Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 138645 dokumen yang sesuai dengan query
cover
Muhamad Andre Gunawan
"Sistem deteksi korban SAR menggunakan UAV semakin mendapat perhatian penting dalam kegiatan SAR karena manfaatnya yang signi kan. UAV itu sendiri merupakan entitas Internet of Things (IoT). IoT pada umumnya memiliki resource komputasi yang terbatas, sehingga mengintegrasikan teknologi machine learning menjadi sebuah tantang- an. Untuk mengatasi masalah ini, pendekatan fog computing yang menempatkan re- source komputasi tambahan di dekat UAV dapat menjadi solusi yang potensial. Selain itu, model komunikasi publish/subscribe diperlukan untuk memungkinkan penggunaan lebih dari satu UAV. Dengan begitu, resource komputasi tambahan menjadi tidak terlalu dibu- tuhkan. Penelitian ini mengusulkan sistem deteksi korban SAR menggunakan UAV yang merupakan hasil adaptasi terhadap sistem FogVerse yang diusulkan oleh Basyar (2022). FogVerse adalah sistem smart-CCTV berbasis fog computing, menggunakan Kafka, se- buah alat yang menunjang model komunikasi publish/subscribe dan diintegrasikan de- ngan YOLOv5 untuk melakukan object detection. Penelitian ini juga bertujuan untuk mengukur kinerja sistem usulan dalam hal latency dan FPS pada konteks kegiatan SAR. Penelitian dilakukan secara quasi-eksperimental. Eksperimen dilakukan pada berbagai skenario, yaitu pengujian sistem secara lokal dan dengan bantuan cloud resource. Hasil eksperimen menunjukkan bahwa sistem yang diusulkan berhasil mengadaptasi FogVerse dengan latency kurang dari 1 detik pada skenario lokal dan kurang dari 5 detik pada ske- nario dengan bantuan cloud resource. Hasil tersebut lebih unggul dibandingkan dengan performa sistem FogVerse milik Basyar (2022) yang memiliki latency lebih dari 1 de- tik untuk skenario lokal. Untuk skenario dengan bantuan cloud resource, nilai latency FogVerse kurang lebih serupa, namun perlu diperhatikan bahwa FogVerse lebih banyak menggunakan wired communication, sedangkan sistem usulan penulis melibatkan lebih banyak wireless communication. Sehingga, performa sistem usulan memiliki latency lebih baik. Selain itu, sistem usulan memiliki nilai FPS lebih dari 9 FPS pada setiap skenario. Oleh karena itu, sistem usulan juga lebih baik daripada sistem deteksi korban SAR menggunakan UAV yang diusulkan oleh Martinez-Alpiste, Golcarenarenji, Wang, dan Alcaraz-Calero (2021), yang memiliki nilai FPS sebesar 6.8 FPS. Penelitian ini mem- berikan kontribusi dalam pengembangan sistem deteksi korban SAR menggunakan UAV yang e sien dan berpotensi membantu mewujudkan kegiatan SAR yang lebih baik.

SAR victim detection system using UAV has garnered signi cant attention due to its sub- stantial bene ts. UAV itself is an Internet of Things (IoT) entity. IoT often has limited computational resources, so integrating machine learning technologies become a chal- lenge. To address this issue, the fog computing approach, the approach in which addi- tional computational resources are placed near UAVs, emerges as a potential solution. Moreover, implementing the publish/subscribe communication model is necessary to en- able the use of multiple UAVs. By that, additional computation resources are not really needed. In this study, the author proposes an adaptation of the FogVerse system intro- duced by Basyar (2022) for the SAR victim detection system using UAV. FogVerse is a smart-CCTV system leveraging fog computing, utilizing Kafka, a tool that supports pub- lish/subscribe communication model and is integrated with YOLOv5 for object detec- tion. The research aims to evaluate the system’s performance in terms of latency and FPS within the context of SAR activities. The research was conducted in a quasi-experimental manner. Experiments are conducted with various scenarios, namely local testing and test- ing with cloud resource utilization. The experimental results demonstrate the successful adaptation of the proposed system, achieving latency of less than 1 second in the local scenario and less than 5 seconds in the cloud-assisted scenario. These results outperform Basyar’s (2022) FogVerse system, which exhibits latency exceeding 1 second in the local scenario. While the cloud-assisted scenario shows similar latency values for both Fog- Verse and the proposed system. It is noteworthy that the proposed system relies more on wireless communication, while FogVerse relies more on wired communication. So, the proposed system has better latency performance. Additionally, the proposed system achieves an FPS value of over 9 in all scenarios, surpassing the FPS of 6.8 exhibited by the SAR victim detection system using the UAV proposed by Martinez-Alpiste et al. (2021). This research contributes to the development of an ef cient SAR victim detection system using UAV and has the potential to enhance SAR activities."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Brandon Ivander
