"Proses desain dari sebuah website dimulai dengan membuat wireframe untuk masing-masing halaman web dengan menggunakan gambar tangan (hand-drawn wireframe) di kertas atau menggunakan peralatan desain grafis yang dikhususkan untuk membuat wireframe. Wireframe kemudian akan di konversikan kedalam bentuk HTML struktural ataupun kedalam bentuk markup code lain secara manual oleh software engineer. Proses ini biasanya terjadi berulang kali hingga beberapa tahap yang cukup lama sampai akhirnya code tersebut berhasil dibuat. Oleh karena itu dibutuhkan sistem yang dapat melakukan proses konversi hand-drawn web wireframe kedalam bentuk HTML dasar secara otomatis dengan menerapkan pendekatan deep learning. Sistem ini dibangun dengan menggunakan metode image captioning yang didalamnya terdiri dari CNN encoder, LSTM decoder, dan compiler. Sistem ini di uji dengan beberapa hand-drawn web wireframe dengan kostumisasi bentuk, yang diambil secara langsung, untuk melihat tingkat akurasi deteksi sketsa dan tingkat akurasi konversi berdasarkan masing-masing layout dan element HTML. Nilai akurasi deteksi dan akurasi konversi ini di ukur menggunakan performance metric dan BLEU score. Dari proses pengujian didapatkan nilai akurasi sistem sebesar 83% dan BLEU score sebesar 0.93.The design process of a website begins with the creation of a hand-drawn wireframe for each web page or using a wirefme specified graphic design software. Afterwards, the created wireframe will be converted into a HTML structure or into other markup codes manually by a software engineer. This process typically occurs repeatedly with steps that take up a considerable amount of time until finally the code is successfully created. Therefore, a system with deep learning as an approach that could perform a conversion from a hand-drawn web wireframe into basic HTML structure automatically is needed. This system was built with image captioning method which consists of a CNN encoder, a LSTM decoder, and a compiler. This system was tested through several hand-drawn web wireframes with shape costumisation which were taken directly to see the accuracy of sketch detection and the accuracy of the convertion based on each layout and HTML element. The detection accuracy score and the convertion accuracy score was measured with a performance metric and BLEU score. From the testing process, the system's accuracy of 83% was obtained with a BLEU score of 0.93."
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership Universitas Indonesia Library
"Perkembangan teknologi yang terus berkembang mendorong penggunaan aplikasi web di berbagai layanan, namun terdapat berbagai kerentanan pada aplikasi web yang setiap saat dapat dimanfaatkan penyerang untuk melakukan serangan. Untuk menanggulangi hal ini, salah satu upaya yang dapat dilakukan ialah menerapkan Web Application Firewall (WAF) yang dapat melindungi aplikasi web. WAF umumnya bekerja berdasarkan aturan yang ditetapkan sebelumnya. Namun kelemahan sistem ini ialah serangan yang terus berkembang, serta dalam mengkonfigurasi aturan pada WAF, diperlukan pengetahuan mendalam terkait aplikasi yang ada. Teknologi kecerdasan buatan, baik machine learning (ML) atau deep learning (DL) memperlihatkan potensi yang baik dalam mengenali jenis serangan. Di dalam penelitian ini dibangun sebuah Real-time DL-based WAF untuk meningkatkan keamanan pada aplikasi web. Berbagai model ML dan DL diujicoba untuk melakukan tugas deteksi serangan web, mulai dari Support Vector Machine (SVM), Random Forest (RF), Convolutional Neural Network (CNN), dan Long Short-Term Memory (LSTM). Berdasarkan hasil pengujian, model CNN-LSTM meraih performa tertinggi yakni akurasi sebesar 98.61 %, presisi sebesar 99%, recall sebesar 98.08% dan f1-score sebesar 98.54%.. Dari hasil pengujian dengan web vulnerability scanner, performa DL-based WAF tidak kalah dengan ModSecurity WAF yang dijadikan sebagai pembanding. Dari hasil analisis, dapat disimpulkan bahwa penerapan DL-based WAF mampu meningkatkan keamanan pada aplikasi web.The continuous development of technology drives the use of web applications in various services, but there are various vulnerabilities in web applications that can be exploited by attackers at any time. To overcome this, one effort that can be done is to implement a Web Application Firewall (WAF) that can protect web applications. WAF generally works based on pre-established rules. However, the weakness of this system is the evolving nature of attacks, and configuring rules on WAF requires in-depth knowledge related to existing applications. Artificial intelligence technology, both machine learning (ML) and deep learning (DL), shows good potential in recognizing types of attacks. In this research, a Real-time DL-based WAF was built to enhance security in web applications. Various ML and DL models were tested to perform the task of web attack detection, including Support Vector Machine (SVM), Random Forest (RF), Convolutional Neural Network (CNN), and Long Short-Term Memory (LSTM). Based on the test results, the CNN-LSTM model achieved the highest performance, namely an accuracy of 98.61%, precision of 99%, recall of 98.08%, and f1-score of 98.54%. From the testing results with a web vulnerability scanner, the performance of the DL-based WAF is not inferior to ModSecurity WAF, which is used as a comparison. From the analysis results, it can be concluded that the implementation of DL-based WAF can improve the security of web applications. "
Jakarta: Fakultas Teknik Universitas Indonesia, 2024
T-pdf
UI - Tesis Membership Universitas Indonesia Library
Dalam kehidupan kita sehari-hari umumnya banyak barang yang kita butuhkan dan gunakan dalam rumah tangga kita. Mulai dari bahan pangan, minuman, barang untuk membersihkan rumah, barang untuk mencuci pakaian, kudapan, dan lain sebagainya, Pada masyarakat kini banyak barang keperluan sehari-hari tersebut kita beli dan jumpai di berbagai tempat mulai dari warung di dekat rumah, supermarket, toko sembako, dan lain sebagainya. Akhir-akhir ini jumlah supermarket dan minimarket mulai menjamur. Pada tahun 2021 jumlah minimarket di Indonesia mencapai 38.323 gerai yang merupakan peningkatan sebanyak 21,7% dibandingkan pada tahun 2017 yakni hanya sebanyak 31.488 gerai saja. Dengan jumlah gerai yang semakin banyak, banyak masyarakat yang semakin banyak menggunakan jasanya untuk mendapatkan barang-barang kebutuhan sehari-hari mereka. Apalagi bila barang yang dibeli juga cukup banyak sehingga akan sulit untuk mendata barang-barang apa saja yang telah dibeli. Untuk memudahkan hal tersebut, penulis mengajukan sebuah solusi untuk membuat sebuah rancangan sistem yang akan memanfaatkan teknologi Deep Learning untuk mendeteksi tulisan pada struk belanja dari hasil pembelian barang pada minimarket. Hasilnya dari pengujian yang sudah dilakukan pada penelitian ini, masing-masing model Deep Learning memiliki tingkat akurasi mAP50 99,4% dan mAP50:95 72,9% untuk YOLOv5, tingkat akurasi mAP50 99,61% dan mAP50:95 65,19% untuk Faster R-CNN, dan tingkat akurasi mAP50 61,77% dan mAP50:95 98,09% untuk RetinaNet. Dimana YOLOv5 memiliki tingkat akurasi mAP50:95 tertinggi yakni 72,9% dan Faster R-CNN memiliki tingkat akurasi mAP50 tertinggi yakni 99,61%. Dimana pada proses implementasi sistem YOLOv5 dan Faster R-CNN berhasil melakukan proses pengenalan sedangkan RetinaNet gagal untuk melakukannya.
