Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 63666 dokumen yang sesuai dengan query
cover
Galih Surya Kusuma Hartono
"By 2040, Indonesia's electricity consumption is expected to double, forcing the nation to move away from its 82% reliance on fossil fuels and toward the ambitious goals of 23% by 2025 and 31% by 2050 for renewable energy. Rice husk, an agricultural waste from rice farming in Indonesia, can be converted into syngas via gasification, offering a sustainable energy solution while addressing waste management and reducing fossil fuel dependency. Gasification converts biomass into syngas (a mixture of H₂, CO, CO₂, CH₄), which can produce energy with generators or other biofuel-powered methods and can operate through autothermal (partial internal combustion) or allothermal (external heat) methods. Three main types of gasifiers exist—entrained bed, fluidized bed, and moving bed—each with unique characteristics and advantages. There are four stages of gasification: drying, pyrolysis, combustion/cracking, and reduction. The preparation of the New P3 Gasifier involves powering it up, performing system checks, and ensuring water is filled in the cyclones. To start, rice husks are loaded into the hopper, and after the rotary feeder is activated, the reactor is ignited using a blow torch. Syngas production is verified by attempting to ignite the gas, while adjustments to feed rates, blower settings, and char disposal help maintain consistent syngas output. When ending the run, feeding stops, and components are sequentially shut down, leaving only necessary parts active to remove residual ash and remaining syngas. Data obtained from this experiment is done by inserting a fixed amount of rice husks into the hopper of the gasifier for a set period of time it runs under different filters. Results obtained from this experiment is then compiled into charts and analyzed to find the optimal feed settings for the gasifier.

Pada tahun 2040, konsumsi listrik Indonesia diperkirakan akan meningkat dua kali lipat, memaksa negara ini untuk mengurangi ketergantungannya yang sebesar 82% pada bahan bakar fosil dan menuju tujuan ambisius sebesar 23% pada tahun 2025 dan 31% pada tahun 2050 untuk energi terbarukan. Sekam padi, limbah pertanian dari pertanian padi di Indonesia, dapat diubah menjadi syngas melalui gasifikasi, menawarkan solusi energi berkelanjutan sambil menangani pengelolaan limbah dan mengurangi ketergantungan pada bahan bakar fosil. Gasifikasi mengubah biomassa menjadi syngas (campuran H₂, CO, CO₂, CH₄), yang dapat menghasilkan energi dengan generator atau metode berbasis biofuel lainnya dan dapat beroperasi melalui metode autothermal (pembakaran internal parsial) atau allothermal (panas eksternal). Ada tiga jenis utama gasifier—entrained bed, fluidized bed, dan moving bed—masing-masing dengan karakteristik dan keunggulan unik. Ada empat tahap gasifikasi: pengeringan, pirolisis, pembakaran/pemecahan, dan reduksi. Persiapan New P3 Gasifier melibatkan menyalakannya, melakukan pemeriksaan sistem, dan memastikan air terisi di dalam siklon. Untuk memulai, sekam padi dimasukkan ke dalam corong, dan setelah pengumpan putar diaktifkan, reaktor dinyalakan menggunakan obor. Produksi syngas diverifikasi dengan mencoba menyalakan gas, sementara penyesuaian laju umpan, pengaturan blower, dan pembuangan char membantu menjaga keluaran syngas yang konsisten. Saat mengakhiri proses, pemberian bahan dihentikan, dan komponen-komponen dimatikan secara berurutan, meninggalkan hanya bagian-bagian yang diperlukan untuk menghilangkan sisa abu dan syngas yang tersisa. Data yang diperoleh dari eksperimen ini dilakukan dengan memasukkan sejumlah tetap sekam padi ke dalam corong gasifier selama periode waktu tertentu di bawah berbagai filter. Hasil yang diperoleh dari eksperimen ini kemudian dikompilasi ke dalam grafik dan dianalisis untuk menemukan pengaturan umpan yang optimal untuk gasifier.
