Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 215919 dokumen yang sesuai dengan query
cover
Felix Johannes
"Pemanfaatan Pembangkit Listrik Tenaga Surya (PLTS) memiliki peran yang penting dalam mengurangi ketergantungan terhadap energi fosil dan meningkatkan kemandirian energi. Namun dengan adanya peraturan dimana penjualan listrik (export) ke grid PLN telah ditiadakan maka minat masyarakat dalam membangun PLTS dapat berkurang. Pada penelitian ini dilakukan analisis tekno-ekonomi pemanfaatan PLTS on-grid untuk memenuhi kebutuhan listrik SPKLU dengan kapasitas 50 kW di Pusat Perbelanjaan. Listrik dari PLTS digunakan untuk kebutuhan komersial pada SPKLU. Studi kasus dilakukan di salah satu Pusat Perbelanjaan di kecamatan Kebayoran Lama, kota Jakarta Selatan, provinsi DKI Jakarta. Simulasi sistem PLTS dilakukan dengan menggunakan HOMER Pro, sedangkan perhitungan biaya listrik, dan pengisian baterai kendaraan listrik (EV charging) dengan menggunakan metode cash flow. Analisis perbandingan dilakukan antara SPKLU dengan PLTS terkoneksi on-grid dan grid PLN terhadap SPKLU dari PLN. Hasil simulasi diperoleh kapasitas PLTS sebesar 536 kWp, produksi listrik dari PV sebesar 771,64 MWh/tahun dengan beban dengan beban 558,85 MWh/tahun (fraksi PLTS terhadap beban sebesar 53,2%) dan luas atap 3021 m2 (6,7% luas atap pusat perbelanjaan) dengan excess listrik sebesar 466.496 MWh/tahun yang dapat digunakan untuk memenuhi kebutuhan gedung pusat perbelanjaan. Biaya pokok produksi listrik PLTS atap sebesar Rp 1.383/kWh, lebih rendah dibanding tarif listrik PLN untuk SPKLU sebesar Rp 1.644/kWh. Pada target IRR sebesar 12%, sistem PLTS atap on-grid memberikan tarif charging yang lebih kompetitif yaitu sebesar Rp 2641/kWh dibandingkan bila menggunakan grid PLN sebesar 2794/kWh. Penerapan tarif maksimum PLN SPKLU pada sistem on-grid dan sistem grid PLN akan meningkatkan margin sebesar 31,06% untuk on grid dan 20,69% untuk sistem grid PLN.

The utilization of Solar Power Plants (PV) plays a crucial role in reducing dependence on fossil energy and increasing energy independence. However, with the regulation that has eliminated electricity sales (exports) to the PLN grid, public interest in developing PV may decline. This study conducts a techno-economic analysis of the utilization of an on-grid PV to meet the electricity needs of an EV Charging Station (SPKLU) with a capacity of 50 kW in a shopping center. The electricity generated by the PV is used for commercial purposes at the EV Charging Station. A case study was conducted at a shopping center in the Kebayoran Lama sub-district, South Jakarta city, DKI Jakarta province. The PLTS system simulation was carried out using HOMER Pro, while electricity cost calculations and EV charging analyses were conducted using the cash flow method. A comparative analysis is conducted between EVCS with on-grid PV and PLN grid to EVCS from PLN. The simulation results reveal that the rooftop PV has a capacity of 536 kWp, electricity production of 771.64 MWh/year with total load of 558.85 (PV fraction by the total load is 53.2%) and requires a roof area of 3021 m2 (6.7% of the rooftop area). The electricity production cost of rooftop PV is IDR 1.383/kWh, which is lower than the PLN electricity tariff for SPKLU of IDR 1,644/kWh. At IRR target of 12%, the on-grid rooftop PV system offers more competitive EV charging prices at IDR 2,641/kWh compared to PLN grid IDR 2,794/kWh. When applying PLN maximum charging tariff for SPKLU, the on-grid system and PLN grid increases margins by 31,06% for on-grid and 20,69% for PLN grid system."