In our daily lives, we generally need and use many items in our households. Starting from food ingredients, drinks, household cleaning items, laundry items, snacks, and so on. Nowadays, many of these daily necessities are bought and found in various places such as small shops near our homes, supermarkets, grocery stores, and so on. Recently, the number of supermarkets and minimarkets has increased. In 2021, the number of minimarkets in Indonesia reached 38,323 branches which is an increase of 21.7% compared to 2017 which was only 31,488 branches. With the increasing number of branches, many people are using their services to obtain their daily necessities. Especially when the purchased items are quite a lot so it will be difficult to record what items have been purchased. To facilitate this matter, the author proposes a solution to create a system design that will utilize Deep Learning technology to detect writing on receipts from purchasing items at minimarkets. The results of testing that have been carried out in this study show that each Deep Learning model has an mAP50 accuracy level of 99.4% and mAP50:95 72.9% for YOLOv5, an mAP50 accuracy level of 99.61% and mAP50:95 65.19% for Faster R-CNN, and an mAP50 accuracy level of 61.77% and mAP50:95 98.09% for RetinaNet. YOLOv5 has the highest mAP50:95 accuracy rate at 72.9%, while Faster R-CNN has the highest mAP50 accuracy rate at 99.61%. Where in the implementation process, YOLOv5 and Faster R-CNN systems were able to perform recognition processes while RetinaNet failed to do so."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership Universitas Indonesia Library
"Dalam sistem presensi konvensional, seringkali terjadi kecurangan dalam proses presensi baik itu yang menggunakan RFID ataupun manual dengan tanda tangan. Begitu pula dengan presensi menggunakan teknologi pengenalan wajah juga terjadi kecurangan dengan menggunakan foto gambar wajah atau rekaman video, Oleh karena itu, penelitian ini mengusulkan penggunaan algoritma Deep Learning untuk mendeteksi serangan face spoofing dalam sistem presensi berbasis wajah. Pada pengimplementasiannya digunakan Raspberry Pi 4 Model B agar lebih efektif dan efisien dalam penerapannya. Metodologi yang digunakan dalam penelitian ini adalah dengan mengumpulkan dataset wajah asli dan palsu, kemudian dilakukan proses pelatihan menggunakan algoritma Deep Learning. Algoritma Deep Learning sudah terkenal efektif dalam mengenali fitur wajah. Dataset yang digunakan dalam penelitian ini adalah kombinasi antara dataset wajah asli dan palsu yang dikumpulkan dari berbagai sumber. Hasil yang diperoleh dari penelitian ini menunjukkan bahwa penggunaan teknologi pengenalan wajah dengan penerapan algoritma Deep Learning sebagai Face Anti-Spoofing (FAS) mampu mendeteksi serangan face spoofing dalam sistem presensi berbasis wajah. Hal ini terlihat dari tingkat keakuratan yang diperoleh dari proses pengujian yang dilakukan pada sistem presensi yang dikembangkan. Diharapkan sistem presensi ini dapat diimplementasikan secara luas untuk meningkatkan keamanan dan keandalan dalam sistem presensi berbasis wajah.In conventional attendance systems, cheating often occurs in the attendance process, whether using RFID or manual methods with signatures. Similarly, in attendance systems that utilize facial recognition technology, cheating can occur through the use of facial photos or video recordings. Therefore, this research proposes the use of Deep Learning algorithms to detect face spoofing attacks in facial-based attendance systems. For implementation, Raspberry Pi 4 Model B is employed to enhance effectiveness and efficiency. The methodology utilized in this study involves collecting genuine and fake face datasets, followed by training processes using Deep Learning algorithms. Deep Learning algorithms are renowned for their effectiveness in recognizing facial features. The dataset used in this research is a combination of genuine and fake face data collected from various sources. The results obtained from this research demonstrate that employing facial recognition technology with the application of Deep Learning algorithms as Face Anti-Spoofing (FAS) is capable of detecting face spoofing attacks in facial-based attendance systems. This is evident from the accuracy achieved during the testing process conducted on the developed attendance system. It is hoped that this attendance system can be widely implemented to enhance security and reliability in facial-based attendance systems."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership Universitas Indonesia Library
