Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 64491 dokumen yang sesuai dengan query
cover
Rayhan Ameriazandy
"Berkedip merupakan fungsi regular dari badan manusia yang secara tidak sadar melakukan penutupan secara cepat terhadap kelopak mata. Berkedip biasanya dilakukan untuk membersihkan mata dengan mengeluarkan debu dan menjaga mata agar tetap lembab, kedipan mata juga dapat digunakan untuk menandakan kelelahan dari seseorang. Oleh karena itu pendeteksian kedipan mata menjadi salah satu cara yang paling efektif agar dapat mendeteksi kelelahan. Pada penelitian ini penulis mengklasifikasikan kedipan mata menggunakan metode convolutional neural network (CNN) dengan arsitektur Cascading MobileNet yang terdiri dari 2 arsitektur yaitu MobileNet dan MobileNetV2 yang digunakan untuk melatih model untuk mendeteksi keadaan mata seseorang. Dataset yang digunakan adalah Closed Faces in The Wild Dataset (CEW) yang dibuat oleh "Xiaoyang Tan" dari Nanjing University of Aeronautics and Astronautics. Hasil dari skripsi ini berhasil mendeteksi keadaan mata berupa mata terbuka dan mata tertutup, dengan nilai akurasi sebesar 96.18% untuk training dan 97.12% untuk validasi.

Blinking is a regular function of the human body which unconsciously closes the eyelids quickly. Blinking is usually done to clean the eyes by removing dust and keeping the eyes moist, blinking can also be used to signify tiredness of a person. Therefore, blink detection is one of the most effective ways to detect fatigue. In this study, the authors classify eye blinks using the convolutional neural network (CNN) method. with Cascading MobileNet architecture which consists of 2 architecture, MobileNet and MobileNetV2 that being used to train the model to detect eye condition. The dataset we used is Closed Faces in The Wild Dataset (CEW) created by “Xiaoyang Tan” from Nanjing University of Aeronautics and Astronautics. The result of this thesis has successfully detected eye condition in the form of open eyes and closed eyes, with an accuracy of 96.18% for training and 97.12% for validation."
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Daffa Zuhdii
"Kecelakaan lalu lintas merupakan masalah yang harus dihadapi dengan serius. Salah satu faktor yang menjadi penyebab terjadinya kecelakaan lalu lintas adalah kondisi kantuk dan kelelahan yang dialami oleh pengemudi. Seringkali pengemudi mengabaikan kondisi kantuk tersebut, namun hal itulah yang menyebabkan terjadinya kecelakaan akibat kelelahan. Salah satu indikator yang dapat diamati untuk mengetahui kondisi pengemudi adalah dengan melihat kondisi mata pengemudi. Dalam kondisi lelah, mata pengemudi akan berkedip dengan frekuensi yang lebih cepat dan sesekali akan memejamkan mata dengan rentang waktu yang lebih lama. Penelitian ini bertujuan untuk mengembangkan sebuah sistem yang dapat mengidentifikasi kondisi mata pengemudi, apakah mata pengemudi tersebut terbuka atau terpejam. Sistem yang dikembangkan dalam penelitian ini akan menggunakan teknologi deep learning dengan arsitektur MobileNet. Sistem akan diaplikasikan menggunakan divais yang kecil, yaitu Raspberry Pi, sehingga dapat digunakan dalam mobil.
Penelitian ini menggunakan dataset “MRL Eye Dataset” yang terdiri atas ribuan gambar mata dari puluhan subjek, dengan keadaan mata tertutup dan terbuka. Dataset tersebut kemudian digunakan untuk melatih model deep learning yang akan digunakan untuk melakukan klasifikasi kondisi mata pengemudi.
Hasil dari pengujian pada penelitian ini menunjukkan bahwa arsitektur Deep Learning MobileNetV1 dapat diaplikasikan dengan divais yang memiliki spesifikasi rendah seperti Raspberry Pi dan memiliki performa yang baik. Hasil penelitian ini juga menunjukkan adanya pengaruh intensitas cahaya serta penggunaan kacamata terhadap klasifikasi kondisi mata pengemudi oleh algoritma deep learning.
