Ditemukan 195656 dokumen yang sesuai dengan query
Muhammad Fauzan Suryawijaya
"Perumahan Cluster Tranquility Depok sudah menunjukkan indikasi terjadinya penurunan tanah dari hasil keterangan warga. Aspal yang sobek serta tembok yang retak menjadi salah satu contohnya. Penelitian mengenai zona rawan subsidence di komplek perumahan Cluster Tranquility Depok menggunakan metode seismik refraksi dan Multichannel Analysis of Surface Waves (MASW) pada dua lintasan. Pada lintasan 1, analisis didukung oleh data geolistrik dari penelitian sebelumnya. Akuisisi data seismik refraksi dilakukan pada lintasan sepanjang 75 meter dengan 14 titik pukulan berinterval 6 meter, sedangkan akuisisi MASW menggunakan lintasan 33 meter dengan 12 pukulan palu untuk menghasilkan data profil 2D. Data dari kedua metode tersebut digunakan untuk menghitung nilai Poisson Ratio sebagai parameter analisis subsidence. Hasil seismik refraksi menunjukkan bahwa lapisan tanah pada lintasan 1 dan 2 di dominasi oleh unconsolidated layer atau tanah lapuk dengan kecepatan 200 – 350 m/s . Data MASW di kedua lintasan juga menunjukkan nilai kecepatan geser (Vs) <175 m/s yang mengindikasikan jenis tanah lapuk. Sedangkan nilai Poisson Ratio pada lapisan 1 dan 2 mengindikasikan lapisan tanah lempung jenuh (saturated clay) dan juga silt dengan rentang nilai 0.3-0.4. Diperkirakan jenis tanah di kedua lintasan merupakan tanah urukan. Data ini sejalan dengan hasil penelitian sebelumnya yang menyebutkan bahwa lapisan atas lintasan 1 berupa sedimen tidak terkonsolidasi namun adanya sesar tidak terkonfirmasi di penelitian ini.
The Tranquility Cluster housing estate in Depok has shown indications of land subsidence from residents' testimonies. Torn asphalt and cracked walls are one example. Research on subsidence-prone zones in the Tranquility Cluster housing complex in Depok used refraction seismic and Multichannel Analysis of Surface Waves (MASW) methods on two tracks. On track 1, the analysis was supported by geoelectric data from previous research. Refraction seismic data acquisition was carried out on a 75-metre long track with 14 punch points at 6-metre intervals, while MASW acquisition used a 33-metre track with 12 hammer blows to generate 2D profile data. Data from both methods are used to calculate the Poisson Ratio value as a subsidence analysis parameter. Refraction seismic results show that the soil layer in trajectories 1 and 2 is dominated by unconsolidated layer or weathered soil with velocities of 200 - 350 m/s. MASW data in both tracks also show shear velocity (Vs) values <175 m/s which indicates the type of weathered soil. Meanwhile, the Poisson Ratio values in layers 1 and 2 indicate saturated clay and silt with a value range of 0.3-0.4. It is estimated that the soil type in both tracks is backfill soil. This data is in line with the results of previous research which states that the top layer of track 1 is unconsolidated sediment but the presence of faults was not confirmed in this study. "
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership Universitas Indonesia Library
Muhammad Dzaky Wajdi Hardiyan Syahputro
"Penurunan tanah memiliki dampak yang besar terhadap infrastruktur seperti mengubah geometri permukaan. Pergerakan turunnya tanah secara vertikal (subsidence) merupakan salah satu dari banyak faktor yang menyebabkan kerusakan infrastruktur baik yang diakibatkan oleh pergerakan secara alami seperti gempa ataupun buatan seperti aktivitas pertambangan. Penelitian ini bertujuan untuk analisis penyebab subsidence melalui pemodelan 2D tomografi seismik dan 3D tomografi resistivitas di Perumahan Tranquility, Depok. Metode tomografi seismik refraksi yang dilakukan dalam penelitian ini bertujuan untuk mengidentifikasi zona subsidence berdasarkan parameter kecepatan tanah sedangkan tomografi resistivitas bertujuan untuk melihat distribusi anomaly resistivitas zona rawan subsidence. Di lokasi terjadinya subsidence telah dilakukan pengambilan data seismik refraksi dan data geolistrik resistivitas ERT. Nilai waktu tiba (arrival time) dari data seismik refraksi digunakan sebagai parameter dalam proses tomografi waktu tunda. Hasil