Depok: Fakultas Teknik Universitas Indonesia, 2025
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Iman Ramang
"Penelitian ini bertujuan untuk menganalisis aspek ekonomi dan model bisnis dari implementasi Stasiun Pengisian Kendaraan Listrik Umum (SPKLU) dengan sumber energi dari Pembangkit Listrik Tenaga Surya (PLTS) terapung di kota Jakarta. Jakarta adalah ibu kota Indonesia, dengan 97 waduk dengan luas total 509,37 hektar. Lokasi penelitian berada di Waduk Pluit yang merupakan waduk terbesar di Jakarta dengan luas total 77,32 hektar. Simulasi menunjukkan bahwa SPKLU menggunakan PLTS terapung dengan menghubungkan ke jaringan PLN adalah yang paling optimal, dengan nilai LCoE $0,0696 per kWh atau sekitar Rp 983 per kWh dan nilai Net Present Cost (NPC) 1,66 Juta Dollar atau sekitar 23.45 Miliar Rupiah. Model Bisnis yang dapat dikembangkan mengedepankan peran badan swasta yang bekerja sama dengan PLN sesuai dengan Permen ESDM No. 13/2020. Pemerintah juga dapat mempertimbangkan untuk membangun stasiun pengisian dengan memanfaatkan waduk besar di Jakarta, dimana perencanaan ini melibatkan perencana tata kota bekerjasama dengan instansi terkait seperti Dinas Sumber Daya Air Jakarta dan PT. PLN (Persero).

This research aims to analyze the economic aspects and business model of the implementation of the Public Electric Vehicle Charging Station with main energy sources from floating solar Photovoltaic in Jakarta city. Jakarta is the capital city of Indonesia, with 97 reservoirs with a total area of 509,37 hectares. The research location is in Pluit Reservoir, the largest reservoir in Jakarta with a total area of 77,32 hectares. The simulation shows that a charging station using floating PV by connecting to the PLN grid is the most optimal, with an LCOE value of $0.0696 per kWh or around Rp 983 per kWh and a Net Present Cost (NPC) of 1.66 Million Dollars or about 23.45 Billion Rupiah. The business model that can be developed emphasizes the role of private entities in collaboration with PLN following Permen ESDM No.13/2020. The government can also consider building a filling station by utilizing a large reservoir in Jakarta, where this planning involves urban planning planners in collaboration with relevant agencies such as the Jakarta Water Resources Service and PT. PLN (Persero)."
Depok: Fakultas Teknik Universitas Indonesia, 2021
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
David Apriando Mangatur
"Kebutuhan dan ketergantungan manusia terhadap bahan bakar fosil untuk penggunaanya pada kendaraan bermotor berdampak buruk terhadap kualitas udara akibat polusi Dengan hadirnya mobil listrik yang tidak menggunakan bensin, diharapkan memperbaiki kualitas udara publik. Namun belum adanya stasiun pengisian listrik umum untuk mobil listrik, menjadi salah satu kendala yang kita hadapi. Untuk itu penulis ingin mendesain stasiun pengisian listrik umum untuk mobil listrik yang dapat ditempatkan di tempat yang tidak terjangkau PLN sebagai depot pengisian. Dengan tentunya tidak lupa menggunakan sumber tenaga yang terbaharukan, yaitu tenaga surya.
Metode yang penulis gunakan adalah membangun stasiun pengisian dengan mengandalkan peralatan yang dijual di pasaran yang sesuai spesifikasi mobil listrik. Sebagai Penulis merancang stasiun pengisian listrik umum yang menggunakan tenaga matahari sebagai sumbernya yang kompetibel dengan mobil Nissan Leaf. Penulis juga merancang spesifikasi Sel surya, Baterai, dan Charger manakah yang sesuai, sehingga tercipta suatu sistem yang mandiri. Setelah mengadakan penelitian ini, hanya dengan biaya Rp 1,4 Milyar, Penulis dapat membuat SPLU yang kompetibel, feasibel, mandiri dan dapat melayani hingga 18 mobil listrik perhari. Dengan mengandalkan aparatur-aparatur yang dapat dibeli di pasaran dan tentunya ramah lingkungan karena mengandalkan panas matahari sebagai sumber energi, penulis mencapai tujuan dengan penempatan di daerah yang belum terjangkau PLN.