Penelitian ini diharapkan dapat memberikan kontribusi dalam perkembangan penggunaan deep learning untuk meningkatkan keselamatan dalam berlalulintas, serta membuka ruang bagi penelitian yang akan datang terkait deep learning.

Traffic accidents are a serious issue that must be addressed with great concern. One of the factors contributing to traffic accidents is the condition of fatigue and drowsiness experienced by drivers. Often, drivers tend to overlook their drowsy state, but this is a leading cause of accidents due to fatigue. One observable indicator of a driver's condition is the state of their eyes. In a fatigued state, a driver's eyes tend to blink at a faster rate, and occasionally, they may close their eyes for a longer duration. This research aims to develop a system capable of identifying the condition of a driver's eyes, whether they are open or closed.
The system developed in this research utilizes deep learning technology with the MobileNet architecture. The research implements the system on a small device, specifically the Raspberry Pi, making it applicable for use in vehicles. The study utilizes the "MRL Eye Dataset," consisting of thousands of images of open and closed eyes from multiple subjects, to train the deep learning model for classifying the driver's eye conditions.
The results of the research indicate that the Deep Learning MobileNetV1 architecture can be applied successfully on low-spec devices such as the Raspberry Pi, demonstrating good performance. The study also reveals the influence of light intensity and the use of glasses on the classification of driver eye conditions by the deep learning algorithm.
This research is expected to contribute to the advancement of utilizing deep learning to enhance traffic safety and pave the way for future research in the field of deep learning.
"
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Cressia Nauli Agustin
"Permasalahan penumpukan sampah menjadi isu global yang mendesak, memerlukan solusi inovatif untuk deteksi dan klasifikasi yang efisien. Dalam konteks ini, deteksi objek sampah menggunakan deep learning menawarkan potensi besar. Namun, pengembangan model neural network tunggal yang kompleks seringkali menghadapi tantangan keterbatasan kinerja, terutama ketika dihadapkan pada dataset yang terbatas. Penelitian ini bertujuan untuk mengembangkan model deep learning yang robust untuk deteksi objek sampah pada dataset terbatas (TrashNet) dengan memanfaatkan metode ensemble. Pendekatan ensemble, khususnya strategi weighted average, diimplementasikan untuk mengkombinasikan prediksi dari beberapa arsitektur Convolutional Neural Network (CNN) yang berbeda, seperti Xception, ResNet, dan VGG. Model-model dasar ini dilatih secara independen dan bobot optimal untuk setiap model ditentukan melalui proses validasi silang untuk memaksimalkan akurasi. Hasil eksperimen menunjukkan bahwa model ensemble dengan weighted average secara signifikan meningkatkan performa deteksi objek sampah dibandingkan dengan model tunggal. Peningkatan ini ditunjukkan melalui metrik evaluasi seperti akurasi, presisi, recall, dan F1-score yang lebih tinggi. Analisis mendalam mengungkapkan bahwa metode ensemble efektif dalam mengatasi bias dan variasi yang mungkin ada pada model individual, menghasilkan prediksi yang lebih stabil dan akurat pada dataset terbatas. Studi ini menunjukkan bahwa pendekatan ensemble meningkatkan akurasi klasifikasi menjadi 83.27%, atau meningkat ³ 3.35%.

The escalating problem of waste accumulation presents a pressing global issue, demanding innovative solutions for efficient detection and classification. In this context, waste object detection using deep learning offers significant potential. However, developing complex single neural network modelsnetworks often faces performance limitations, especially when confronted with limited datasets. This research aims to develop a robust deep-learning model for waste object detection on limited datasets (TrashNet) by leveraging an ensemble method. The ensemble approach, specifically the weighted average strategy, is implemented to combine predictions from several different Convolutional Neural Network (CNN) architectures, such as Xception, ResNet, and VGG. These base models are trained independently, and optimal weights for each model are determined through a cross-validation process to maximize accuracy. Experimental results demonstrate that the ensemble model with weighted averaging significantly improves waste object detection performance compared to single models. This improvement is shown through higher evaluation metrics such as accuracy, precision, recall, and F1-score. In-depth analysis reveals that the ensemble method is effective in mitigating biases and variations that may exist in individual models, leading to more stable and accurate predictions on limited datasets. This study demonstrates that the ensemble approach improves the classification accuracy to 83.27%, or an increase of ³ 3.35%."