"
Depok: Fakultas Teknik Universitas Indonesia, 2025
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rizatar Fario Shehriar
"Potensi limbah biomassa di Indonesia mencapai 35,6 GW dengan padi sebesar 19,41 GW. Sekam padi merupakan salah satu sumber energi terbarukan dari biomassa yang potensialnya paling besar karena Luas Lahan Baku Sawah (LBS) mencapai 7.463.948 hektare dengan produktivitas 5,7-6,1 ton/ha. Dengan menggunakan sistem gasifikasi, limbah sekam padi dapat memanfaatkan energi yang tersimpan di dalamnya. Sistem dari Mobile Biomass Gasifier Purwarupa 3 (P3) merupakan gasifier yang dapat berjalan secara kontinu dengan kapasitas reaktor 25 kg/jam. Dengan melakukan eksperimen, didapatkan nilai feeding rate yang ideal, char removal rate, profil temperatur dan mass balance saat menjalankan eksperimen dengan perlakuan sama setiap variasi. Didapatkan komposisi syngas untuk setiap variasi vibrating grate 10%, 12%, dan 14%. Komposisi syngas terbaik didapatkan pada vibrating grate sebesar 10% (24 RPM), feeding rate 6,82 kg/jam, suhu zona oksidasi (T3) rata-rata sebesar 544°C dan ER 0,28. Didapatkan komposisi syngas (%Volume) CO, CH4, H2, dan CO2 secara beurutan sebesar 14,08%; 2,09%; 3,74%; dan 1,75%, serta nilai LHV sebesar 2,93 MJ/Nm3 . Didapatkan Cold Gas Efficiency sebesar 44,17%. Pulau Nusa Tenggara Timur didasarkan pada rasio elektrifikasi terendah se-Indonesia dapat dijadikan sasaran untuk Mobile Biomass Gasifier Purwarupa 3. Diharapkan untuk penelitian-penelitian selanjutnya dapat mengembangkan alat gasifier untuk bahan bakar limbah biomassa selain dari sekam padi agar potensi biomassa dapat dimaksimalkan.

The potential biomass waste in Indonesia reaches 35.6 GW, with rice husk accounting for 19.41 GW. Rice husk is one of the most significant potential renewable energy sources from biomass due to the extensive paddy field area of 7,463,948 hectares with a productivity of 5.7-6.1 tons/ha. By utilizing gasification technology, rice husk waste can harness the energy stored within it. The Mobile Biomass Gasifier Prototype 3 (P3) system is a gasifier capable of continuous operation with a reactor capacity of 25 kg/hour. Through experiments, the ideal feeding rate, char removal rate, temperature profile, and mass balance were determined under the same treatment for each variation. The composition of syngas was obtained for each vibrating grate variation of 10%, 12%, and 14%. The best syngas composition was achieved with a vibrating grate of 10% (24 RPM), feeding rate of 6.82 kg/hour, average oxidation zone temperature (T3) of 544°C, and an equivalence ratio (ER) of 0.28. The syngas composition (% volume) was found to be 14.08% CO, 2.09% CH4, 3.74% H2, and 1.75% CO2, with a lower heating value (LHV) of 2.93 MJ/Nm3. The Cold Gas Efficiency obtained was 44.17%. The East Nusa Tenggara Island, based on the lowest electrification ratio in Indonesia, can be targeted for the Mobile Biomass Gasifier Prototype 3. Further research is expected to develop gasifier devices for biomass waste fuels other than rice husk to maximize the potential of biomass.
"
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Darrent Antono
"The demand for energy has always been an issue with everyday life. Today, fossil fuels are becoming the main source of energy used by industries, households, etc. with a total use rate of 82% compared to other forms of energy. This is not a concern had it not been for a fact that fossil fuels are starting to decline rapidly over time. Hence, many have tried to find different sources of energy as an alternative to the now decreasing fossil fuel. Syngas or short for synthesis gas is an example of this alternative source of energy, composed of a mix between CO and H2, they are created using a process called gasification, in which this dissertation will explore. In the experiments that follow, a series of runs are subjected to a mobile gasifier system in which each run will contain different kinds of filters used. There are a total of four different variables for filters used: no filter, rice husk filter, condensed rice husk filter, and air wool foam filter. For each filter, the machine will be subjected to a total of four runs, in which we obtain the total burning time of the burner. The results show that out of the four filters, the one with air wool foam material exhibited the best results, yielding a total burning time of 201 minutes compared to the next longest burning time created by an unrestricted no filter run, 128 minutes. The data also showed the most stable control panel operation out of all the four filters, as well as burner activation rates which exceed those produced by the other four filters. To verify the data, we did another test run, now under a single 200-minute duration to obtain tar mass accumulation and porosity values. At the end of the experiment, it is discovered that the condensed rice husk filter obtained the most amount of tar at 425 g. However, after porosity calculations were done for each filter, it is discovered that air wool held the least porosity decrease in respect to the original density out of all the three filters, this is why the material held the longest burning time despite the condensed rice husk filter filtering out most of the tar. In conclusion, the air wool foam filter is the best filter for this mobile gasifier operation, as it yields the longest burning time and the most stable PLC operation data. While the condensed rice husk filter is the best filter to catch tar byproducts. The system itself is also proven to be able to produce burnable syngas. For future experiments, we hope that some safety measures will be installed into the mobile gasifier, as well as possible automation of moving parts, and the reevaluation of some design components.