"Banyak informasi yang tersebar pada media sosial. Kehadiran media sosial seperti X (Twitter), Facebook, dan TikTok memfasilitasi persebaran informasi dari seluruh penjuru dunia. Informasi yang ada pada media sosial beragam jenisnya, mulai dari ekspresi diri, opini, atau bahkan informasi terkait suatu kejadian di dunia nyata. Permasalahannya, informasi yang bertebaran di media sosial belum tentu relevan dengan informasi yang diinginkan. Masalah tersebut dapat diselesaikan dengan penggunaan kecerdasan buatan untuk melakukan kurasi data. Namun, dalam menggunakan kecerdasan buatan biaya komputasi yang diperlukan cukup mahal dan banyaknya informasi yang diproses dapat membuat waktu untuk melakukan analisis data menjadi cukup lama. Untuk menanggulangi masalah tersebut, penggunaan paradigma cloud computing dapat digunakan karena sumber daya komputasi cloud umumnya lebih mudah diakses dibandingkan dengan sumber daya komputasi lokal. Sudah terdapat sebuah library bernama FogVerse yang dibangun dengan Apache Kafka untuk melakukan stream data processing, yaitu FogVerse. FogVerse merupakan salah satu solusi untuk digunakan dalam pembangunan aplikasi berbasis stream data processing karena kemampuannya untuk melakukan pemrosesan berbagai sumber data dan menangani aliran informasi yang banyak. FogVerse pada dasarnya digunakan dalam pengaturan sumber daya untuk fog computing, tetapi penelitian ini hanya berfokus pada penggunaan FogVerse sebagai server yang menghubungkan setiap komponen pada sistem. Penelitian ini dilakukan untuk meneliti dua hal utama, yaitu meningkatkan kemampuan dari FogVerse secara keseluruhan dan merancang serta mengimplementasikan sistem deteksi kejadian darurat menggunakan data dari media sosial yang diimplementasikan menggunakan FogVerse yang sudah dimodifikasi. Terdapat tiga pengingkatan pada FogVerse, yaitu dynamic partition, multiprocessing, dan auto scaling. Dari hasil peningkatan FogVerse, penelitian dilakukan untuk menujukan bahwa terjadinya peningkatan dari sisi throughput dan latency terhadap aplikasi yang dibangun menggunakan FogVerse terbaru.

A lot of information can be found on social media. The presence of social media such as X (Twitter), Facebook, and TikTok facilitate the spread of information from all over the the world. There are various types of information on social media, ranging from self-expression, opinions, or even information related to an event in the real world. The problem is that the information scattered on social media is not necessarily relevant to the desired information. This problem can be solved by using artificial intelligence to process the data. However, in using artificial intelligence, the cost of computing are quite expensive and the amount of information processed can make the time to analyze the data quite long. The use of cloud computing paradigms can be used because cloud computing resources are generally more accessible than local computing resources. There is a library called FogVerse that is built using Apache Kafka to perform stream data processing, namely Fog-Verse. FogVerse is one of the solutions to be used on building applications that based on stream data processing because of its ability to perform processing from various data sources and handle multiple streams of information. FogVerse is normally used in resource management for fog computing, but this research only focuses on using FogVerse as a server that connects each component in the system. This research was conducted to examine two main things, improving the overall capabilities of FogVerse and designing and implementing an emergency event detection system using data from social media that is implemented using the modified FogVerse. There are three enhancements to FogVerse, namely dynamic partition, multiprocessing, and auto scaling. From the results of the FogVerse upgrade, research was conducted to show that there was an increase in terms of throughput and latency for applications built using the latest version of FogVerse."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ikramullah