"Salah satu aspek pertahanan negara yang cukup penting adalah pertahanan udara negara. Sayangnya, Industri Pertahanan Indonesia masih cukup kurang mendukung. Salah satu isu yang diakibatkan oleh masalah ini adalah kurang berkembangnya teknologi pertahanan udara di Indonesia dibanding dengan negara-negara lain, seperti teknologi pengendalian pesawat, seperti Unmanned Aerial Vehicle (UAV). Oleh karena ini, diperlukan pengembangan teknologi pengendalian pesawat yang mandiri dan bersetara dengan pihak luar negeri. Dinamika penerbangan merupakan masalah yang bersifat non-linear, time-varying, memiliki coupling, dan terefek oleh gangguan eksternal. Untuk memecahkan masalah ini, diperlukan pengendali pesawat berbasis metode Direct Inverse Control. Direct Inverse Control memerlukan sistem identifikasi dari sistem yang ingin dikendalikan agar dapat mengembangkan neural network inverse. Pada penelitian ini, diajukan sistem identifikasi pesawat Cessna-172P berbasis Deep Neural Network dan Recurrent Neural Network. Kinerja kedua sistem identifikasi sudah cukup dalam mereplikasikan dinamika penerbangan pesawat Cessna-172P. Dari analisis kinerja kedua sistem identifikasi, sistem identifikasi berbasis recurrent neural network menghasilkan kesahalan prediksi yang lebih rendah, tetapi menggunakan daya dan waktu komputasi yang lebih banyak.One important aspect of national defense is the country's air defense. Unfortunately, the Indonesian Defense Industry still lacks sufficient support. One issue resulting from this problem is the underdevelopment of air defense technology in Indonesia compared to other countries, such as aircraft control technology like Unmanned Aerial Vehicles (UAV). Therefore, the development of independent aircraft control technology that is on par with foreign counterparts is needed. Flight dynamics pose nonlinear, time-varying challenges with coupling and are affected by external disturbances. To address this problem, an aircraft controller based on the Direct Inverse Control method is required. Direct Inverse Control necessitates system identification of the desired controlled system to develop an inverse neural network. In this study, a Deep Neural Network and Recurrent Neural Network-based identification system for the Cessna-172P aircraft is proposed. Both identification systems perform well in replicating the flight dynamics of the Cessna-172P aircraft. From the performance analysis of both identification systems, the recurrent neural network-based identification system produces lower prediction errors but requires more computational power and time."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership Universitas Indonesia Library
"Kemajuan umat manusia dalam penerbangan modern sangat bergantung pada kemampuan untuk melakukan pemodelan sistem idenifikasi penerbangan dari suatu wahana pernerbangan. Pemodelan suatu sistem identifikasi penerbangan bergantung dengan tingkat kualitas dan kuantitas dari data simulasi yang digunakan untuk mendapatkan pendekatan situasi dan kondisi penerbangan aktual yang seakurat mungkin. Akurasi dan presisi dari data simulasi yang digunakan dalam pemodelan sistem penerbangan akan mempengaruhi hasil algoritma yang digunakan dalam sistem identifikasi. Dalam pencapaian kualitas data tersebut, digunakanlah perangkat lunak X-Plane yang berfungsi sebagai simulator penerbangan ultra-realistis yang menyuplai set data yang memungkinkan pembelajaran mesin dari algoritma berbasis komputer. Data pembelajaran pesawat terbang terdiri dari attitude orientasi pesawat. Data yang diperoleh dari simulator tersebut akan diproseskan menggunakan metode preprocessing, sehingga layak digunakan untuk pelatihan sistem identifikasi. Suatu algoritma artificial neural network diterapkan untuk mengidentifikasi sistem pesawat dengan mempelajari dataset yang disebutkan di atas, yang kemudian akan digunakan dalam pengembangan perancangan sistem kontrol. Algoritma artificial neural network yang dirancang dalam penelitian ini telah menunjukkan keberhasilan dalam sistem identifikasi untuk sistem penerbangan pesawat, dan siap digunakan dalam percobaan dan pengujian sistem kontrol pada pesawat.Humanitys progress in modern aviation is very dependent on the ability to model the flight identification system of a flight vehicle. Modeling a flight identification system depends on the quality and quantity of simulation data used to get the most accurate