Our Dependency to fossil fuel powered vehicle, has a great amount of bad affection due its pollution. With the producing of Electric Vehicle, we hope that the quality of the air could be improved. But we still have a problem, that the fact we didn't have Public Vehicular Charging Stations. Writer want to design vehicular charging station so we can place it at a small corner of the streets. So we can charge the car if something bad occurred, like depletion of battery, or the capacitance failure. Writer uses the renewable resources, which in this case is solar source.
The method is using the marketable units, which is compatible with the specification of electric vehicular that used in society. Writer will use the solar panel as the power source, and nissan leaf as the main vehicle. Writer will considerate the specification of battery, solar cell, and charger that would be the best for the system. We hope that this independent charging station can be place at the remote location due its dependency from the 'PLN'. Writer happened to makea independent, feasible, and compatible ?SPLU? from a mere $100.000 that can recharge 18 electric car per-day. Writer uses the appartture like Photovoltaic, Battery and Charger those are purchasable at the market, therefore clean for the environtment for its dependency to Solar Power."
Depok: Fakultas Teknik Universitas Indonesia, 2016
S64381
UI - Skripsi Membership  Universitas Indonesia Library
cover
Andreas Anugerah Pitoyo
"Energi terbarukan dari panel surya merupakan energi bersih dan jumlahnya melimpah. Energi terbarukan ini dapat dimanfaatkan untuk mengisi daya kendaraan listrik saat pagi hari sampai sore hari, sehingga panel surya dapat digolongkan sebagai sumber energi listrik sekunder. Panel surya dapat dipasang pada atap Stasiun Pengisian Kendaraan Listrik Umum untuk mengumpulkan energi ketika matahari bersinar. Energi yang dikumpulkan panel surya merupakan energi listrik yang nantinya digunakan untuk melakukan pengisian baterai kendaraan listrik umum. Tentunya, semakin banyak panel surya yang dipasang maka energi listrik yang dikumpulkan semakin banyak, oleh karena itu dapat dipertimbangkan pemasangan panel surya pada sisi atap SPKLU. Melalui abstrak ini, akan dipertimbangkan aspek desain dan ekonomi, seperti NPV, IRR, DPP, dan LCOE dari SPKLU yang didesain. Seiring dengan tren menurunnya harga panel surya dan baterai tiap tahunnya, maka pemanfaatan panel surya di atas atap SPKLU akan semakin mudah terealisasi. Selain energinya bersih, biaya per satuan energi kWh dari panel surya akan semakin murah tiap tahunnya.

Renewable energy from solar panels is one of many renewable energy that is clean and abundant. Energy from solar panel can be used to charge electric vehicles from morning to evening, hence solar panels can be classified as a secondary source of electrical energy. Solar panels can be installed on the roof of Public Electric Vehicle Charging Stations to collect energy when the sun is shining. The energy collected by solar panels is electrical energy which will later be used to charge public electric vehicle batteries. The more solar panels that are installed, the more electrical energy will be harvested, therefore it is good choice to consider installing solar panels on the roof side of the SPKLU. Through this abstract, aspects of design and economics such as NPV, IRR, DPP, and LCOE will be discussed. In line with the trend of decreasing prices for solar panels and battery each year, the use of solar panels on SPKLU roofs will become easier to realize. Apart from being clean energy, the cost per unit of kWh energy from solar panels will get cheaper every year."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Kania Putri Aurora