"Banyak informasi yang tersebar pada media sosial. Kehadiran media sosial seperti X (Twitter), Facebook, dan TikTok memfasilitasi persebaran informasi dari seluruh penjuru dunia. Informasi yang ada pada media sosial beragam jenisnya, mulai dari ekspresi diri, opini, atau bahkan informasi terkait suatu kejadian di dunia nyata. Permasalahannya, informasi yang bertebaran di media sosial belum tentu relevan dengan informasi yang diinginkan. Masalah tersebut dapat diselesaikan dengan penggunaan kecerdasan buatan untuk melakukan kurasi data. Namun, dalam menggunakan kecerdasan buatan biaya komputasi yang diperlukan cukup mahal dan banyaknya informasi yang diproses dapat membuat waktu untuk melakukan analisis data menjadi cukup lama. Untuk menanggulangi masalah tersebut, penggunaan paradigma cloud computing dapat digunakan karena sumber daya komputasi cloud umumnya lebih mudah diakses dibandingkan dengan sumber daya komputasi lokal. Sudah terdapat sebuah library bernama FogVerse yang dibangun dengan Apache Kafka untuk melakukan stream data processing, yaitu FogVerse. FogVerse merupakan salah satu solusi untuk digunakan dalam pembangunan aplikasi berbasis stream data processing karena kemampuannya untuk melakukan pemrosesan berbagai sumber data dan menangani aliran informasi yang banyak. FogVerse pada dasarnya digunakan dalam pengaturan sumber daya untuk fog computing, tetapi penelitian ini hanya berfokus pada penggunaan FogVerse sebagai server yang menghubungkan setiap komponen pada sistem. Penelitian ini dilakukan untuk meneliti dua hal utama, yaitu meningkatkan kemampuan dari FogVerse secara keseluruhan dan merancang serta mengimplementasikan sistem deteksi kejadian darurat menggunakan data dari media sosial yang diimplementasikan menggunakan FogVerse yang sudah dimodifikasi. Terdapat tiga pengingkatan pada FogVerse, yaitu dynamic partition, multiprocessing, dan auto scaling. Dari hasil peningkatan FogVerse, penelitian dilakukan untuk menujukan bahwa terjadinya peningkatan dari sisi throughput dan latency terhadap aplikasi yang dibangun menggunakan FogVerse terbaru.

A lot of information can be found on social media. The presence of social media such as X (Twitter), Facebook, and TikTok facilitate the spread of information from all over the the world. There are various types of information on social media, ranging from self-expression, opinions, or even information related to an event in the real world. The problem is that the information scattered on social media is not necessarily relevant to the desired information. This problem can be solved by using artificial intelligence to process the data. However, in using artificial intelligence, the cost of computing are quite expensive and the amount of information processed can make the time to analyze the data quite long. The use of cloud computing paradigms can be used because cloud computing resources are generally more accessible than local computing resources. There is a library called FogVerse that is built using Apache Kafka to perform stream data processing, namely Fog-Verse. FogVerse is one of the solutions to be used on building applications that based on stream data processing because of its ability to perform processing from various data sources and handle multiple streams of information. FogVerse is normally used in resource management for fog computing, but this research only focuses on using FogVerse as a server that connects each component in the system. This research was conducted to examine two main things, improving the overall capabilities of FogVerse and designing and implementing an emergency event detection system using data from social media that is implemented using the modified FogVerse. There are three enhancements to FogVerse, namely dynamic partition, multiprocessing, and auto scaling. From the results of the FogVerse upgrade, research was conducted to show that there was an increase in terms of throughput and latency for applications built using the latest version of FogVerse."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Yoniar Hufan Ramadhani
"ABSTRAK
Pemetaan potensi sumber daya pulau kecil membutuhkan informasi spasial skala detail yang dapat diperoleh dengan cepat. Teknologi penginderaan jauh citra satelit resolusi tinggi yang umum digunakan memiliki beberapa kendala seperti ketersediaan data, tingginya biaya pembelian data, serta adanya hambatan lainnya seperti tutupan awan. Tesis ini melakukan kajian tentang pemanfaatan Unmanned Aerial Vehicle (UAV) untuk pemetaan sumberdaya pesisir dan laut pulau kecil sebagai solusi alternatif pengganti citra satelit resolusi tinggi. Kajian dilaksanakan dengan studi kasus di Pulau Pramuka, Kab. Kepulauan Seribu, DKI Jakarta. Akuisisi data dilaksanakan pada bulan April 2015 dimana dihasilkan citra orthofoto dan model permukaan digital dengan resolusi spasial 10 cm. Analisis data dilakukan dengan menggunakan pendekatan berbasis obyek yang dibandingkan dengan pengolahan citra satelit Worldview-2. Sebagai validator digunakan data survei lapangan pada bulan Juni 2015. Hasil klasifikasi penutup lahan pulau kecil dengan menggunakan UAV memiliki nilai akurasi sebesar 94 % dan habitat perairan dangkal dengan kelas kerapatan sebesar 54 % dan tanpa kelas kerapatan sebesar 68 %. Nilai akurasi citra Worldview-2 untuk penutup lahan sebesar 60 % dan habitat perairan dangkal dengan kelas kerapatan sebesar 38 % dan tanpa kelas kerapatan sebesar 56 %.