Permintaan energi selalu menjadi masalah dalam kehidupan sehari-hari. Saat ini, bahan bakar fosil menjadi sumber energi utama yang digunakan oleh industri, rumah tangga, dll. dengan total tingkat penggunaan 82% dibandingkan dengan bentuk energi lainnya. Hal ini tidak menjadi masalah jika saja bahan bakar fosil tidak mulai menurun dengan cepat dari waktu ke waktu. Oleh karena itu, banyak yang mencoba mencari sumber energi lain sebagai alternatif bahan bakar fosil yang kini jumlahnya semakin berkurang. Syngas atau kependekan dari gas sintesis adalah salah satu contoh sumber energi alternatif ini, yang terdiri dari campuran antara CO dan H2, yang dibuat menggunakan proses yang disebut gasifikasi, yang akan dibahas dalam disertasi ini. Dalam percobaan berikut, serangkaian pengujian dilakukan pada sistem gasifier bergerak yang setiap pengujiannya akan berisi berbagai jenis filter yang digunakan. Ada total empat variabel berbeda untuk filter yang digunakan: tanpa filter, filter sekam padi, filter sekam padi terkondensasi, dan filter busa wol udara. Untuk setiap filter, mesin akan menjalani total empat kali pengujian, yang mana kita akan memperoleh waktu pembakaran total pembakar. Hasilnya menunjukkan bahwa dari keempat filter, filter dengan bahan busa wol udara menunjukkan hasil terbaik, menghasilkan total waktu pembakaran 201 menit dibandingkan dengan waktu pembakaran terpanjang berikutnya yang dihasilkan oleh pengujian tanpa filter tanpa batasan, 128 menit. Data tersebut juga menunjukkan pengoperasian panel kontrol paling stabil dari keempat filter, serta tingkat aktivasi pembakar yang melebihi yang dihasilkan oleh keempat filter lainnya. Untuk memverifikasi data, kami melakukan pengujian lain, sekarang dalam durasi tunggal 200 menit untuk memperoleh akumulasi massa tar dan nilai porositas. Di akhir percobaan, ditemukan bahwa filter sekam padi terkondensasi memperoleh jumlah tar paling banyak pada 425 g. Namun, setelah perhitungan porositas dilakukan untuk setiap filter, ditemukan bahwa wol udara memiliki penurunan porositas paling sedikit sehubungan dengan kepadatan awal dari ketiga filter, inilah mengapa material tersebut memiliki waktu pembakaran terlama meskipun filter sekam padi terkondensasi menyaring sebagian besar tar. Sebagai kesimpulan, filter busa wol udara adalah filter terbaik untuk operasi gasifier bergerak ini, karena menghasilkan waktu pembakaran terlama dan data operasi PLC paling stabil. Sementara filter sekam padi terkondensasi adalah filter terbaik untuk menangkap produk sampingan tar. Sistem itu sendiri juga terbukti mampu menghasilkan syngas yang dapat dibakar. Untuk percobaan di masa mendatang, kami berharap beberapa langkah pengamanan akan dipasang ke dalam gasifier bergerak, serta kemungkinan otomatisasi bagian yang bergerak, dan evaluasi ulang beberapa komponen desain."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Aldy Cahya Ramadhan
"Indonesia adalah salah satu negara dengan jumlah penduduk yang besar, seiring dengan pertumbuhan penduduk maka kebutuhan energi di Indonesia akan terus meningkat. Namun, saat ini kebutuhan energi di Indonesia masih banyak mengandalkan bahan bakar fosil yang terbatas. Indonesia juga negara kepulauan yang memiliki hasil pertanian yang besar sehingga potensi biomassanya sangat besar. Mobile Biomass Gasifier Purwarupa 3 merupakan tahap selanjutnya dari generasi sebelumnya yang memiliki tujuan untuk memanfaatkan biomassa berupa padi menjadi gas mampu bakar yang dapat dimanfaatkan menjadi listrik melalui engine. Tujuan dari penelitian ini adalah mengevaluasi gas producer dari Mobile Gasifier Purwarupa 3 (P3) dalam proses gasifikasi berkelanjutan dengan reaktor bertipe downdraft fixed bed. Pada eksperimen ini LHV optimal dihasilkan pada Equivalence Ratio 0,24 dengan primary flow 29,69 m3/h, suction flow 30,7 m3/h, dan Feed rate 25 kg/h, yaitu sebesar 2,53 MJ/kg dengan nilai Cold Gas Efficiency sebesar 47,63%.