"Permintaan listrik di Indonesia terus tumbuh 4,9% per tahun. Dalam menyukseskan Net-Zero Emission, bauran energi terbarukan di Indonesia ditingkatkan. Energi surya adalah salah satu energi baru dan terbarukan (EBT) yang jumlahnya berlimpah di Indonesia dan dapat dimanfaatkan sebagai sumber penghasil listrik melalui pembangkit listrik tenaga surya (PLTS). Permasalahan utama saat ini adalah dibutuhkan lahan yang luas. Sudah terdapat beberapa solusi, salah satunya adalah implementasi PLTS atap. Salah satu lokasi menarik untuk pemasangan PLTS atap adalah di atas bangunan SPBU. Surabaya merupakan kota yang memiliki potensi besar untuk pemasangan PLTS atap pada SPBU karena memiliki global horizontal irradiation yang cukup tinggi dan jumlah SPBU cukup banyak, yaitu 120 unit SPBU. Penelitian ini membahas tentang analisis risiko investasi PLTS atap pada SPBU di Kota Surabaya, Indonesia. Hasil perhitungan tarif biaya listrik menghasilkan LCOE sekitar 5 cent/kWh untuk setiap SPBU. Hasil perhitungan ekonomi dengan NPV, IRR, PBP, dan PI menunjukkan hasil bahwa pemasangan PLTS atap pada kelima SPBU, yaitu bp, Shell, Pertamina COCO, Pertamina CODO, Pertamina DODO, layak untuk dilaksanakan. Hasil analisis risiko dengan Monte Carlo menunjukkan bahwa derajat keyakinan parameter NPV, IRR, PBP, dan PI lebih dari 50% untuk kelima SPBU sehingga pemasangan PLTS atap layak untuk dilaksanakan. Berdasarkan hasil analisis sensitivitas, penghematan energi listrik dan biaya panel surya yang termasuk dari CAPEX adalah komponen yang paling berpengaruh terhadap nilai IRR dan PBP sedangkan WACC dan penghematan energi listrik adalah komponen yang paling berpengaruh terhadap nilai NPV dan PI.

Electricity demand in Indonesia continues to grow 4.9% per year. In order to achieve net-zero emissions, Indonesia is increasing its renewable energy mix. Solar energy is one of the most abundant new and renewable energies in Indonesia and can be used as a source of electricity through solar power plants (Solar PV Systems). The main problem is solar PV requires a large area of land. There are already several solutions, one of which is the implementation of a rooftop solar PV. One of the interesting locations for installing a rooftop solar PV is on top of a petrol/gas station building. Surabaya is a city that has great potential for installing rooftop solar PV at gas stations because it has quite high global horizontal irradiation and a large number of gas stations, namely 120 gas stations. This study discusses the risk analysis of rooftop solar PV investment at gas stations in the city of Surabaya, Indonesia. The results of the calculation of the electricity cost rate yield an LCOE of around 5 cents/kWh for each gas station. The results of economic calculations with NPV, IRR, PBP, and PI show that the installation of rooftop solar PV at the five gas stations, namely bp, Shell, Pertamina COCO, Pertamina CODO, Pertamina DODO, is feasible. The results of the risk analysis with Monte Carlo show that the degree of confidence for the NPV, IRR, PBP, and PI parameters is more than 50% for the five gas stations so that the installation of a rooftop PLTS is feasible. Based on the results of the sensitivity analysis, electricity savings and solar panel costs included in CAPEX are the components that have the most influence on the IRR and PBP values, while WACC and electricity savings are the components that have the most influence on the NPV and PI values."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Surya Budi Ariyadi
"Pemerintah Indonesia mencanangkan program penggantian pembangkit listrik lama berbahan bakar fosil dengan pembangkit listrik Energi Terbarukan. Meskipun irradiasi matahari di negara ini baik, pengembangan pembangkit listrik tenaga surya fotovoltaik (PLTS) masih menghadapi hambatan-hambatan. Dalam penelitian ini dilakukan analisa tekno-ekonomi untuk mendapatkan desain PLTS yang optimal menggunakan HOMER Pro dan analisa kelayakan proyek melalui metode Discounted Cash Flow. Hasilnya, desain yang paling optimal adalah sistem tekoneksi jaringan dengan inverter 1 string sebesar 8MW serta opsi penggunaan baterai dan sistem penyimpan energi (BESS) sebesar 22,5 MWh 600V. PLTS tanpa BESS mendapatkan WACC sebesar 8,52%, PI sebesar 1,39, dan IRR sebesar 21,30%. Sedangkan PLTS dengan BESS memerlukan intervensi untuk meningkatkan keekonomian. Intervensi yang diuji dalam penelitian ini adalah pajak karbon, skema lelang kompetitif, pembangunan jalur transmisi, dan penyesuaian tarif. Kombinasi penerapan pajak karbon sebesar USD 3,6 sen/ton CO2e dan penyesuaian tarif minimum +36,15%, menghasilkan keekonomian yang lebih baik dengan IRR sebesar 14,74%. Skema lelang kompetitif dapat meningkatkan kelayakan skenario “dengan BESS” dengan WACC sebesar 1,88%, dan IRR sebesar 5,89%. Meskipun pengembangan PLTS tanpa BESS dapat dilakukan, risiko yang menyebabkan peningkatan modal harus dihindari. Sementara PLTS dengan BESS harus diintervensi untuk menurunkan biaya modal.