Hasil uji akurasi menunjukkan bahwa pengunaan data UAV memberikan hasil lebih baik dibandingkan menggunakan citra satelit Worldview-2. Perbedaan hasil akurasi disebabkan karena perbedaan resolusi spasial, perbedaan informasi tambahan (model permukaan digital), dan adanya efek kilatan pada Worldview-2. UAV memiliki kelebihan dalam akuisisi data yang cepat, resolusi spasial yang sangat tinggi dan adanya data model permukaan digital dibandingkan dengan citra satelit Worldview-2, namun memiliki kekurangan dalam resolusi spektral yang rendah, resiko pada wahana, dan kebutuhan sumberdaya manusia dalam operasional wahana. Pemanfaatan data UAV untuk pemetaan sumberdaya pesisir dan laut pulau kecil dapat menjadi pengganti penggunaan citra satelit yang umum digunakan.

ABSTRACT
Mapping of potential resources on small islands requires very detail spatial information that can be obtained quickly. Remote sensing technology of highresolution (multispectral) satellite imagery which is commonly used has several constraints such as high cost and availability data as well as cloud coverage. This research was conducted in order to study the use of Unmanned Aerial Vehicle (UAV) for mapping coastal and marine resources of small islands as an alternative solution to high-resolution satellite imagery. The research was conducted based on a case study at Pulau Pramuka, Kab. Kepulauan Seribu, DKI Jakarta. The primary data was obtained through an aerial survey carried out on April 2015 where 10 cm spatial resolution of orthofoto imagery and digital surface model were generated. To point out the remarkable use of UAV for coastal and marine resources mapping, a set of Worldview-2 digital imagery was also used for comparison. Both data analysis were performed using an object-based approach to produce land cover and shallow water habitat classes. Furthermore, field check data on June 2015 were used to validate the classification result. The thematic accuracy of land cover classification using UAV was 94%, and shallow water habitat classification with and without density class respectively were 54% and 68%, respectively. In the other hand, the thematic accuracy of Worldview-2 for land cover lassification was 60%, and shallow water habitats classification with and without density class respectively were 38% and 56%, respectively.
Accuracy assessment value showed that the use of UAV data gave better results than Worldview-2 satellite imagery. Differences in accuracy assessment results were due to the differences in spatial resolution, additional information such as digital surface model, and sunglint effect on Worldview-2. The UAV method have more advantages in rapid data acquisition, very high spatial resolution, and digital surface model data compared to Worldview-2 imagery, but lack of spectral resolution quality, the vehicle risk, and a specific human resources skill for operating the vehicle. The UAV data utilization for mapping coastal and marine resources of small island can become a substitute for the use of common satellite imagery.
"
Depok: Universitas Indonesia, 2016
T44977
UI - Tesis Membership  Universitas Indonesia Library
cover
Afgan Musthafa Kamil
"Mengubah bahan dasar dari rangka UAV ini adalah salah satu cara untuk mendapatkan daya tahan yang lebih kuat. Pada umumnya bahan yang digunakan untuk membuat rangka pesawat tersebut adalah kayu balsa, tetapi seiring berjalannya waktu dibutuhkan jenis pesawat yang dapat bertahan di lingkungan atau cuaca yang cukup ekstrem. Tujuan dari tesis ini adalah menganalisa stress pada material rangka pesawat tersebut yang sebelumnya adalah kayu balsa menjadi alumunium untuk mendapatkan rangka yang lebih kuat dan lebih tahan lama. Untuk melakukan analasi tersebut, software CAD seperti Solidworks dibutuhkan untuk membantu pembuatan tesis ini. Dengan design yang baru ini dapat dilakukan pengujian dengan menggunakan beban statik dengan menggunakan material Alumunium 5052 yang memiliki kekuatan Yield sebesar 195 Mpa. Simulasi yang dilakukan adalah saat kondisi steady level flight dan saat berada di darat. Dapat dibuat kesimpulan, desain yang telah dibuat dinyatakan aman karena hasil dari analisa tersebut menjelaskan bahwa tidak ada titik kritis yang melebihi bilangan dari kekuatan Yieldnya itu sendiri.