Indonesia is one of the countries with a large population, along with population growth, the energy needs in Indonesia will continue to increase. However, currently Indonesia's energy needs still rely heavily on limited fossil fuels. Indonesia is also an archipelagic country that has large agricultural products so that the potential for biomass is very large. Mobile Biomass Gasifier Prototype 3 is the next stage of the previous generation which has the aim of utilizing biomass in the form of rice into combustible gas that can be used as electricity through an engine. The purpose of this study was to evaluate the producer gas of the Mobile Gasifier Prototype 3 (P3) in a continuous gasification process with a downdraft fixed bed type reactor. In this experiment, the optimal LHV was generated at the Equivalence Ratio of 0.24 with a primary flow of 29.69 m3/h, a suction flow of 30.7 m3/h, and a feed rate of 25 kg/h, which was 2.53 MJ/kg with a Cold Gas Efficiency value is 47.63%."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Yohanes Bobby
"Gasifikasi merupakan proses untuk merubah biomassa menjadi syngas yaitu gas mampu bakar yang dapat digunakan untuk energi listrik. Indonesia memiliki potensi mencapai 35.6 GW dengan padi menjadi penyumbang terbesar 19.41 GW. Gasifier purwarupa 2 P2 ini merupakan hasil improvisasi dari gasifier purwarupa 1 P1 milik laboratorium gasifikasi biomassa Universitas Indonesia. Gasifier P2 dibuat dengan menutupi celah udara masuk melalui sistem rotary feeder dan menjaga kestabilan penurunan zona dengan sistem vibrating grate. Gasifier P2 memiliki diameter 0.4m dan diameter 0.25m dan memiliki output sebesar 50kW. Melalui proses analisis perhitungan empiris didapatkan bahwa jangkauan operasional reaktor harus memiliki feed rate yang berada diatas 12.6 kg/hr dan sesuai dengan referensi jurnal maka berada didalam jangkauan 18-28 kg/hr maka dengan begitu nilai CGE gasifier berada di rentang 40-65%. Parameter Operasional ini dibuat untuk diintegrasikan dengan sistem komputer dengan harapan proses optimasisasi secara operasional dapat meningkatkan mutu syngas. Metode perhitungan dikomparasi melalui perbandingan dengan jurnal dan dengan perhitungan penyetaraan energi dan massa. Analisis juga dilakukan terhadap sistem feeding dan vibrating grate untuk mengetahui potensi improvisasi yang dapat dilakukan. Sistem screwfeeder memiliki sudut inklinasi 60 yang menyulitkan transfer massa dan menciptakan potensi kegagalan sehingga sudut ini dapat dibuat lebih landai, perubahan kemiringan menjadi 25 dapat menghemat daya sampai 50%. Vibrating grate yang digunakan adalah AISI 304. Material tersebut dapat mengalami korosi batas butir yang mampu mengurangi kekuatan grate, namun secara umum beban kerja dari grate masih berada kapasitas operasional yang aman. List improvisasi dibuat sebagai rangkuman dan panduan evaluasi dan improvisasi Gasifier P2.