Depok: Fakultas Teknik Universitas Indonesia, 2025
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Salma Dewi Taufiqoh
"Penelitian ini bertujuan untuk mengembangkan model deteksi penyakit kulit pada hewan peliharaan menggunakan image processing dan Deep Learning. Model ini dirancang untuk mendeteksi tiga jenis penyakit kulit yang umum, yaitu Ringworm, Scabies, dan Earmite, dengan memanfaatkan gambar yang diambil menggunakan kamera ponsel. Model ini menggabungkan teknik image processing, seperti CLAHE, filter Gaussian, dan segmentasi HSV, dengan model CNN. Evaluasi model dilakukan menggunakan metrik Accuracy, Precision, Recall, dan F1-score. Pada penelitian ini digunakan dua model untuk mendeteksi penyakit yang berbeda. Hasil penelitian menunjukkan bahwa untuk model 1, yang melakukan klasifikasi multi-kelas, nilai metrik validasi Akurasi mencapai 83%, F1-score mencapai 82%, Precision mencapai 89%, dan Recall mencapai 83%. Sedangkan untuk hasil model 2, yang melakukan klasifikasi biner, nilai akurasi mencapai 100%, F1-score mencapai 100%, Precision mencapai 100%, dan Recall mencapai 100%. Model ini juga menunjukkan kinerja yang lebih baik dibandingkan dengan model transfer learning ResNet-50 dan VGG16.

This research aims to develop a skin disease detection model for pets using image processing and Deep Learning . The model is designed to detect three common skin diseases, namely Ringworm, Scabies, and Earmite, using images captured by mobile phone cameras. The model combines image processing techniques, such as CLAHE, Gaussian filter, and HSV segmentation, with a CNN model. Model evaluation is performed using the Accuracy, Precision, Recall, and F1-score metrics. In this study, two models were used to detect different diseases. The research results show that for model 1, which performs multi-class classification, the validation metric value of Accuracy reaches 83%, F1-score reaches 82%, Precision reaches 89%, and Recall reaches 83%. Meanwhile, for the results of model 2, which performs binary classification, the accuracy value reaches 100%, F1-score reaches 100%, Precision reaches 100%, and Recall reaches 100%. This model also shows better performance compared to the ResNet-50 and VGG16 transfer learning models."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Jauzak Hussaini Windiatmaja
"Sumber informasi di jejaring berita daring adalah instrumen yang memungkinkan individu membaca berita, menerbitkan berita, dan berkomunikasi. Hal ini sudah menjadi tren dalam masyarakat yang sangat mobile. Oleh karena itu, proses verifikasi fakta suatu pemberitaan menjadi sangat penting. Dengan pertimbangan tersebut, sebuah tools berbasis web service untuk verifikasi fakta menggunakan metode deep learning dengan teknik ensemble dibangun. Penggunaan teknik ensemble pada model deep learning adalah proses beberapa model pembelajaran mesin digabungkan secara strategis untuk menyelesaikan masalah menggunakan lebih dari satu model. Untuk melatih model, dibangun sebuah dataset. Dataset berisi pasangan klaim dan label. Klaim dibangun dengan data crawling di kanal berita berbahasa Indonesia. Tiga model deep learning dibangun dan dilatih menggunakan dataset yang dibuat, dengan arsitektur jaringan dan hyperparameter yang berbeda. Setelah model dilatih menggunakan dataset, ketiga model diagregasikan untuk membentuk sebuah model baru. Untuk memastikan bahwa model agregat berfungsi lebih baik daripada model tunggal, performa model deep learning ensemble dibandingkan dengan model deep learning dasar. Hasil penelitian menunjukkan bahwa model ensemble memiliki akurasi 85,18% sedangkan model tunggal memiliki akurasi 83,9%, 83,19%, dan 81,94%. Hasil ini menunjukkan bahwa model ensemble yang dibangun meningkatkan kinerja verifikasi fakta dari tiga model tunggal. Hasil penelitian juga menunjukkan bahwa metode deep learning mengungguli performa metode machine learning lain seperti naive bayes dan random forest. Untuk memvalidasi kinerja tools yang dibangun, response time dari web service diukur. Hasil pengukuran menunjukkan rata-rata response time 6.447,9 milidetik.