dari pengolahan seismik refraksi berupa model kecepatan (velocity map) lapisan bawah permukaan dan grafik waktu versus jarak dari waktu tersimulasi dan waktu terobservasi di setiap lintasan refraksi. Kemudian, hasil pengolahan tomografi seismik di korelasikan dengan data pengolahan ERT berupa penampang sebaran resistivitas bawah permukaan. Analisis hasil pengolahan kedua data tersebut didapatkan bahwa terdapat 3 tipe lapisan yaitu lapisan batuan lepas (unconsolidated sediment/loose soil), lapisan batuan pasir-kerikil (sandy gravel), dan lapisan akuifer dengan kemungkinan batuan silt-clay. Lapisan batuan lepas dengan kedalaman 0-6 meter mengalami penebalan dari arah barat daya hingga timur laut dengan ketebalan rata-rata 4 meter dan memiliki nilai resistivitas antara 17-35 ohm.m dan kecepatan rambat gelombangnya 300-340. Lapisan batuan pasir-kerikil dengan kedalaman 6-12 meter dan ketebalan nya meningkat dari arah timur laut hingga barat daya. Lapisan ini memiliki nilai resistivitas 55-110 ohm.m dan kecepatan rambat gelombangnya > 340. Lapisan akuifer berada pada kedalaman 13-30 meter dengan geometri panjang 40 meter dengan nilai resistivitas 0-15 ohm.m. Lapisan akuifer ini diinterpretasikan sebagai lapisan tipe batuan silt-clay. Geometri dari lapisan batuan pasir-kerikil lintasan ERT menunjukan adanya proses pensesaran tektonik minor/zona fraktur pada bagian barat daya dan timur laut dengan ciri blok respon resistivitas yang menebal dan diskontinyu. Geometri dari pensesaran ini termodelkan dalam model resistivitas 3D.
Subsidence has major impacts on infrastructure such as changing surface geometry. Vertical subsidence movement is one of the many factors that cause damage to infrastructure whether caused by natural movements such as earthquakes or artificial movements such as mining activities. This research aims to analyze the causes of subsidence through 2D seismic tomography and 3D resistivity tomography modeling in Tranquility Housing, Depok. The refraction seismic tomography method carried out in this study aims to identify subsidence zones based on ground velocity parameters while resistivity tomography aims to see the distribution of resistivity anomalies in subsidence-prone zones. At the location of subsidence, refraction seismic data and ERT resistivity geoelectric data have been collected. The arrival time value of refraction seismic data is used as a parameter in the time-delay tomography process. The refraction seismic processing results in a velocity map of the subsurface and a time versus distance graph of the simulated and observed times in each refraction trajectory. Then, the results of seismic tomography processing are correlated with ERT processing data in the form of subsurface resistivity distribution cross-sections. Analysis of the results of the processing of the two data obtained that there are 3 types of layers: unconsolidated sediment/loose soil layer, sandy gravel layer, and aquifer layer with possible silt - clay rocks. The loose rock layer with a depth of 0-6 meters thickens from the southwest to the northeast with an average thickness of 4 meters and has a resistivity value between 17 - 35 ohm.m and a wave propagation speed of 300 - 340 The sand-gravel layer is 6-12 meters deep and its thickness increases from the northeast to the southwest. This layer has a resistivity value of 55-110 ohm.m and a wave propagation velocity of > 340 m The aquifer layer is at a depth of 13-30 meters with a geometry length of 40 meters with a resistivity value of 0-15 ohm.m. This aquifer layer is interpreted as a silt-clay rock type layer. The geometry of the ERT track sand-gravel layer shows a minor tectonic faulting process/fracture zone in the southwest and northeast with thickened and discontinuous resistivity response blocks. The geometry of this faulting is modeled in the 3D model."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership Universitas Indonesia Library
Nurfaiz Herlambang