Changing the airframe material of this UAV is one of the ways to obtain a stronger durability. In general the material used to build the airframe of UAV is balsa wood, but over times it takes the type of UAV that can survive in environmental or extreme weather. The purpose of this thesis is to analyze the stress of airframe material from balsa wood into aluminum to get a stronger airframe. For designing and analyzing the changes, CAD software like Solidworks is needed to help in the making of this thesis. Designing the fuselage of UAV with changing the airframe material has been done, and with this new design the structural testing can be analyzed using static loadings. The new material used was Aluminum 5052 which has amount of Yield Strength of 195 Mpa. The analyze of this UAV are conducted in steady level flight and ground condition. So it can be concluded, the design that has been made is safe according to the analysis result which explains there is no critical point that exceeds the amount of Yield Strength itself.
"
Depok: Fakultas Teknik Universitas Indonesia, 2016
S66185
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ghifari Aulia Azhar Riza
"Penayangan iklan pada tempat umum cenderung dilakukan secara acak, sehingga pesan yang disampaikan bisa tidak tepat sasaran. Smart-ads billboard dapat menjadi salah satu solusi untuk menampilkan iklan yang sesuai dengan kondisi dan situasi pada suatu area. Smart-ads billboard dapat direalisasi menggunakan sensor secara real-time dengan memanfaatkan internet of things (IoT). Permasalahannya, perangkat IoT bisa saja menghasilkan data yang banyak dan berukuran besar, sedangkan perangkat IoT memiliki kapabilitas komputasi yang sangat terbatas. Penggunaan paradigma cloud computing dapat menjadi salah satu solusi, sebab resource yang terdapat pada cloud berjumlah jauh lebih banyak jika dibandingkan dengan perangkat IoT. Namun, limit bandwidth jaringan dapat meningkatkan latency pada suatu sistem, sehingga diterapkan paradigma fog computing. Untuk dapat mengimplementasikan fog computing pada sistem smart-ads billboard dengan mudah, pengaplikasian FogVerse sebagai basis dari sistem menjadi salah satu pilihan yang baik, sebab FogVerse dirancang khusus untuk menunjang stream data processing dengan menggunakan Apache Kafka. Sistem smart-ads billboard bekerja dengan mende- teksi jumlah orang pada suatu tempat, kemudian menampilkan iklan sesuai dengan jumlah orang yang ada. Untuk itu, dibutuhkan proses object detection secara real-time menggunakan suatu model machine learning. Penggunaan model machine learning YOLO dapat mendukung hal tersebut, karena YOLO dapat melakukan object detection secara real-time menggunakan deep learning. Penelitian ini menyelesaikan permasalahan smart-ads billboard dalam dua tahap. Pertama, dilakukan fine-tuning untuk implementasi YOLO untuk object atau person detection menggunakan crowdhuman dataset. Hal ini dilakukan untuk meningkatkan performa model dalam mendeteksi orang. Selanjutnya, model YOLO ini diadaptasi ke dalam sistem FogVerse untuk smart-ads billboard. Penelitian ini juga menunjukan faktor-faktor lain yang dapat memengaruhi latency dari sistem dan CPU utilization dari perangkat fog, serta bagaimana mengoptimalkan penggunaan perangkat fog dengan suatu scheduling algorithm.

Public advertisements shown on billboards, jumbotrons, and others are commonly randomized. Hence, some of the messages will not reach the targeted audience. Implementing a real-time smart-ads billboard to display advertisements according to the current situation around the sensor. This can be realized by utilizing Internet of Things (IoT) devices as a solution. Unfortunately, common IoT devices have a low computation capability. To avoid this limitation, the cloud computing paradigm can be a solution. But the latency caused by limited data transfer bandwidth from a local to a cloud device should be considered, especially if the application is delay-sensitive such as the smart-ads billboard. To avoid such things, the fog computing paradigm plays a big role by allowing the system to utilize fog resources before using cloud resources. Developing a smart-ads billboard system with FogVerse as its base application is an advantageous thing to do since FogVerse is designed for data stream processing by using Apache Kafka. Smart-ads billboard system works by detecting the number of people in an area and displaying an advertisement according to it. To do so, a real-time object detection process is essential. Since YOLO is capable to detect objects in real-time, it is sufficient for this type of system. This research approaches the problem in two steps. First, a study is conducted regarding object detection with YOLO, where the YOLO model is fine-tuned with the crowdhuman dataset. It is done to improve the model performance for crowd detection. Next, the YOLO model is used in the FogVerse architecture for smart ads billboards, alongside other factors that may affect system latency and CPU utilization of a fog device. This study also shows how to utilize the fog device optimally using a scheduling algorithm."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dionisius Baskoro Samudra