The Government of Indonesian launched programs of old fossil fuel-based power plants replacement with Renewable Energy power plant. Despite abundant solar irradiance in the country, solar photovoltaic (PV) power plant (Solar PV) development is facing interfering barriers. This research carried out techno-economic analysis of Solar PV design to obtain the most optimum design by using HOMER Pro and exercise project feasibility through Discounted Cash Flow method. The result shows that the most optimum technical design is grid-connected equipped with 1 string inverter of 8MW and optional Battery and Energy Storage System (BESS) of 22.5 MWh 600V. Without BESS Solar PV earned WACC of 8.52%, PI of 1.39, and IRR of 21.30%. While the development of solar PV power plant with BESS requires several interventions to enhance the economic. Some tested intervention i.e. carbon tax, competitive auction scheme, transmission line development, and tariff adjustment. A combination of Carbon Tax implementation of cents USD 3,6/ton CO2e and tariffs adjustment of minimum +36,15%, results in higher economic with IRR of 14.74%. A competitive auction scheme could enhance the feasibility level of “with BESS” scenario with WACC of 1.88%, and IRR of 5.89%. Despite of solar PV power plant without BESS development is feasible, some risks which lead to capital increasement should be avoided. While solar PV power plant with BESS development should be intervened by some measures to lower the capital cost."
Depok: Fakultas Teknik Universitas Indonesia, 2024
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Bramanda Dwi Putra
"

Sektor transportasi adalah sektor konsumsi energi minyak terbesar dan penghasil emisi gas terbesar kedua di Indonesia. Untuk mengatasi hal ini, Pemerintah Indonesia mengeluarkan keputusan presiden untuk mobil listrik di Indonesia, yang menargetkan untuk mempercepat adopsi kendaraan listrik di Indonesia. Beberapa kendala akan dihadapi dalam mengadopsi kendaraan listrik di Indonesia, salah satunya adalah kesiapan stasiun pengisian kendaraan listrik. Dengan nilai investasi tinggi dan beragam teknologi pengisian memaksa pemerintah untuk dapat memilih teknologi yang tepat. Tujuan dari penelitian ini adalah untuk memilih alternatif terbaik untuk memberikan rekomendasi bagi pemerintah Indonesia dalam memilih jenis stasiun pengisian yang tepat untuk Indonesia. Untuk mencapai tujuan tersebut, model berbasis hirarki telah dikembangkan dengan mempertimbangkan sembilan kriteria dan tiga alternatif, yaitu bertukar baterai, induktif, dan konduktif. Penelitian ini menggunakan metode gabungan dari proses hierarki analitik (AHP) dan teknik untuk preferensi pesanan dengan kemiripan dengan solusi ideal (TOPSIS). Analisis mengungkapkan bahwa alternatif pengisian konduktif memegang peringkat pertama di antara semua alternatif yang dipertimbangkan.

 


The transportation sector is the largest oil energy-consuming sector and the second-largest emitter of gas emissions in Indonesia. To overcome this, the Government of Indonesia issued a presidential decree for electric cars in Indonesia, which targets to accelerate the adoption of electric vehicles in Indonesia. Several obstacles will be faced in adopting an electric vehicle in Indonesia, one of which is the readiness of an electric vehicle charging station. With a high investment value and a variety of charging technology forces the government to be able to choose the right technology. The objective of this research is to select the best alternative to provide recommendations for the Indonesian government in choosing the right type of charging station technology for Indonesia. In order to accomplish the aim, a hierarchy-based model has been developed by considering nine criteria and three alternatives, namely battery swapping, inductive, and conductive. This research uses the combined method of analytic hierarchy process (AHP) and technique for order preference by similarity to ideal solution (TOPSIS). Analysis reveals that the alternative, ‘Conductive Charging,’ holds the first rank among all considered alternatives.