"Metode seismik refraksi digunakan untuk menentukan kedalaman bedrock yang tepat untuk menancapkan tiang. Penelitian dilakukan di kawasan Universitas Indonesia tepatnya di kompleks Fasilkom Universitas Indonesia. Konfigurasi lintasan survei seismik berupa 24 channel geophone dengan panjang lintasan 67.5 m, interval geophone 2,5 m dan near offset 10 m. Sumber gelombang dihasilkan dengan menggunakan palu dan jarak antar pukulan sejauh 5 m. Data sekunder yang digunakan berupa 1 titik sumur bor SPT (Soil Penetration Test) sebagai acuan pembanding hasil survei seismik. Data seismik refraksi diolah menggunakan teknik tradisional yaitu Metode Plus-Minus Hagedoorn dan inversi tomografi menggunakan software Rayfract. Hasil pengolahan kedua metode tersebut kemudian dibandingkan dengan data geologi dari sumur SPT. Korelasi antara hasil pengolahan dengan titik bor SPT menunjukkan hasil yang baik. Namun hasil dari metode Plus-Minus Haggedorn hanya mampu memperlihatkan 1 refraktor saja karena limitasi data yang digunakan, berbeda dengan metode inversi yang mampu memperlihatkan lebih dari satu refraktor. Terdapat 2 refraktor utama pada kedalaman 6 meter dan 12 meter, dan kedalaman efektif yang didapat hanya mencapai 15 m. Kecepatan yang didapat juga maksimal berada di sekitar 900 m/s. Sehingga dapat disimpulkan hingga kedalaman 15 meter tidak ditemukan lapisan batuan yang direkomendasikan untuk penempatan pondasi dalam untuk bangunan bertingkat. Untuk mendapatkan kedalaman bedrock yang direkomendasikan untuk mendapatkan pemasangan pondasi dalam diperlukan survei seismik dengan panjang lintasan yang lebih panjang untuk mendapatkan gambaran bawah tanah melebihi 15 meter.
The seismic refraction method is used to determine the exact bedrock depth for placing a pole. The study was conducted in Universitas Indonesia precisely at the Fasilkom University Indonesia complex. The seismic survey configuration consists of 24 geophone channels with a length of 67.5 m, geophone intervals of 2.5 m, and near offset of 10 m. The wave source was generated using a hammer, and the distance between blows was 5 m. The secondary data used was 1 SPT (Soil Penetration Test) borehole as a reference for comparison of seismic survey results. Seismic refraction data was processed using traditional techniques, namely the HagedoornâÂÂs Plus-Minus Method and tomographic inversion using Rayfract software. The results of the two methods were compared with geological information from 1 SPT borehole. The correlation between the results of the process with the SPT drill point shows good results. However, the Plus-Minus Haggedorn method results are only able to show one refractor because of the data limitation, in contrast to the inversion method, which was able to show more than one refractor. There are two main refractors at a depth of 6 meters and 12 meters, and the adequate depth obtained only reaches 15 m. The maximum speed obtained is also around 900 m/s. It can be concluded up to a depth of 15 meters, and there is no recommended rock layer for placement of deep foundations for high rise buildings. A seismic survey with a longer seismic line is needed to get an underground picture exceeding 15 meters."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership Universitas Indonesia Library
Syifa Shabrina Salsabila
"Pembangunan suatu proyek perlu diawali dengan penyelidikan mengenai lapisan batuan yang ada di bawah permukaan bumi sebab lapisan batuan yang ada di bawah permukaan bumi memiliki sifat fisis yang bervariasi, salah satunya tingkat kekerasan lapisannya. Penelitian ini dilakukan untuk mengetahui tingkat kekerasan lapisan batuan yang ada di salah satu wilayah di Sulawesi Selatan berdasarkan hasil pengolahan data Seismik Refraksi dan data Geolistrik. Metode seismik refraksi dapat memberikan informasi sifat fisis batuan berdasarkan nilai cepat rambat gelombang seismik sedangkan metode geolistrik digunakan untuk mengetahui nilai resistivitas pada lapisan batuan yang ada di bawah permukaan. Telah dilakukan pengukuran seismik refraksi di salah satu lokasi yang akan dilakukan pembangunan yaitu lintasan LDSR01, LTSR02, dan LTSR03. Hasil dari pengukuran seismik refraski kemudian diolah sehingga mendapatkan velocity map serta model lapisan yang ada di bawah permukaan kemudian dikorelasikan dengan data geolistrik yang berupa