"Penayangan iklan pada tempat umum cenderung dilakukan secara acak, sehingga pesan yang disampaikan bisa tidak tepat sasaran. Smart-ads billboard dapat menjadi salah satu solusi untuk menampilkan iklan yang sesuai dengan kondisi dan situasi pada suatu area. Smart-ads billboard dapat direalisasi menggunakan sensor secara real-time dengan memanfaatkan internet of things (IoT). Permasalahannya, perangkat IoT bisa saja menghasilkan data yang banyak dan berukuran besar, sedangkan perangkat IoT memiliki kapabilitas komputasi yang sangat terbatas. Penggunaan paradigma cloud computing dapat menjadi salah satu solusi, sebab resource yang terdapat pada cloud berjumlah jauh lebih banyak jika dibandingkan dengan perangkat IoT. Namun, limit bandwidth jaringan dapat meningkatkan latency pada suatu sistem, sehingga diterapkan paradigma fog computing. Untuk dapat mengimplementasikan fog computing pada sistem smart-ads billboard dengan mudah, pengaplikasian FogVerse sebagai basis dari sistem menjadi salah satu pilihan yang baik, sebab FogVerse dirancang khusus untuk menunjang stream data processing dengan menggunakan Apache Kafka. Sistem smart-ads billboard bekerja dengan mende- teksi jumlah orang pada suatu tempat, kemudian menampilkan iklan sesuai dengan jumlah orang yang ada. Untuk itu, dibutuhkan proses object detection secara real-time menggunakan suatu model machine learning. Penggunaan model machine learning YOLO dapat mendukung hal tersebut, karena YOLO dapat melakukan object detection secara real-time menggunakan deep learning. Penelitian ini menyelesaikan permasalahan smart-ads billboard dalam dua tahap. Pertama, dilakukan fine-tuning untuk implementasi YOLO untuk object atau person detection menggunakan crowdhuman dataset. Hal ini dilakukan untuk meningkatkan performa model dalam mendeteksi orang. Selanjutnya, model YOLO ini diadaptasi ke dalam sistem FogVerse untuk smart-ads billboard. Penelitian ini juga menunjukan faktor-faktor lain yang dapat memengaruhi latency dari sistem dan CPU utilization dari perangkat fog, serta bagaimana mengoptimalkan penggunaan perangkat fog dengan suatu scheduling algorithm.

Public advertisements shown on billboards, jumbotrons, and others are commonly randomized. Hence, some of the messages will not reach the targeted audience. Implementing a real-time smart-ads billboard to display advertisements according to the current situation around the sensor. This can be realized by utilizing Internet of Things (IoT) devices as a solution. Unfortunately, common IoT devices have a low computation capability. To avoid this limitation, the cloud computing paradigm can be a solution. But the latency caused by limited data transfer bandwidth from a local to a cloud device should be considered, especially if the application is delay-sensitive such as the smart-ads billboard. To avoid such things, the fog computing paradigm plays a big role by allowing the system to utilize fog resources before using cloud resources. Developing a smart-ads billboard system with FogVerse as its base application is an advantageous thing to do since FogVerse is designed for data stream processing by using Apache Kafka. Smart-ads billboard system works by detecting the number of people in an area and displaying an advertisement according to it. To do so, a real-time object detection process is essential. Since YOLO is capable to detect objects in real-time, it is sufficient for this type of system. This research approaches the problem in two steps. First, a study is conducted regarding object detection with YOLO, where the YOLO model is fine-tuned with the crowdhuman dataset. It is done to improve the model performance for crowd detection. Next, the YOLO model is used in the FogVerse architecture for smart ads billboards, alongside other factors that may affect system latency and CPU utilization of a fog device. This study also shows how to utilize the fog device optimally using a scheduling algorithm."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Aan Nur Wahidi
"Indonesia merupakan negara rawan gempa karena secara geografis indonesia terletak pada pertemuan empat lempeng tektonik. Karena ini, pengembangan sebuah sistem prediksi real-time gempa bumi yang mencakup wilayah yang luas dengan gempa bumi besar sangat dibutuhkan untuk mengurangi korban jiwa. Penelitian ini mengusulkan pembuatan sistem pendeteksi cepat kedatangan gelombang-p dan penentuan hiposenter dan magnitudo gempa menggunakan deep-learning. Pengembangan sistem berbasis web ini bertujuan untuk memperingati masyarakat agar dapat lebih dini untuk melindungi diri sebelum gempa terjadi. Menggunakan data dari BMKG, data yang kami gunakan mencakupi 1892 set data gempa pada tahun 2009–2017 dan 26 set data gempa dari Katalog BMKG Januari 2019, penelitian ini menggunakan algoritma STA/LTA dalam menemukan P-Arrival dan membandingkan tiga model pembelajaran mesin untuk memprediksi hiposenter gempa dimana model Conv1d digabung dengan LSTM dengan interval waktu 20 detik merupakan skenario model terbaik dengan memiliki mean absolute error sebesar 0.470. Selain itu, penelitian ini berhasil mengimplementasi sistem berbasis web yang dapat menampilkan visualisasi data dengan menggunakan websocket berdasarkan data seismik yang dikumpulkan oleh BMKG. Visualisasi data seismik ini ditampilkan menggunakan dynamic line chart dan peta web interaktif.