Information sources on social networks are instruments that allow individuals to read news, publish news, and communicate. This is a trend in a highly mobile society. Therefore, the process of verifying facts is very important. With these considerations, we built a web service-based tool for fact verification using deep learning methods with ensemble technique. The use of ensemble techniques in deep learning models is a process in which several machine learning models are combined to solve problems. To train the model, we created a dataset. Our dataset of Indonesian news contains pairs of claims along with labels. Claims are built by crawling data on Indonesian news channels. Three deep learning models have been built and trained using the previously created dataset with different network architectures and hyperparameters. After the model is trained, three models are aggregated to form a new model. To ensure that the aggregated model performs better than the single model, the deep learning ensemble model is compared to the single models. The results showed that the ensemble model has an accuracy of 85.18% while the single models have an accuracy of 83.9%, 83.19%, and 81.94% consecutively. These results indicate that the ensemble model built improves the fact-verification performance of the three single models. The results also show that by using the same dataset, deep learning methods outperform other machine learning methods such as naive bayes and random forest. To validate the performance of the tools we created, the response time of the web service is measured. The measurement result shows an average response time of 6447.9 milliseconds."
Depok: Fakultas Teknik Universitas Indonesia, 2021
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Salsabila Aurellia
"Vital sign merupakan parameter fisiologis yang penting dalam melihat adanya gangguan pada tubuh seseorang. Maka dari itu kebutuhan peralatan dalam pemeriksaan vital sign sangat tinggi. Saat ini vital sign dapat diketahui dengan cara pemeriksaan non-contact. Pemeriksaan vital sign dengan non-contact dapat menggunakan Photoplethysmography (PPG). Saat ini PPG sendiri telah banyak dikembangkan agar dapat membaca keseluruhan vital sign seperti detak jantung, tekanan darah, dan juga konsenstrasi oksigen di dalam darah (SpO2). Pada penelitian ini dirancang pengembangan PPG dengan bantuan pencitraan dalam membaca vital sign. Dataset yang digunakan pada penelitian ini adalah dataset yang berasal dari pengukuran langsung yang telah dirancang agar dapat diproses menjadi sinyal Imaging Photoplethysmography (IPPG) yang baik. Dataset terdiri dari 13 orang laki-laki dan 17 orang perempuan. Dataset yang didapatkan akan dibagi menjadi beberapa scene yang kemudian diproses dalam metode yang diusungkan yaitu Discrete Fourier Transform (DFT) dan Deep Learning yaitu Convolutional Neural Network (CNN). Hasil penelitian ini berupa nilai RMSE dan MAE dimana saat penggunaan DFT menghasilkan masing masing 3,39 dan 1,38 dan dengan metode CNN arsitektur PhysNet menghasilkan 8,2151 dan 2,5976 untuk detak jantung, 3,3311 dan 1,0534 untuk tekanan darah, serta 3,6044 dan 1,1398 untuk SpO2.

Vital sign is an important physiological parameter in seeing a disturbance in a person's body. Therefore the need for equipment in vital sign examination is very high. Currently vital signs can be identified with non-contact examination. Examination of vital signs with non-contact can use Photoplethysmography (PPG). Currently PPG itself has been developed a lot so that it can read all vital signs such as heart rate, blood pressure, and also the concentration of oxygen in the blood (SpO2). In this study, the development of PPG was designed with the help of imaging in reading vital signs. The dataset used in this study is a dataset derived from direct measurements that have been designed to be processed into a good Imaging Photoplethysmography (IPPG) signal. The dataset consists of 13 men and 17 women. The dataset obtained will be divided into several scenes which are then processed using the proposed method, namely the Discrete Fourier Transform (DFT) and Deep Learning, namely the Convolutional Neural Network (CNN). The results of this study are RMSE and MAE values where when using the DFT they produce 3.39 and 1.38 respectively and with the PhysNet architecture CNN method they produce 8.2151 and 2.5976 for heart rate, 3.3311 and 1.0534 for blood pressure , and 3.6044 and 1.1398 for SpO2."