Gasification is a process what convert biomasses into syngas that can be used as fuel or converted into electricity. Indonesias biomass potential is around 35.6 GW with rice husk being the largest reserves with around 19.41 GW. Gasifier Prototype 2 P2 was made as the result of improvisation of the Prototype 1 gasifier P1 created by biomass gasification laboratorys research team from University of Indonesia. The main improvements from P2 are sealing air gap that exist at the feeding system of P1 which can lead to leakage and syngas loss and the implement of the new char removal system, vibrating grate that can discards waste without ruining the working zone above it. Gasifier P2 has dimension of 0.4m height and 0.25m diameter and it is designed to have 50kW output. Through the analysis process of designing a downdraft gasifier, to obtain the output needed, P2 gasifier needs to have feed rate of minimum 12.6 kg/hr. Taking journals as reference the feed rate needed for practical use of gasifier is around 18-28 kg/ hr which has CGE value within the range of 40-65%. These operational parameters are made to be integrated with computer system in the hope that optimization process in operational parameter can improve the quality of syngas produced by the gasifier. The calculation method is then compared through calculations from other journals and with the parameter obtained by energy and mass balance calculation from experiment carried in P1 reactor. Analysis was also carried out for the feeding and char removal system. The screw feeder used in feeding system has an inclination angle of 60 which lessen the mass transfer rate while also consuming more power. Changing the slope to 25 can dramatically improves transfer rate and saves power up to 50%. Vibrating Grate used in char removal system used AISI 304 as its material. Such material that can be exposed to intergranular corrosion IGC which can lower the AISI 403s strength. However, the stress caused from carrying rice husk still falls into the allowable range. A list of improvisations was made as a summary and evaluation guide and improvisation of Gasifier P2."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhamad Adim Majid
"Indonesia dikenal dengan salah satu sebutannya adalah negara agraris yang artinya Sebagian besar penduduknya bekerja di bidang pertanian. Indonesia menghasilkan kurang lebih 146,7 juta ton limbah biomassa setiap tahunnya, sebanyak kurang lebih 16 juta ton adalah sampah biomassa sekam padi (PTSEIK, 2017). Gasifikasi biomassa adalah proses konversi biomassa menjadi bahan bakar gas yang mempan bakar (CO, CH4, dan H2). Bahan baku untuk proses gasifikasi dapat berupa limbah biomassa, yaitu sekam padi, tempurung kelapa, potongan kayu, maupun limbah pertanian lainnya. Dalam proses pembakaran biomassa sebagai bahan bakar, rantai hidrokarbon pada biomassa yang dipilih akan terurai. Produk yang dihasilkan dari proses gasifikasi adalah gas mempan bakar yang disebut syngas (gas sintesis). Gas mudah bakar (gas combustible) yang dapat dimanfaatkan hanyalah CO, H2, dan CH4. Selama proses gasifikasi akan terbentuk daerah proses yang dinamakan menurut distribusi suhu dalam reaktor gasifier. Daerah-daerah itu, yaitu: Drying, Pyrolysis, Reduksi, dan Combustion. Selama pirolisis, kelembaban menguap pertama kali (100°C), kemudian hemiselulosa terdekomposisi (200-260°C), lalu selulosa (240-340°C), dan diikuti oleh lignin (280-500°C). Produk cair hasil pirolisis yang menguap mengandung tar dan PAH (polyaromatic hydrocarbon). Produk pirolisis umumnya terdiri dari tiga jenis, yaitu gas ringan (H2, CO, CO2, H2O, dan CH4), tar, dan arang. Tar dapat didefinisikan sebagai campuran hidrokarbon terkondensasi. Konsentrasi tar dalam sistem harus dibatasi dan terdapat beberapa cara untuk pengurangan tar. Mengurangi tar yang terkandung pada syngas dapat dilakukan dengan cara filtrasi menggunakan bahan adsorben. Partikel tar menempel pada adsorben yang menghasilkan aliran syngas yang diharapkan bebas dari tar. Terdapat kandungan tar pada syngas yang diizinkan untuk masuk kedalam motor bakar yaitu 0,01-0,1 g/Nm3. Pada gasifier purwarupa 3 ini memilih MANN paper filter sebagai adsorben yang digunakan untuk mengurangi konsentrasi tar pada syngas dengan efisiensi yang lebih tinggi dibandingkan dengan efisiensi adsorben sekam dan filter minyak.