representation of the actual flight situation and condition. The accuracy and precision of the simulation data used in the flight system modeling will affect the results of the algorithm used in the identification system. In achieving this data quality, X-Plane software is used which functions as an ultra realistic flight simulator that supplies data sets that enable machine learning from computer based algorithms. Airplane learning data consists of airplane orientation attitude. Data obtained from the simulator will be processed using the preprocessing method, so it is feasible to use for identification system training. An artificial neural network algorithm is applied to identify aircraft systems by studying the dataset mentioned above, which will then be used in the development of control system design. The artificial neural network algorithm designed in this study has shown success in the identification system for aircraft flight systems, and is ready to be used in the testing and testing of control systems on aircraft."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership Universitas Indonesia Library
"Fatik menjadi salah satu indikator utama yang menjadi perhatian pada penggunaan paduan alumunium sebagai aplikasi struktural pesawat terbang, dimana sebanyak lebih dari 50% kecelakaan dirgantara disebabkan oleh kegagalan fatik material. Metode eksperimental trial and error untuk mendesain material memerlukan waktu panjang, biaya tinggi, serta efisiensi penelitian yang dipengaruhi oleh intuisi dan keberuntungan dari peneliti menimbulkan urgensi pendekatan lain dalam penelitian mekanika material. Penelitian mekanika material berbasis Pembelajaran Mesin (PM) dapat memanfaatkan data-data eksperimen dan penelitian terdahulu, sehingga dapat memangkas biaya dan waktu penelitian. Pada penelitian ini telah berhasil dikembangkan dua model deep learning yang mampu memetakan dengan baik hubungan antara data paduan alumunium dengan sifat fatik yang dihasilkan. Model dibuat dengan arsitektur Deep Neural Network menggunakan TensorFlow. Model S2P (Structure to Performance) dapat memprediksi performa fatik suatu paduan alumunium dari data komposisi, perlakuan panas, sifat mekanis, dan pembebanan fatik yang diterima. Model P2S (Performance to Structure) dapat memprediksi komposisi paduan alumunium yang dapat memenuhi performa fatik yang diharapkan. Kedua model menghasilkan performa baik berdasarkan pada metrik penilaian R2, yaitu senilai 0,92 untuk model S2P dan 0,96 untuk model P2S. Formula matematika sifat mekanis dan sifat fatik paduan alumunium dibuat sebagai fungsi dari variabel unsur paduan dan perlakuan panas. Pengembangan model deep learning prediksi sifat paduan alumunium berbasis fitur atomik menunjukkan bahwa total elektronegatifitas berpengaruh besar terhadap sifat mekanis dan sifat fatik. Fatigue is one of the main concern of the utilization of aluminum alloys as aircraft structural applications, since more than 50% of aerospace accidents are caused by material fatigue failure. The experimental trial and error method for designing materials requires long time and high costs. Research efficiency is also influenced by intuition and luck of the researcher. These condition raises the urgency of other approaches in material mechanics research. Machine Learning (ML) based material mechanics research can take advantage of experimental data and previous research, which ables reduce research costs and time. In this research, two deep learning models have been successfully developed. The models are able to map the relationship between aluminum alloy data and the resulting fatigue properties. The model is built on a fully connected Deep Neural Network architecture using TensorFlow. The S2P (Structure to Performance) model can predict the fatigue performance of an aluminum alloy from the data of composition, heat treatment, mechanical properties, and fatigue loading condition. The P2S (Performance to Structure) model can predict the composition of aluminum alloys that can meet the expected fatigue performance. Both models produce good performance based on the R2 scoring metric, which is 0.92 for the S2P model and 0.96 for the P2S model. Mathematical formulas for mechanical properties and fatigue properties of alloys are made as a function of alloying and heat treatment variables. The development of atomic feature based deep learning model shows that the total electronegativity has a large impact on the mechanical properties and fatigue properties."