Depok: Fakultas Teknik Universitas Indonesia, 2023
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Hadi Nursalim
"Salah satu organ tubuh yang paling penting adalah jantung. Darah dapat didistribusikan dengan baik ke seluruh tubuh jika terdapat jantung. Organ lain akan berhenti bekerja dan orang tersebut akan meninggal jika jantung di dalam tubuh tidak berfungsi dengan baik. Salah satu jenis penyakit jantung adalah terjadinya gejala arrhythmia, yaitu suatu bentuk kondisi jantung yang ditandai dengan laju atau irama detak jantung. Detak jantung bisa lebih cepat dari biasanya, atau terlalu lambat, atau bahkan memiliki pola yang tidak teratur. Metode yang paling umum dan banyak digunakan oleh ahli jantung dan praktisi medis untuk memantau dan mendeteksi penyakit atau kelainan pada jantung adalah dengan menggunakan elektrokardiogram (EKG) yang dianalisis secara manual, sehingga dapat memakan waktu yang lama dan rentan terhadap kesalahan. Penerapan Artificial Intelligence diharapkan mampu memberikan peranan penting dalam mempercepat kinerja kardiologi. Dalam penelitian ini digunakan Model CNN dengan Arsitektur ResNet-50 untuk mengklasifikasikan detak jantung normal dan detak jantung beberapa jenis arrhythmia yang akan divisualisasikan dengan algoritma Grad-CAM. Dari hasil eksperimen pengklasifikasian, didapatkan tingkat akurasi rata-rata sebesar 94% dan meningkat menjadi 99% untuk setiap kelas setelah dilakukan visualisasi dengan menggunakan algoritma Grad-CAM.

One of the most important organs of the body is the heart. Blood can be well distributed throughout the body if there is a heart. Other organs will stop working and the person will die if the heart in the body is not functioning properly. One type of heart disease is the occurrence of symptoms of arrhythmia, which is a condition in which the heartbeat rate is too fast, to slow, or irregular. Currently, the most common and widely used method by cardiologists and other medical practitioners to monitor and detect diseases or abnormalities in the heart is to use an electrocardiogram (ECG), which is analyzed manually. where the task can take a long time and is prone to errors. The application of Artificial Intelligence is expected to play an important role in accelerating the performance of cardiologists. In this study, a CNN model with ResNet-50 architecture was used to classify normal heart rates and heart rates of several types of arrhythmia that would be visualized with the Grad-CAM algorithm. From the results of the classification experiment, an average accuracy rate of 94% was obtained and increased to 99% for each class after visualization using the Grad-CAM algorithm."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Denanir Fadila Nasiri
"Legal reasoning merupakan metode yang digunakan untuk menerapkan aturan atau Undang-Undang terhadap fakta yang dimiliki dengan tujuan untuk memperoleh argumentasi hukum. Salah satu metode legal reasoning adalah dengan penalaran induktif, yaitu didasarkan pada kasus-kasus terdahulu. Mahkamah Agung di Indonesia melalui situs Direktori Putusan Pengadilan, yang menyediakan dokumen hasil proses pengadilan yang saat ini menampung jumlah dokumen yang sangat besar. Kumpulan dokumen tersebut dapat dimanfaatkan untuk melakukan aktivitas legal reasoning, seperti klasifikasi jenis tindak pidana (criminal offense). Pada penelitian ini, penulis mengusulkan metode deep learning untuk mengklasifikasikan jenis tindak pidana. Hal ini dapat berguna untuk memberikan efisiensi dan referensi kepada praktisi hukum maupun memudahkan masyarakat untuk memahami dasar hukum dari suatu kasus. Secara spesifik, salah satu rancangan model yang diusulkan adalah dengan penerapan model LEAM (Label Embedding Attentive Model) dengan penambahan sejumlah keyword pada label embedding. Model ini secara konsisten memberikan performa yang baik dalam eksperimen, termasuk pada imbalanced dataset dengan perolehan f1-score 68%.