Indonesia is known by one of its names is an agrarian country, which means that most of the population works in agriculture. Indonesia produces approximately 146.7 million tons of biomass waste annually, of which approximately 16 million tons is rice husk biomass waste (PTSEIK, 2017). Biomass gasification is the process of converting biomass into fuel gas that is capable of burning (CO, CH4, and H2). The raw materials for the gasification process can be in the form of biomass waste, namely rice husks, coconut shells, wood chips, and other agricultural wastes. In the process of burning biomass as fuel, the hydrocarbon chains in the selected biomass will be decomposed. The product resulting from the gasification process is a combustible gas called syngas (synthesis gas). Combustible gases that can be utilized are only CO, H2, and CH4. During the gasification process, a process area will be formed which is named according to the temperature distribution in the gasifier reactor. These areas are: Drying, Pyrolysis, Reduction, and Combustion. During pyrolysis, moisture evaporates first (100°C), then hemicellulose is decomposed (200-260°C), then cellulose (240-340°C), followed by lignin (280-500°C). The liquid product of pyrolysis that evaporates contains tar and PAH (polyaromatic hydrocarbon). Pyrolysis products generally consist of three types, namely light gases (H2, CO, CO2, H2O, and CH4), tar, and charcoal. Tar can be defined as a mixture of condensed hydrocarbons. The concentration of tar in the system must be limited and there are several ways to reduce tar. Reducing tar contained in syngas can be done by filtration using an adsorbent material. Tar particles adhere to the adsorbent resulting in a syngas flow which is expected to be free of tar. There is a tar content in the syngas that is allowed to enter the combustion engine, which is 0.01-0.1 g/Nm3. In this prototype gasifier 3, the MANN paper filter was chosen as the adsorbent used to reduce the tar concentration in the syngas with a higher efficiency than the efficiency of the husk adsorbent and oil filter."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Mahendra Wijaya
"ABSTRAK
Segala potensi sumber daya energi perlu kita manfaatkan demi terjaganya ketahanan energi bangsa. Pelabuhan Soekarno Hatta, Makassar merupakan pelabuhan dengan kapasitas komposisi biomassa yang beragam perlu memperdalam penguasaan teknologi pengolahannya. Teknologi Hydrothermal Carbonization cocok digunakan untuk meningkatkan nilai guna dari sampah pada pelabuhan Soekarno Hatta, Makassar. Dengan hasil padatan dari teknologi Hydrothermal Carbonization dapat menghasilkan hydrochar dengan nilai HHV 16-28 MJ / kg. Teknologi Hydrothermal Carbonization dapat menghasilkan bricket hydrochar yang optimal dengan memanfaatkan proses parameter yang ada. Implementasi dari Teknologi Hydrothermal Carbonization ini dapat meningkatkan nilai guna dari 45% sampah pelabuhan.

ABSTRACT
We need to utilize all potential energy resources for the sake of maintaining the nation's energy security. The Soekarno Hatta Port, Makassar is a port with a diverse biomass composition capacity
that needs to deepen its mastery of processing technology. Hydrothermal Carbonization technology is suitable to increase the use value of waste at the port of Soekarno Hatta, Makassar. With the results of solids from Hydrothermal Carbonization technology can produce hydrochar with a HHV value of 16-28 MJ / kg. Hydrothermal Carbonization technology can produce an optimal hydrochar bricket by utilizing existing parameter processes. The implementation of Hydrothermal Carbonization Technology can increase the use value of 45% of port waste.
"
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Marcellino Lorenzo
"Gasifikasi biomassa adalah proses konversi biomassa menjadi bahan bakar gas yang mempan bakar (CO, CH4, dan H2). Bahan baku untuk proses gasifikasi dapat berupa limbah biomassa, yaitu sekam padi, tempurung kelapa, potongan kayu, maupun limbah pertanian lainnya. Pada proses konversi secara termokimia, pemanfaatan biomassa sebagai sumber energi akan dibakar. Dalam proses pembakaran biomassa sebagai bahan bakar, rantai hidrokarbon pada biomassa yang dipilih akan terurai. Produk yang dihasilkan dari proses gasifikasi adalah gas mempan bakar yang disebut syngas (gas sintesis). Gas mudah bakar (gas combustible) yang dapat dimanfaatkan hanyalah CO, H2, dan CH4. Selama proses gasifikasi akan terbentuk daerah proses yang dinamakan menurut distribusi suhu dalam reaktor gasifier. Daerah-daerah itu, yaitu: Drying, Pyrolysis, Reduksi, dan Combustion. Selama pirolisis, kelembaban menguap pertama kali (100°C), kemudian hemiselulosa terdekomposisi (200-260°C), lalu selulosa (240-340°C), dan diikuti oleh lignin (280-500°C). Produk cair hasil pirolisis yang menguap mengandung tar dan PAH (polyaromatic hydrocarbon). Produk pirolisis umumnya terdiri dari tiga jenis, yaitu gas ringan (H2, CO, CO2, H2O, dan CH4), tar, dan arang. Tar dapat didefinisikan sebagai campuran hidrokarbon terkondensasi. Konsentrasi tar dalam sistem harus dibatasi dan terdapat beberapa cara untuk pengurangan tar. Kondensasi tar dipilih menjadi salah satu cara termudah dan termurah untuk mengurangi sebagian besar kandungan tar pada syngas. Untuk ini dibutuhkan kondensor untuk mengkondensasi tar. Saat tar mencapai dew point maka tar akan berubah fase dari gas menjadi cair. Tar yang mencair akan terpisah dari aliran syngas. Terdapat kandungan tar pada syngas yang diizinkan untuk masuk kedalam motor bakar yaitu 0,01-0,1 g/Nm3. Pada penelitian Mobile Biomass Gasifier sebelumnya, digunakan kondensor berjenis shell and tube dan memiliki efisiensi 75%-85%. Purwarupa tahap 3 ini memilih kondensor berjenis double pipe heat exchanger untuk mengurangi ukuran dengan efisiensi yang lebih tinggi.