Depok: Fakultas Teknik Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership Universitas Indonesia Library
"Penggunaan kecerdasan buatan berbasis Deep Learning untuk mendukung prediksi dan pengambilan keputusan sangat populer di banyak bidang. Salah satu bidang tersebut adalah di sektor kesehatan, terutama dalam pengobatan kanker. Banyak ahli onkologi radiasi dan fisikawan medis sedang melakukan penelitian yang menjanjikan dalam histologi dan stadium kanker, prediksi hasil, segmentasi otomatis, perencanaan perawatan, dan jaminan kualitas. Penelitian ini merupakan studi pendahuluan pengembangan dan perbandingan model deep learning yang berfungsi sebagai alat konversi dari nilai piksel citra Electronic Portal Imaging Device (EPID) ke dosis. Data diambil dari dua bidang radioterapi dengan teknik yang berbeda, yang pertama dosimetri transit pada Varian Unique 6MV foton dan dosimetri non-transit pada Varian Halcyon. Selanjutnya karena data yang tersedia hanya sedikit, data tersebut direproduksi dengan teknik augmentasi sehingga data tersebut cukup untuk menjadi data latih pada berbagai model deep learning, hasilnya divalidasi menggunakan indeks gamma 3%/3mm terhadap citra dosis hasil perencanaan dari TPS. Beberapa model deep learning telah berhasil dibuat yang dapat mengubah nilai piksel EPID menjadi distribusi dosis. Pada dosimetri transit telah berhasil dibuat model Convolutional Neural Network (CNN) dengan 6 layer dengan hasil validasi terbaik mencapai 92,40% ± 28,14%. sedangkan pada dosimetri non-transit, model terbaik mencapai tingkat kelulusan gamma indeks rata-rata 90,07 ± 4,96%. Validasi lebih lanjut dalam banyak kasus dan perbaikan perlu dilakukan untuk meningkatkan akurasi kemiripan dengan citra acuan dengan mempertimbangkan karakteristik yang terkandung dalam gambar EPID dan jumlah dataset.The use of deep learning to support prediction and decision making is very popular in many areas. Many radiations oncologist and medical physicists are conducting promising research in cancer histology and staging, outcome prediction, automated segmentation, treatment planning, and quality assurance. This research is a preliminary study of the development and comparison of deep learning model that work as a conversion tool from the pixel value of Electronic Portal Imaging Device (EPID) images to dose. Data were taken from two radiotherapy plane with different techniques, the first was transit dosimetry on the Varian Unique 6MV Photon and the second non-transit dosimetry on the Varian Halcyon. Furthermore, due to limited of data source, the data was reproduced by augmentation techniques so that the data was sufficient to become training data on various deep learning models, the results were validated using a gamma index of 3%/3mm compared to the planned dose image from TPS. Several deep learning models has been successfully created that can convert the EPID pixel value into a dose distribution. In transit dosimetry, a Convolutional Neural Network (CNN) model with 6 layers has been successfully created with the best results from the validation reaching 92.40% ± 28.14%. while in non-transit dosimetry, the best model achieves an average gamma passing rate of 90.07 ± 4.96%. Further validation in many cases and improvements need to be made to increase the accuracy of similarity by considering the characteristics contained in the EPID image and the number of datasets."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership Universitas Indonesia Library
"Tujuan utama penggunaan peralatan Pressure Relief Device (PRD) adalah untuk memastikan keamanan bejana tekan dalam sistem bertekanan. Seiring berjalannya waktu, peralatan PRD dapat mengalami penurunan kualitas dan gagal menjalankan fungsi yang diharapkan, sehingga harus diidentifikasi sebagai mode kegagalan. Untuk memitigasi potensi risiko yang terkait dengan hal ini, direkomendasikan agar pendekatan seperti inspeksi berbasis risiko (RBI) diterapkan. Meskipun RBI telah diadopsi secara luas, metode ini bergantung pada teknik kualitatif, sehingga menyebabkan variasi yang signifikan dalam penilaian risiko peralatan. Studi ini mengusulkan metode analisis risiko baru yang menggunakan pembelajaran mesin berbasis pembelajaran mendalam untuk mengembangkan model penilaian risiko untuk peralatan PRD terkait dengan mode kegagalan failure on leakage. Pendekatan inovatif ini akan mengurangi waktu penilaian, meningkatkan akurasi, dan menurunkan biaya pemrosesan dengan memberikan hasil penghitungan yang tepat. Penelitian ini mengembangkan program prediksi risiko yang menggunakan pembelajaran mesin berbasis deep learning yang dirancang secara eksplisit untuk mode kegagalan failure on leakage pada peralatan pelepas tekanan. Dataset yang digunakan dalam proses pengembangan model mengikuti standar API 581 dan berisi 168 dataset. Berbagai parameter model digunakan, antara lain test size 20%, nilai random state 0, 150 epoch, learning rate 0,001, dan 3 layers dengan nilai dense 128, 64, dan 32. Performa model dievaluasi menggunakan validation confusion matrix, yang menunjukkan akurasi 94%.The primary objective of deploying Pressure Relief Device (PRD) equipment is to ensure the safety of pressure vessels within a pressurized system. Over time, PRD equipment may degrade and fail to perform its intended function, which must be identified as a failure mode. To mitigate potential risks associated with this, it is recommended that an approach such as risk-based inspection (RBI) be implemented. Despite the widespread adoption of RBI, the method relies on qualitative techniques, leading to significant variations in equipment risk assessments. This study proposes a novel risk analysis method that uses deep learning-based machine learning to develop a risk assessment model for PRD equipment related to the fail-on-leakage failure mode. This innovative approach will reduce assessment times, improve accuracy, and lower processing costs by providing precise calculation results. The research develops a risk prediction program that uses deep learning-based machine learning designed explicitly for failure-on-leakage failure mode in pressure relief equipment. The dataset used in the model development process adheres to API 581 standards and comprises 168 data points. Various model parameters are employed, including a test size of 20%, a random state value of 0, 150 epochs, a learning rate of 0.001, and 3 layers with dense values of 128, 64, and 32. The model's performance is evaluated using a validation confusion matrix, which indicates an accuracy of 94%."