Indonesia is an earthquake-prone country because geographically Indonesia is located at the confluence of four tectonic plates. Therefore, the development of a real-time earthquake prediction system that covers large areas with large earthquakes is urgently needed to reduce fatalities. This study proposes the creation of a rapid detection system for the arrival of p-waves, hypocenters and earthquake magnitudes using deep-learning. The development of this web-based system is aimed at warning people so that they can protect themselves before an earthquake occurs. Using data from BMKG, we used 1892 earthquake data sets in 2009–2017 and 26 earthquake data sets from January 2019 BMKG Catalog, this research uses the STA/LTA algorithm to find P-Arrival and compares three machine learning models to predict the earthquake hypocenter where Conv1d model is combined with LSTM with a time interval of 20 seconds is the best model scenario with a mean absolute error of 0.470. In addition, this research succeeded in implementing a web-based system that can display data visualization using websocket based on seismic data collected by BMKG. This seismic data visualization is displayed using dynamic line charts and an interactive web map."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Alzy Maulana Bermanto
"Sistem pengenalan wajah (face recognition system) merupakan salah satu sistem yang dibangun berdasarkan pre-trained model. Sistem ini memanfaatkan teknik biometrik yang menggunakan wajah sebagai pengenalan atau identifikasi seseorang. Implementasi sistem pengenalan wajah dapat diaplikasikan dalam berbagai macam aplikasi seperti sistem absensi untuk mengecek kehadiran, sistem monitoring pengunjung di tempat wisata ataupun tempat-tempat publik, hingga dapat digunakan untuk mengenali tingkah laku seseorang untuk analisis-analisis yang dibutuhkan di berbagai bidang. Dalam penelitian ini, akan diimplementasikan sistem pengenalan wajah untuk sistem absensi menggunakan metode pembelajaran deep learning. Proses training data dan validasi hasil pengenalan wajah akan dibandingkan antara model CNN (Convolutional Neural Network) berarsitektur ResNet-50 dengan VGG16 yang telah dilatih sebelumnya menggunakan dataset Open Data Science (ODSC) untuk mendapatkan model perancangan sistem wajah terbaik. Simulasi real-time dilakukan dengan menggunakan model latih dengan validasi akurasi tertinggi sebesar 98.2%. Model latih yang digunakan dalam simulasi adalah ResNet-50 dengan dataset B sebagai data training serta learning rate sebesar 0.01. Hasil analisis menunjukkan bahwa proses training menggunakan model ResNet-50 jauh lebih ringan dan memberikan hasil model pelatihan dengan validasi akurasi yang lebih tinggi dibanding dengan model VGG16 yang membutuhkan banyak resource selama proses training berlangsung. Pengujian real-time yang dilakukan menunjukkan bahwa model ResNet-50 akan akurat jika memperhatikan beberapa kondisi yang diperlukan seperti jarak deteksi harus 50 hingga 100 cm dari kamera deteksi dan posisi wajah harus lurus menghadap kamera deteksi.