 

"
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Adhityo Adyahardiyanto
"Laporan International Energy Agency (IEA) menunjukkan bahwa sekitar 33% dari total emisi Emisi Gas Rumah Kaca (GRK) Indonesia berasal dari kegiatan di sektor energi. Jumlah yang signifikan ini membuat Indonesia menjadi negara kontributor GRK global terbesar ke-6 (enam) di dunia. Berkaitan dengan fakta tersebut, pemerintah Indonesia sejatinya telah berkomitmen untuk menurunkan emisi GRK dalam Paris Agreement, sebagaimana diratifikasi sebagai Undang-Undang Nomor 16 Tahun 2016 tentang Pengesahan Paris Agreement to The United Nations Framework Convention Climate Change. Sebagai salah satu upaya tersebut, Pemerintah Indonesia melakukan penyusunan kebijakan percepatan pemanfaatan tenaga listrik untuk penggerak kendaraan bermotor dan membangun sistem Stasiun Pengisian Kendaraan Listrik Umum (SPKLU) secara bertahap. Secara lebih lanjut, hal ini diejawantahkan dalam Peraturan Presiden Nomor 55 Tahun 2019 tentang Percepatan Program Kendaraan Bermotor Listrik Berbasis Baterai (Battery Electric Vehicle) untuk Transportasi Jalan (Perpres 55/2019). Dalam pendekatan umum, KLBB memang dapat mengatasi permasalahan emisi GRK dari kendaraan BBM. Namun jika dilihat lebih dekat, sejatinya kerangka kebijakan terkait infrastruktur untuk KLBB ini dapat menciptakan katastrofi selanjutnya dalam pengelolaan SDA, energi, serta keberlanjutan lingkungan di Indonesia. Sebab, energi yang diperoleh SPKLU tersebut diperoleh dari sumber-sumber energi tidak terbarukan. Atas hal tersebut, penulis kembali mempertanyakan komitmen pemerintah Indonesia dalam mencapai target penurunan emisi GRK guna menciptakan pembangunan berkelanjutan yang berwawasan kelestarian lingkungan, khususnya ketahanan iklim, sebagaimana dijanjikan dalam UU 16/2016 terkait target penurunan emisi GRK. Penulis menggunakan penelitian yuridis-normatif dimana penulis melihat kesesuaian antara kebijakan SPKLU dengan berbagai bahan hukum primer, sekunder dan tersier. Selain itu, utamanya penulis akan mengaitkan kebijakan tersebut dengan prinsip-prinsip kebijakan pengelolaan energi di Indonesia. Dari penelitian ini, Pemerintah Indonesia demikian perlu untuk mengevaluasi kembali penerapan kebijakan infrastruktur SPKLU di Indonesia. Hal ini tidak lain guna mendorong kesuksesan pencapaian target penurunan emisi GRK di Indonesia.

The International Energy Agency (IEA) report indicates that approximately 33% of Indonesia's total Greenhouse Gas (GHG) emissions come from activities in the energy sector. This significant amount makes Indonesia the 6th largest global contributor to GHG emissions. In light of these facts, the Indonesian government has committed to reducing GHG emissions as part of the Paris Agreement, ratified under Law Number 16 of 2016 concerning the Ratification of the Paris Agreement to The United Nations Framework Convention on Climate Change. As part of these efforts, the Indonesian government has formulated policies to accelerate the use of electric power for motor vehicles and gradually establish Public Electric Vehicle Charging Stations (SPKLU). This commitment is further articulated in Presidential Regulation Number 55 of 2019 on the Acceleration of Battery Electric Vehicle (BEV) Programs for Road Transportation (Presidential Regulation 55/2019). While electric vehicles can address the issue of GHG emissions from conventional fuel vehicles in a general sense, a closer examination reveals that the policy framework regarding the infrastructure for Battery Electric Vehicles (BEVs) could potentially lead to further catastrophes in the management of natural resources, energy, and environmental sustainability in Indonesia. This is because the energy obtained from these charging stations comes from non-renewable sources. In light of this, the author questions the Indonesian government's commitment to achieving GHG emission reduction targets for sustainable development, particularly in terms of climate resilience, as promised in Law 16/2016 regarding GHG emission reduction targets. The author employs a juridical-normative research approach, examining the compatibility of the SPKLU policy with various primary, secondary, and tertiary legal sources. Based on this research, it is imperative for the Indonesian government to reevaluate the implementation of SPKLU infrastructure policies in Indonesia. This is essential to ensure the success of achieving GHG emission reduction targets in the country."