penampang resistivitas lintasan GL-03 dan GL-04. Analisis dari hasil pengolahan data diinterpretasikan bahwa terdapat tiga lapisan dimana tingkat kekerasan lapisan batuan di wilayah penelitian bertambah seiring dengan bertambahnya kedalaman. Lapisan pertama dengan kedalaman 0 – 15 meter dinyatakan lapisan lapuk yang tidak terkompaksi dengan kecepatan rambat gelombang di bawah 2000 ft/s dan nilai resistivitas kurang dari 400 Ωm. Lapisan ini masuk ke dalam tingkat kekerasan very soft soil – firm cohesive soil. Lapisan kedua dengan kedalaman hingga 45 meter dinyatakan sebagai lapisan batuan dasar lapuk dengan kecepatan 2000 – 5000 ft/s dan nilai resistivitas lebih dari 400 Ωm. Lapisan ini masuk ke dalam tingkat kekerasan stiff cohesive soil – soft rock. Lapisan ketiga dengan kedalaman lebih dari 45 meter dinyatakan sebagai lapisan yang batuan dasar dengan kecepatan rambat gelombang lebih dari 5000 ft/s dan nilai resistivitas lebih dari 400 Ωm. Lapisan ini masuk ke dalam tingkat kekerasan soft rock – extremely hard rock. Berdasarkan data geolistrik, lapisan kedua dan ketiga merupakan batuan dasar yang diinterpretasikan sebagai batuan granit atau granodiorit.
The construction of a project needs to begin with an investigation of the rock layers below the earth's surface because the rock layers below the earth's surface have varying physical properties, one of which is the level of hardness. This study was conducted to determine the level of rock layer hardness in one area in South Sulawesi based on the results of processing data from Seismic Refraction and Geoelectrical data. The seismic refraction method can provide information on the physical properties of rocks based on the value of the seismic wave propagation speed, while the geoelectric method is used to determine the resistivity value in the rock layers below the surface. Seismic refraction measurements have been carried out at one of the locations where the construction will be carried out, namely the LDSR01, LTSR02, and LTSR03 lines. The results of seismic refraction measurements are then processed to obtain a velocity map and a model of the subsurface layer and then correlated with geoelectrical data in the form of crosssectional resistivity of the GL-03 and GL-04 lines. Analysis of the results of data processing interpreted that there are three layers where the level of rock layer hardness in the study area increases with increasing depth. The first layer with a depth of 0-15 meters is declared an uncompacted weathered layer with a wave propagation speed below 2000 ft/s and a resistivity value of less than 400 m. This layer is included in the hardness level of very soft soil – firm cohesive soil. The second layer with a depth of up to 45 meters is expressed as a weathered bedrock layer with a velocity of 2000 – 5000 ft/s and a resistivity value of more than 400 m. This layer is included in the hardness level of stiff cohesive soil – soft rock. The third layer with a depth of more than 45 meters is expressed as a bedrock layer with a wave propagation velocity of more than 5000 ft/s and a resistivity value of more than 400 m. This layer falls into the hardness level of soft rock – extremely hard rock. Based on geoelectrical data, the second and third layers are bedrock which is interpreted as granite or granodiorite."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership Universitas Indonesia Library
Palmer, Derecke
London: Geophysical Press, 1986
622.159 PAL r
Buku Teks SO Universitas Indonesia Library
Muhairiyati
"Metode seismik adalah salah satu metode geofisika yang digunakan dalam eksplorasi gas dan minyak bumi. Dimana metode ini menghasilkan gambaran lapisan bawah permukaan berupa perambatan gelombang. Perambatan gelombang dibawah permukaan dengan bertambahnya kedalaman akan mempengaruhi daya resolusi. Sehingga metode yang dipakai dalam meningkatkan resolusi adalah algoritma spectral blueing. Spectral blueing menggunakan dua data yaitu data seismik dan data sumur. Hasil dari data seismik sebelum proses spectral blueing dibandingkan dengan hasil sesudah spectral blueing untuk melihat adanya peningkatan pada resolusi seismik.
