pada 90 menit.

Microspheres of poly lactic acid PLA and poly caprolactone PCL blend were prepared using the water in oil w o emulsion solvent evaporation method. The PLA PCL blend was formulated with the composition of 60 40 w w and Nonidet RK 18 was utilized as an emulsifier. This study observed the distribution of the microspheres particle size by varying the Nonidet RK 18 volumes 0.5 ml, 1.0 ml, 1.5 ml, 2.0 ml, and 2.5 ml , emulsion stirring speed 700 rpm, 800 rpm, and 900 rpm, and dispersion stirring time 30 minutes, 90 minutes, and 120 minutes . The microsphere were characterized using FTIR and PSA. Physical forms of microspheres were observed using an optical microscope as well.
The IR spectra of PLA PCL blend showed that only physical interaction was occured between them. Moreover, the result of this study showed that when 2.0 ml Nonidet RK 18 was added, the uniform size distribution of the formed microspheres was observed at 31.50 m. Furthermore, the microspheres that formed through emulsion stirring speed at 900 rpm revealed that the formed microspheres have uniform size distribution at 31.50 m, while the uniform size distribution at 34.58 m was observed in the microspheres that formed during the dispersion stirring time at 90 minutes.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2017
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Amarys Zahra Benindya
"Proses pembuatan tablet dilakukan secara massal sehingga individualisasi obat menjadi sulit untuk dilakukan. Individualisasi obat dapat dilakukan dengan 3D printer karena dapat menyesuaikan bentuk sediaan dan dosis obat sesuai kebutuhan pasien. Teknik perendaman pelarut merupakan salah satu metode memasukkan zat aktif ke dalam filamen dengan cara difusi pasif. Penelitian ini bertujuan untuk membuat tablet 3D printing dari filamen polimer polivinil alkohol, asam polilaktat, dan polikaprolakton yang mengandung propranolol hidroklorida dengan 3D printer. Ketiga filamen ini dipilih karena terbatasnya ketersediaan filamen di pasaran yang aman untuk dikonsumsi manusia. Filamen polivinil alkohol, asam polilaktat, dan polikaprolakton direndam dalam larutan propranolol hidroklorida dalam tiga konsentrasi selama 45 menit dan kemudian dikeringkan dalam oven selama 6 jam. Filamen tersebut kemudian dicetak menjadi tablet, dilakukan uji disolusi selama 10 jam, dan dianalisis dengan spektrofotometri UV-Vis. Hasil uji disolusi menunjukkan jumlah kumulatif terdisolusi tablet propranolol hidroklorida dari filamen polimer polivinil alkohol lebih tinggi dibandingkan dengan tablet dari asam polilaktat dan polikaprolakton. Kandungan propranolol HCl yang tertinggi pada tablet dimiliki oleh formula PVA C. Meski demikian, pelepasan obatnya membutuhkan waktu 10 jam, sehingga diperlukan penelitian lanjutan terkait filamen polimer yang ideal untuk pembuatan tablet 3D printing dengan metode perendaman pelarut.

The making process of tablet drug is done in massive scale; thus, individualization of drug therapy is impossible. Individualization of drug therapy can be achieved by using 3D printer because it can suit the dosage form based on the patient’s needs. Solvent immersion is a method to load the drug to the filament through passive diffusion. This study aims to make 3D printed propranolol hydrochloride tablet using polyvinyl alcohol, polylactic acid, and polycaprolactone polymer filament. These three filaments were chosen because of the limited availability of filaments in the market that are safe for human consumption. Polyvinyl alcohol, polylactic acid, and polycaprolactone filament were immersed in three different concentrations of propranolol hydrochloride for 45 minutes and being dried in the oven for 6 hours. Those filaments were used to make 3D printed tablets, went through dissolution test for 10 hours, and the results were analyzed using UV-Vis spectrophotometry. Tablets made of polyvinyl alcohol filament tended to have higher cumulative drug release compared to the tablets made of polylactic acid and polycaprolactone. The tablet that was made by PVA C has the highest propranolol HCl content. However, the time needed for it to dissolute requires 10 hours. Therefore, further research is needed regarding the ideal polymer filament for the manufacture of 3D printed tablets by the solvent immersion method. "
Depok: Fakultas Farmasi Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>