Depok: Fakultas Hukum Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dara Anindita
"Jumlah emisi CO2 di dunia terus meningkat, di mana kontributor terbesarnya adalah pembakaran bahan bakar fosil dan sektor transportasi. Di Indonesia, sektor transportasi menyumbangkan emisi sebesar 27% dari total keseluruhan emisi CO2 sehingga pemerintah Indonesia mendorong penggunaan kendaraan listrik untuk mencapai target net zero emission pada tahun 2050. Namun, pengisian daya mobil listrik memakan waktu yang lama sehingga dibutuhkan alternatif lain yang dapat melakukan pengisian daya mobil listrik dalam waktu yang cepat. Stasiun penukaran baterai kendaraan listrik umum (SPBKLU) dapat menjadi solusi karena hanya membutuhkan waktu ± 5 menit untuk menukar baterai kosong dengan baterai yang telah terisi penuh. Selain itu juga, dibutuhkan energi baru dan terbarukan untuk menghasilkan listrik, yaitu dengan menggunakan energi surya karena intensitas radiasi matahari yang tinggi di Indonesia. Oleh karena itu, penelitian ini akan membahas mengenai analisis risiko investasi pembangkit listrik tenaga surya pada atap SPBKLU di rest area jalan Tol Trans Jawa. Mobil listrik yang digunakan berkapasitas 58 kWh dengan jenis baterai Li-ion. Simulasi PLTS menunjukkan bahwa lokasi tempat SPBKLU akan dibangun adalah rest area KM626A di Waduan dengan daya listrik yang dihasilkan oleh panel surya sebesar 31,569 MWh/tahun. Biaya penukaran untuk sekali penukaran baterai mobil listrik adalah Rp50.000 dengan biaya listrik Rp2.446/kWh. Nilai parameter kelayakan investasi proyek pembangunan PLTS atap pada SPBKLU untuk mobil listrik yang dihasilkan adalah net present value (NPV) sebesar Rp11.044.951.738, internal rate of return (IRR) sebesar 23,659%, profitability index (PI) sebesar 2,28, dan payback period (PBP) selama 4 tahun 6 bulan. Dengan derajat keyakinan nilai parameter investasi lebih dari 50% pada simulasi Monte Carlo, menandakan bahwa proyek investasi layak untuk dijalankan. Komponen yang paling berpengaruh terhadap nilai parameter investasi NPV, IRR, PBP, dan PI adalah biaya dan banyak listrik yang digunakan, juga biaya dan banyaknya pertukaran baterai mobil listrik.