The seismic method is one of the geophysical methods used in gas and oil exploration. Where this method produces an image of the subsurface layer in the form of wave propagation. Wave propagation below the surface with increasing depth will affect the resolution power. So the method used to increase the resolution is spectral blueing algorithm. Spectral blueing uses seismic data and well data. The results of the seismic data before the spectral blueing process were compared with the results after the spectral blueing to see an increase in seismic resolution."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership Universitas Indonesia Library
Rizky Adityo Prastama
"ABSTRACT
Penelitian 4D microgravity atau microgravity antarwaktu telah dilakukan untuk mendeteksi zona dan laju amblesan antara tahun 2014 dan 2018 di Jakarta. Jakarta secara garis besar berada di atas kipas aluvial kuarter yang berasal dari bagian Selatan. Amblesan sendiri terjadi akibat beberapa faktor termasuk eksploitasi airtanah berlebihan, beban permukaan, dan sifat alami dari aluvial yang tidak terkonsolidasi dengan baik. Dengan menggabungkan persamaan Simple Bouguer Anomaly SBA dan metode gradien gravitas, diperoleh nilai densitas Bouguer sebesar 2.33 g/cm3. Amblesan terjadi di dekat permukaan sehingga anomali gravitasi regional perlu dipisahkan dari SBA dengan mengkombinasikan analisis spektrum dan metode moving average setelah mengimplementasikan transformasi Fourier. Efek dari pergerakan airtanah sudah dihilangkan dengan korelasi data sumur. Hasil yang diperoleh menunjukkan bahwa amblesan terjadi hampir di seluruh wilayah pesisir Jakarta, dengan nilai tertinggi di Jakarta Utara 7-20 cm/tahun . Terdapat pula nilai 4D microgravity negatif pada bagian selatan Jakarta yang mengindikasikan fenomena uplift.
ABSTRACTStudy of time lapse or 4D microgravity had been done to detect subsidence zone and its rate between 2014 and 2018 in Jakarta. Jakarta mostly covered by quaternary alluvium fan supplied from southern part of this city. Subsidence happened by several factors including excessive water exploitation, surface load, and the natural sinking properties of unconsolidated alluvium. By combining Simple Bouguer Anomaly SBA equation and gravity gradiometry methods, we can get the Bouguer density of 2.33 g cm3. Since subsidence occurred on near surface, regional gravity anomaly has been separated from SBA by combining spectrum analysis and moving average methods after implementing Fourier transform. The effect of groundwater movements removed from 4D microgravity anomaly with correlation to groundwater well data. The result shows that subsidence occurred all over the coastal area of Jakarta, with highest rate in North Jakarta 7 20 cm year . There also negative 4D microgravity anomaly in southern part of Jakarta that related to ground level uplifting."
2018
S-Pdf
UI - Skripsi Membership Universitas Indonesia Library