The face recognition system is a system that is built based on a pre-trained model. This system utilizes biometric techniques that use the face as an identification or authentication of a person. The facial recognition system can be applied in various applications such as attendance systems to check attendance, visitor monitoring systems at tourist attractions or public places, and to identify a person's behavior for the analyzes needed in various fields. In this study, a facial recognition system will be implemented for the attendance system using deep learning methods. To obtain the best system design, training, and validation of facial recognition results will be compared between the CNN (Convolutional Neural Network) model with the ResNet-50 and VGG16, which has been previously trained using the Open Data Science (ODSC) dataset. Real-time simulations were carried out using a training model with the highest validation accuracy of 98.2%. The training model used in the simulation is ResNet-50 with dataset B as training data and a learning rate of 0.01. The analysis results show that the training process using the ResNet-50 model is much lighter and provides results with higher accuracy validation than the VGG16 model, which requires a lot of resources during the training process. Real-time testing has shown that the ResNet-50 model will be accurate if it considers several conditions, such as the detection distance must be 50 to 100 cm from the detection camera, and the face position must be in a straight facing towards the detection camera."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Akbar Maliki Haqoni Jati
"Pencarian korban pada daerah bencana biasanya memiliki kondisi medan yang tidak menguntungkan bagi penyelamat sehingga bisa menyebabkan korban yang ingin diselamatkan tidak mendapatkan penanganan dalam tepat waktu. Sistem pencarian korban berbasis Multi-UAV (Unmanned Aerial Vehicles) muncul sebagai solusi untuk memfasilitasi operasi pencarian yang lebih mudah. Penggunaan perangkat Multi-UAV dalam pencarian korban memerlukan aliran data yang besar, sering kali membebani jaringan dan protokol yang ada, mengakibatkan ketidakstabilan dalam latensi dan penurunan FPS (Frame Per Second). FogVerse, framework dengan model komunikasi Publish-Subscribe, menawarkan solusi dengan sistem yang peka terhadap throughput, sehingga menstabilkan latensi dan meningkatkan FPS, terutama di daerah bencana dengan keterbatasan konektivitas internet. Sistem pencarian korban berbasis Multi-UAV beroperasi dengan mendeteksi manusia di daerah bencana dengan model deep learning. Penelitian ini mengatasi tantangan dalam pencarian korban dengan Multi-UAV dan juga menunjukkan faktor-faktor yang dapat memengaruhi latensi, seperti penggunaan CPU (Central Processing Unit), Memori, dan GPU (Graphics Processing Unit) dari komponen yang terlibat dalam sistem. Di antara berbagai model, model YOLOv8n yang telah dilakukan transfer learning dipilih dan dibandingkan dengan model awal sebelum transfer learning. Model tersebut menunjukkan peningkatan dibanding model aslinya, termasuk peningkatan precision/recall sebesar 0.384/0.562, peningkatan mAP sebesar 0.555, dan pengurangan waktu inferensi sebesar 2.2 ms. Model itu sendiri menunjukkan peningkatan latensi rata-rata sekitar 9.775 milidetik di semua skenario. Meskipun berkinerja sedikit lebih baik dalam hal FPS dengan 1 atau 2 UAV, model awal YOLOv8n umumnya mencapai FPS yang lebih tinggi ketika digunakan 3 atau 4 UAV. Arsitektur Multi UAV FogVerse memberikan FPS yang lebih unggul dan latensi yang lebih stabil dibandingkan dengan arsitektur Centralized, meskipun memiliki memori dan GPU usage yang lebih tinggi. Namun, keunggulan FPS-nya menurun dengan penggunaan UAV yang lebih banyak, menunjukkan tantangan alokasi sumber daya, sementara arsitektur Centralized mempertahankan penggunaan sumber daya yang konsisten tetapi mengalami lonjakan latensi dan frame loss yang lebih tinggi.

The search for victims in disaster-stricken areas typically involves challenging terrain conditions for rescuers, potentially resulting in delayed assistance for those in need. A Multi-UAV (Unmanned Aerial Vehicles) based victim search system emerges as a solution to facilitate more efficient search operations. The use of Multi-UAV devices in victim searches generates substantial data streams, often overwhelming existing networks and protocols, leading to instability in latency and decreased FPS (Frame Per Second). FogVerse, a framework with a Publish-Subscribe communication model, offers a solution with a system that is sensitive to throughput, thereby stabilizing latency and improving FPS, especially in disaster-stricken areas with limited internet connectivity. The Multi-UAV based victim search system operates by detecting humans in disaster areas with a deep learning model. This research addresses challenges in victim searches with Multi-UAV, while also shows factors that can influence latency, such as CPU (Central Processing Unit), Memory, and GPU (Graphics Processing Unit) usage of the components involved in the system. Across different models, the transfer-learned YOLOv8n model is chosen and compared to its original model. The transfer-learned model shows enhancements over the original model, including an increase in precision/recall by 0.384/0.562, an mAP improvement of 0.555, and a reduction in inference time by 2.2 ms. The model itself shows an average latency improvement of approximately 9.775 milliseconds across all scenarios. Although it performs slightly better in terms of FPS with 1 or 2 UAVs, the standard YOLOv8n model generally achieves higher FPS when 3 or 4 UAVs are used. The Multi UAV FogVerse Architecture provides superior FPS and more stable latency compared to the Centralized architecture, despite higher memory and GPU usage. However, its FPS advantage decreases with more UAVs, suggesting resource allocation challenges, while the Centralized architecture maintains consistent resource usage but suffers from higher latency and frame loss."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>