Global CO2 emissions caused by burning fossil fuels and the transportation sector have continuously increased. In Indonesia, the transportation sector accounts for 27% of the total greenhouse gas emissions. Therefore, the government has hastened the utilization of electric vehicles to achieve net-zero emissions by 2050. However, charging an electric car is a time-consuming process. Thus, public electric vehicle battery swapping stations (SPBKLU) are needed to combat that issue because they can swap the electric vehicle battery for approximately five minutes. Furthermore, renewable energy for electricity generation is also needed. Because of the high number of solar radiation and irradiance in Indonesia, solar PV system can be used as a source of electricity. In order to implement this technology in Indonesia, investment risk analysis of solar PV systems on the rooftop of a SPBKLU in a rest area of Trans Java Toll Road is required to determine the feasibility of the investment. The batteries for electric cars are Li-ion batteries with a capacity of 58 kWh. Solar PV simulation shows that the location where the SPBKLU will be built is in KM626A rest area in Waduan with energy generated by solar PV of 31,569 MWh/year. Each battery swap cost Rp50.000 and Rp2.446/kWh. The value of investment feasibility parameters are net present value (NPV) of Rp11.044.951.738, internal rate of return (IRR) of 23,659%, profitability index (PI) of 2,28 and payback period (PBP) for 4 years 6 months. With certainty levels over 50% using Monte Carlo Simulation, this indicates that the investment project is feasible. The most influential components of the investment parameter value (NPV, IRR, PBP, and PI) are the cost and amount of electricity used, as well as the cost and number of electric car battery swapping."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Simarmata, Arnaldo
"Kendaraan listrik efektif untuk mengurangi penggunaan bahan bakar fosil sekaligus sebagai upaya untuk melakukan dekarbonisasi untuk sektor transportasi di Indonesia. Dampak jangka panjang penggunaan bahan bakar fosil dapat meningkatkan efek gas rumah kaca dan mempengaruhi kualitas udara. Pemerintah bersama stakeholder membuat terobosan dengan mengganti bahan bakar fosil menjadi bahan bakar berbasis listrik dengan tenaga batere. Indonesia saat ini memiliki 267 unit infrastruktur stasiun pengisian kendaraan listrik umum (SPKLU) yang tersebar di 224 lokasi. Latar belakang masalah dari penelitian ini disebabkan adanya transisi energi dari kendaraan berbahan bakar fosil menjadi kendaraan berbasis energi listrik untuk mengurangi emisi gas rumah kaca. Penelitian ini bertujuan untuk mengetahui lokasi pertumbuhan kendaraan listrik, SPKLU, dan road map SPKLU di Indonesia. Penelitian ini membahas tentang analisa kebutuhan SPKLU terhadap kendaraan listrik di Indonesia. Penelitian ini menggunakan metode Analytical Hierarchy Process (AHP) dalam menentukan prioritas untuk mengganti bahan bakar fosil menjadi energi listrik secara bertahap. Penelitian ini memiliki 6 (enam) objek diantaranya kriteria ekonomi, standardisasi, teknologi, lingkungan, sumber energi dan regulasi. Berdasarkan hasil kuisioner pertama diperoleh bahwa kriteria lingkungan menjadi rekomendasi untuk pengembangan SPKLU, sedangkan dalam kuisioner kedua didapat hasil bahwa kendaraan listrik lebih tepat dikembangkan di Indonesia untuk meningkatkan kualitas udara. Menurut penelitian yang telah dilakukan di negara Taiwan (Jonathan C) dengan menggunakan AHP, didapat hasil bahwa lingkungan menjadi hal penting untuk mengadopsi perkembangan kendaraan listrik. Berdasarkan hasil kuisioner dan wawancara diatas diketahui bahwa kendaraan listrik lebih tepat untuk mendukung program udara bersih di Indonesia sehingga diperlukan pembangunan infrastruktur SPKLU berkelanjutan untuk mendukung meningkatnya penggunaan kendaraan listrik di Indonesia.

Electric vehicles are effective in reducing fossil fuel usage in Indonesia. The long-term impact of using fossil fuels can increase the effect of greenhouse gases and reduce air quality. The government and stakeholders made a breakthrough by replacing fossil fuels with battery power. Indonesia has 267 units of electric vehicle charging station (EVCS) infrastructure spread over 224 locations. The problem of this research is the energy transition from fossil fuel vehicles to electric vehicles to reduce greenhouse gas emissions. This study aims to determine the growth location of electric vehicles (EV), EVCS, and the EVCS road map in Indonesia. This research discusses the analysis of SPKLU's for EVs in Indonesia. This study uses the Analytical Hierarchy Process (AHP) method to determine priorities for substituting fossil fuels with electrical energy. This study has 6 (six) objects, economic criteria, standards, technology, environment, energy sources, and regulations. In the first questionnaire result, environmental criteria became recommendations for EVCS development. In the second questionnaire result, electric vehicles were more appropriate to be developed in Indonesia to improve air quality. According to research conducted in Taiwan (Jonathan C) also using AHP, the environment is more important for adopting the development of electric vehicles. The results of questionnaires and interviews on EVs are more suitable to support the clean air program in Indonesia. So an EVCS development infrastructure is needed to support the increase in the use of electric vehicles in Indonesia."
Jakarta: Fakultas Teknik Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>