Depok: Fakultas Teknik Universitas Indonesia, 2024
T-pdf
UI - Tesis Membership Universitas Indonesia Library
"Permasalahan penumpukan sampah menjadi isu global yang mendesak, memerlukan solusi inovatif untuk deteksi dan klasifikasi yang efisien. Dalam konteks ini, deteksi objek sampah menggunakan deep learning menawarkan potensi besar. Namun, pengembangan model neural network tunggal yang kompleks seringkali menghadapi tantangan keterbatasan kinerja, terutama ketika dihadapkan pada dataset yang terbatas. Penelitian ini bertujuan untuk mengembangkan model deep learning yang robust untuk deteksi objek sampah pada dataset terbatas (TrashNet) dengan memanfaatkan metode ensemble. Pendekatan ensemble, khususnya strategi weighted average, diimplementasikan untuk mengkombinasikan prediksi dari beberapa arsitektur Convolutional Neural Network (CNN) yang berbeda, seperti Xception, ResNet, dan VGG. Model-model dasar ini dilatih secara independen dan bobot optimal untuk setiap model ditentukan melalui proses validasi silang untuk memaksimalkan akurasi. Hasil eksperimen menunjukkan bahwa model ensemble dengan weighted average secara signifikan meningkatkan performa deteksi objek sampah dibandingkan dengan model tunggal. Peningkatan ini ditunjukkan melalui metrik evaluasi seperti akurasi, presisi, recall, dan F1-score yang lebih tinggi. Analisis mendalam mengungkapkan bahwa metode ensemble efektif dalam mengatasi bias dan variasi yang mungkin ada pada model individual, menghasilkan prediksi yang lebih stabil dan akurat pada dataset terbatas. Studi ini menunjukkan bahwa pendekatan ensemble meningkatkan akurasi klasifikasi menjadi 83.27%, atau meningkat ³ 3.35%.The escalating problem of waste accumulation presents a pressing global issue, demanding innovative solutions for efficient detection and classification. In this context, waste object detection using deep learning offers significant potential. However, developing complex single neural network modelsnetworks often faces performance limitations, especially when confronted with limited datasets. This research aims to develop a robust deep-learning model for waste object detection on limited datasets (TrashNet) by leveraging an ensemble method. The ensemble approach, specifically the weighted average strategy, is implemented to combine predictions from several different Convolutional Neural Network (CNN) architectures, such as Xception, ResNet, and VGG. These base models are trained independently, and optimal weights for each model are determined through a cross-validation process to maximize accuracy. Experimental results demonstrate that the ensemble model with weighted averaging significantly improves waste object detection performance compared to single models. This improvement is shown through higher evaluation metrics such as accuracy, precision, recall, and F1-score. In-depth analysis reveals that the ensemble method is effective in mitigating biases and variations that may exist in individual models, leading to more stable and accurate predictions on limited datasets. This study demonstrates that the ensemble approach improves the classification accuracy to 83.27%, or an increase of ³ 3.35%."
Depok: Fakultas Teknik Universitas Indonesia, 2025
S-pdf
UI - Skripsi Membership Universitas Indonesia Library