Biomass gasification is the process of converting biomass into combustible gas fuels (CO, CH4, and H2). The raw materials for the gasification process can be in the form of biomass waste, namely rice husks, coconut shells, wood chips, and other agricultural wastes. In the thermochemical conversion process, the use of biomass as an energy source will be burned. In the process of burning biomass as fuel, the chain of termination of the selected biomass will be unraveled. The product resulting from the gasification process is a combustible gas called syngas (synthesis gas). Combustible gas that can be used only CO, H2, and CH4. During the gasification process a process will be formed which starts according to the temperature distribution in the gasifier reactor. These areas are: Drying, Pyrolysis, Reduction, and Combustion. During pyrolysis, evaporate decomposed first (100°C), then hemicellulose is decomposed (200-260°C), then cellulose (240-340°C), and followed by lignin (280-500°C). The liquid product resulting from the evaporation of pyrolysis contains tar and PAHs (polyaromatic hydrocarbons). Pyrolysis products generally consist of three types, namely light gases (H2, CO, CO2, H2O, and CH4), tar, and charcoal. Tar can be defined as a condensed mixture. The concentration of tar in the system must be limited and there are several ways to reduce tar. Tar condensation was chosen to be one of the easiest and cheapest ways to reduce most of the tar content in syngas. This requires a condenser to condense the tar. When the tar reaches the dew point, the tar will change phase from gas to liquid. The melted tar will separate from the syngas flow. There is a tar content in the syngas that is allowed to enter the combustion engine, which is 0.01-0.1 g/Nm3. In the previous Mobile Biomass Gasifier research, a shell and tube type condenser was used and has an efficiency of 75%-85%. This stage 3 prototype chose a double pipe heat exchanger condenser to reduce size with higher efficiency."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Thufail Zuldiena Ramadhani
"Peningkatan konsumsi listrik di Indonesia sejak tahun 2010 hingga 2030 mendorong perhatian terhadap pengembangan teknologi konversi termokimia, khususnya gasifikasi, untuk memenuhi kebutuhan energi. Gasifikasi adalah proses utama yang mengubah berbagai bahan baku padat, baik bahan baku fosil maupun sumber energi terbarukan, menjadi gas sintesis (syngas) yang kemudian dimanfaatkan lebih lanjut untuk memproduksi listrik melalui skema IGCC (Integrated Gasification Combined Cycle). Penelitian ini berfokus pada dampak dari variasi penggunaan bahan baku seperti batu bara kualitas rendah yang mewakilkan sumber energi fosil dan beberapa jenis biomassa yang mewakilkan sumber energi terbarukan, meliputi tandan kosong kelapa sawit, sekam padi dan kayu karet yang dipilih karena memiliki potensi tertinggi di Indonesia. Serta penggunaan variasi agen gasifikasi pada proses gasifikasi yaitu oksigen, udara, dan campuran udara dan uap air sehingga menghasilkan syngas. Metode simulasi dengan perangkat lunak Aspen Plus V.12 digunakan untuk mensimulasikan skema IGCC yang terdiri dari beberapa tahap proses, yaitu proses gasifikasi, pembersihan syngas, dan pembangkitan listrik. Masing-masing bahan baku dan agen gasifikasi disimulasikan sehingga didapatkan nilai kalor syngas serta daya listrik keluaran dan daya listrik yang dibutuhkan pada keseluruhan sistem IGCC. Nilai tersebut dievaluasi melalui perhitungan efisiensi cold gas yang meninjau seberapa efisien proses gasifikasi dalam mengubah bahan baku menjadi syngas serta perhitungan efisiensi termal dalam mengevaluasi seberapa efisien bahan baku terkonversi menjadi energi listrik dari keseluruhan proses pembangkit listrik. Data tersebut diolah untuk melihat korelasi karakteristik masing-masing syngas yang dihasilkan terhadap energi listrik yang dihasilkan.