Legal reasoning is a sequence of activities to identify law rules and obtain legal arguments. One of the method in legal reasoning is by using inductive reasoning, which analyzes previous decided cases. Indonesia’s Supreme Court stores the court decision documents online in a large sum. These collections can be utilized to perform legal reasoning, where in this research we focus on the classification of criminal offense. We performed pre-processing tasks including conversion of document to text and cleaning text. We then compared deep learning models, such as LSTM, BiLSTM, CNN+LSTM, and LEAM (Label Embedding Attentive Model). Instead of using only the label name in LEAM, we also carried out experiments by adding related keywords for each label. The LEAM model with additional keywords obtained the best result in an imbalanced dataset with 68% macro average f1-score."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2021
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Oemar Syarief Wibisono
"Beras merupakan makanan pokok mayoritas masyarakat Indonesia. Jika dibandingkan dengan konsumsi tahun 2019, konsumsi beras nasional meningkat sekitar 4,67 persen pada tahun 2021. Hal ini menunjukan bahwa setiap tahun konsumsi beras nasional akan meningkat karena seiring dengan pertumbuhan jumlah penduduk Indonesia. Sehingga dibutuhkan data produksi beras yang akurat dan tepat waktu untuk dapat menjaga ketersediaan stok beras nasional. Data citra satelit bisa menjadi alternatif untuk memprediksi produksi padi dikarenakan kekurangan yang dimiliki oleh metode survei yang dilakukan oleh BPS yaitu biaya yang cukup tinggi dan terdapat tenggang waktu diseminasi data. Gabungan citra SAR dan Optik dapat meningkatkan akurasi dari model yang dibangun. Selain itu penggunaan model deep learning memiliki akurasi yang lebih baik jika dibandingkan metode machine learning konvensional salah satunya kombinasi CNN dan Bi-LSTM yang mampu mengekstraksi fitur serta memiliki kemampuan untuk memodelkan data temporal dengan baik. Output yang diperoleh dengan menggunakan metode CNNBiLSTM untuk mengklasifikasikan fase pertumbuhan padi, menghasilkan akurasi yang terbaik dengan nilai akurasi 79,57 pada data testing dan 98,20 pada data training serta F1-score 79,78. Dengan menggunakan kombinasi data citra sentinel 1 dan 2 akurasi dari model LSTM dapat ditingkatkan. Selanjutnya akurasi yang didapatkan untuk model regresi produktivitas padi masih kurang baik. Akurasi terbaik dihasilkan oleh model random forest dengan nilai MAPE 0.1336, dan RSME 0,6871.

Rice is the staple food of the majority of Indonesian people. When compared to consumption in 2019, national rice consumption will increase by around 4.67 percent in 2021. This shows that every year rice consumption will increase in line with the growth of Indonesia's population. So that accurate and timely rice production data is needed to be able to maintain the availability of national rice stocks. Satellite imagery data can be an alternative for predicting rice production due to the drawbacks of the survey method conducted by BPS, which relatively high cost and the time span for data dissemination. The combination of SAR and Optical images can increase the accuracy of the model built. In addition, the use of deep learning models has better accuracy when compared to classical machine learning methods, one of them is the combination of CNN and Bi-LSTM which are able to extract features and have the ability to model temporal data properly. The output obtained using the CNNBiLSTM method to classify rice growth phases, produces the best accuracy with an accuracy value of 79.57 on testing data and 98.20 on training data and an F1-score of 79.78. By using a combination of sentinel 1 and 2 image data, the accuracy of the LSTM model can be improved. Furthermore, the accuracy obtained for the rice production regression model is still not good. The best accuracy was produced by the random forest model with a MAPE value of 0.1336 and RSME of 0.6871."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2024
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Alrafiful Rahman