The increase in electricity consumption in Indonesia from 2010 to 2030 has led to a focus on the development of thermochemical conversion technologies, particularly gasification, to meet energy needs. Gasification is the primary process that converts various solid feedstocks, whether fossil or renewable, into synthesis gas (syngas), which is further utilized to produce electricity through the Integrated Gasification Combined Cycle (IGCC) scheme. This study concentrates on the impact of using various feedstock such as low rank coal, representing fossil feedstocks, and several types of biomass including oil palm empty fruit bunches, rice husks, and rubberwood chosen for their high potential in Indonesia. Additionally, it explores the use of various gasification agents—oxygen, air, and air-steam—to produce syngas. Simulation methods utilizing Aspen Plus V.12 software are employed to simulate the IGCC scheme encompassing several process stages: gasification, syngas clean-up, and power generation. Each feedstock and gasification agent are respectively simulated to obtain syngas calorific values, electrical power output, and power required for the entire IGCC system. These values are evaluated through cold gas efficiency calculations, assessing the gasification process efficiency in converting feedstock into syngas, and thermal efficiency calculations to evaluate how efficiently feedstock is converted into electric energy in the overall power generation process. The data is processed to understand the correlation between the characteristics of the resulting syngas and the electric energy produced."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Raka Nugraha Wijaya
"ABSTRAK
Penelitian ini menerapkan variasi komposisi kangdungan dari campuran HZSM-5/B2O3 dan suhu operasi untuk menganalisa efeknya terhadap yield dari senyawa monoaromatik yang diproduksi melalui proses konversi katalitik menggunakan prinsip reaktor unggun tetap. Proses konversi katalitik dilakukan dengan menggunakan 15 HZSM-5, 30 HZSM-5, and 100 katalis HZSM-5 dan dengan variasi suhu 450, 475, and 500oC. Hasil penelitian menunjukan bahwa proses konversi katalitik dengan kenaikan komposisi HZM-5 akan menaikkan hasil yield senyawa aromatik berupa 15.95 , 23.11 and 63.11 untuk proses yang dilakukan pada suhu 450OC. Pada suhu 475OC akan menghasilkan 19.85 , 26.89 , and 73.21 senyawa aromatic dengan menaiknya kandungan HZSM-5 di dalam campuran katalis. Dan dengan menaiknya kandungan katalis HZSM-5, proses pada suhu 500OC akan menghasilkan 30.60 , 48.26 and 91.33 senyawa aromatic. Hasil ini mengindikasikan bahwa kenaikan kandungan HZM-5 dan suhu operasi akan menaikkan yield dari senyawa monoaromatik. Kenaikkan yield senyawa monoaromatik dengan menaiknya komposisi HZM-5 disebabkan oleh keunggulan bentuk selektif yang dimiliki oleh HZSM-5 katalis. Hasil penelitian juga menunjukan bahwa katalis B2O3 tidak menghasilkan efek yang signifikan terhadap yield dari senyawa monoaromatik. Hal ini disebabkan oleh proses pencampuran HZSM-5/B2O3 tidak dilakukan dengan metode yang tepat sehingga katalis B2O3 tidak tercampur secara sempurna kedalam pori-pori dari katalis HZSM-5.

ABSTRACT
In this research, different variation of the composition of the HZSM 5 and B2O3 catalyst and different operation temperature was applied in order to analyze the effect of the catalyst composition and the operation temperature to the production of mono aromatics through catalytic conversion using the fixed bed reactor principle. The catalytic conversion process was done with composition of catalyst used were 15 HZSM 5, 30 HZSM 5, and 100 HZSM 5 under 450, 475, and 500oC. Experimental results showed that for the catalytic conversion under the temperature of 450OC, by the addition of mixture of 15 HZSM 5, 30 HZSM 5, and 100 HZSM 5 will increase the yield of monoaromatic compounds by 15.95 , 23.11 and 63.11 respectively. While the process under 475oC will yield 19.85 , 26.89 , and 73.21 with the increasing fraction of HZSM 5 catalyst inside the mixture of catalyst. Lastly, as the fraction of HZSM 5 increased, the process conducted under 500oC will yield 30.60 , 48.26 and 91.33 of monoaromatic compounds. It indicates that the yield of monoaromatics will increase as the fraction of HZSM 5 catalyst and operating temperature also increase. The increasing fraction of HZSM 5 catalyst will increase the yield of monoaromatic compounds, due to its shape selective reaction advantages. However, the presence of B2O3 have no significant effect the yield of monoaromatics because of the mixing process between HZSM 5 and B2O3 wasn rsquo t done using the proper method, so the B2O3 catalyst wasn rsquo t mixed properly in to the pores of HZSM 5 catalyst.
"
2017
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>