"COVID-19 merupakan penyakit pernapasan seperti pneumonia yang mengakibatkan kematian pada jutaan orang setiap harinya. Januari 2020, "Organisasi Kesehatan Dunia" WHO menyatakan COVID-19 sebagai wabah penyakit virus yang menjadi perhatian internasional sebagai darurat kesehatan masyarakat yang menjadi perhatian internasional, dikenal sebagai pandemi dunia. Dilaporkan dari 205 negara di seluruh dunia, pada 1 April 2020, penularan virus COVID-19 sekitar ada lebih dari 900000 kasus COVID-19 yang dikonfirmasi dan hampir 50000 kematian. Berdasarkan laporan WHO, angka kematian 2-3% orang karena virus. Sangat penting untuk melakukan tes diagnostik sejak dini stadium berdasarkan kriteria sebagai gejala klinis, "Reverse-Transcription Polymerase Chain Reaction" (RT-PCR), sehingga dapat segera mengisolasi orang yang terinfeksi. Mendiagnosis penyakit virus COVID-19 dengan pencitraan yang lebih efektif menggunakan citra CT dada. Model DenseNet201, MobileNet, Xception, InceptionV3, ResNet152V2, dan VGG19 untuk memeriksa keakuratannya dalam pengenalan gambar. Untuk menganalisis kinerja model, 1888 sampel dari gambar CT paru-paru dikumpulkan dari situs resmi Kaggle. Model penggabungan (concatenate) pada arsitektur CNN yang telah terlatih seperti penggabungan (concatenate) antara ResNet152V2 dengan VGG19 memiliki accuracy sebesar 99,65%, sensitivity sebesar 99,66%, precision sebesar 99,66%, recall sebesar 99,66%, specificity sebesar 99,64%, dan skor F-measure sebesar 99,66%; gabungan DenseNet201 dan MobileNet diperoleh saat batchsize 32 dan 64 dengan learning rate 0,0001 diperoleh accuracy sebesar 99,65%, sensitivity sebesar 99,64%, precision sebesar 99,64%, recall sebesar 99,64%, specificity sebesar 99,66%, dan F-measure sebesar 99,64%; serta gabungan DenseNet201 dan MobileNet diperoleh saat batchsize 32 dan 64 dengan learning rate 0,001 maupun gabungan InceptionV3 dan Xception saat batchsize 32 dan learning rate 0,0001 diperoleh accuracy sebesar 99,65%, sensitivity sebesar 100%, precision sebesar 99,28%, recall sebesar 100%, specificity sebesar 99,31%, dan F-measure sebesar 99,64%.

COVID-19 is a respiratory disease like pneumonia that kills millions of people every day. January 2020, the WHO "World Health Organization" declared COVID-19 as a viral outbreak of international concern as a public health emergency of international concern, known as a world pandemic. Reported from 205 countries around the world, as of April 1, 2020, the transmission of the COVID-19 virus was around more than 900000 confirmed cases of COVID-19 and nearly 50000 deaths. Based on the WHO report, the death rate of 2-3% of people is due to the virus. To isolate the infected person immediately, it is very important to carry out a diagnostic test early based on the criteria as a clinical symptom, "Reverse-Transcription Polymerase Chain Reaction" (RT-PCR). Diagnosing COVID-19 viral disease with more effective imaging using chest CT images. DenseNet201, MobileNet, Xception, InceptionV3, ResNet152V2, and VGG19 models for accuracy in image recognition. To analyze the model's performance, 1888 samples of CT images of the lungs were collected from the official Kaggle website. The concatenate model on the CNN architecture that has occurred, such as the concatenate between ResNet152V2 and VGG19, has an accuracy of 99.65%, sensitivity of 99.66%, the precision of 99.66%, recall of 99.66%, specificity by 99.64%, and the F-measure score of 99.66%; the combination of DenseNet201 and MobileNet was obtained when batch size 32 and 64 with a learning rate of 0.0001 obtained an accuracy of 99.65%, the sensitivity of 99.64%, the precision of 99.64%, recall of 99.64%, specificity of 99.66 %, and F-measure of 99.64%; and the combination of DenseNet201 and MobileNet obtained at batch size 32 and 64 with a learning rate of 0.001 or a combination of InceptionV3 and Xception at batch size 32 and a learning rate of 0.0001 obtained an accuracy of 99.65%, the sensitivity of 100%, precision of 99.28%, recall of 100%, specificity of 99.31%, and F-measure of 99.64%."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>