Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 147317 dokumen yang sesuai dengan query
cover
Shania Virya Asmara
"Kanker kulit merupakan salah satu jenis kanker dengan angka kematian yang signifikan di seluruh dunia, meskipun prevalensinya bervariasi antar benua. Di Asia, termasuk Indonesia, mortalitas akibat kanker kulit masih tergolong tinggi, dengan sebagian besar kasus disebabkan oleh keterbatasan akses teknologi dan rendahnya kesadaran masyarakat. Diagnosis kanker kulit tradisional sering bergantung pada dermatoskopi dan biopsi, yang memiliki keterbatasan terkait akurasi serta memerlukan prosedur invasif. Oleh karena itu, teknologi terbaru dalam kecerdasan buatan (AI), khususnya Convolutional Neural Networks (CNN), menawarkan potensi besar untuk meningkatkan akurasi dan efisiensi deteksi kanker kulit. Penelitian ini bertujuan untuk mengeksplorasi dan membandingkan kinerja berbagai arsitektur CNN, seperti ResNet, VGG- 16, dan DenseNet, dalam membedakan kanker kulit jinak dan ganas berdasarkan gambar lesi kulit. Dengan menggunakan data gambar kulit yang diperoleh dari pasien, penelitian ini menerapkan teknik deep learning untuk menganalisis pola-pola visual yang tidak dapat dikenali secara langsung oleh dokter. Hasil dari penelitian ini menunjukkan bahwa model CNN, khususnya arsitektur ResNet, memberikan performa terbaik dalam membedakan lesi jinak dan ganas, dengan tingkat akurasi yang lebih tinggi dibandingkan metode tradisional. Penelitian ini diharapkan dapat menjadi landasan dalam pengembangan sistem deteksi otomatis yang mendukung diagnosis cepat dan akurat, khususnya di daerah dengan keterbatasan sumber daya medis, seperti Indonesia.

Skin cancer is one of the cancer types with significant mortality rates worldwide, despite its prevalence varying across continents. In Asia, including Indonesia, skin cancer mortality remains relatively high, primarily due to limited access to technology and low public awareness. Traditional skin cancer diagnosis often relies on dermatoscopy and biopsy, which have limitations in accuracy and require invasive procedures. Therefore, recent advancements in artificial intelligence (AI), particularly Convolutional Neural Networks (CNN), offer significant potential for improving the accuracy and efficiency of skin cancer detection. This study aims to explore and compare the performance of various CNN architectures, such as ResNet, VGG-16, and DenseNet, in distinguishing between benign and malignant skin cancer based on lesion images. Using skin image data collected from patients, this research applies deep learning techniques to analyze visual patterns that cannot be directly recognized by clinicians. The findings demonstrate that CNN models, particularly the ResNet architecture, achieve the best performance in differentiating benign and malignant lesions, with significantly higher accuracy compared to traditional methods. This study is expected to serve as a foundation for developing automated detection systems that support rapid and accurate diagnoses, especially in regions with limited medical resources, such as Indonesia. "
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2025
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
M. Yusron Effendi
"Latar belakang dan tujuan: Pemeriksaan MRI standar terkadang sulit untuk membedakan tumor ganas dan jinak orbita karena karakteristik imaging yang nonspesifik, padahal biopsi pada lokasi tertentu seperti apeks orbita dan basis kranium periorbital sulit dilakukan dan memiliki risiko komplikasi yang tinggi sehingga klinisi memerlukan pemeriksaan MRI yang lebih spesifik untuk memperkirakan sifat tumor. Pada beberapa penelitian sebelumnya, nilai Apparent Diffusion Coefficient ADC baik menggunakan MRI 3Tesla T, 1,5T, dan gabungan keduanya, mampu membedakan tumor ganas dan jinak orbita, namun memiliki nilai ambang bervariasi. Penelitian ini bertujuan mencari rerata nilai ADC menggunakan MRI 1,5T pada kelompok tumor ganas dan jinak orbita serta mencari nilai ambang untuk membedakan keduanya.
Metode: Sebanyak 33 pasien tumor orbita yang telah menjalani pemeriksaan MRI orbita dengan kekuatan 1,5T dan mendapatkan nilai ADC tumor, dikelompokkan berdasarkan hasil histopatologis menjadi kelompok ganas dan jinak. Analisis statistik nilai ADC antara kelompok ganas dan jinak dilakukan menggunakan uji nonparametrik. Selanjutnya, penentuan nilai ambang optimal untuk membedakan tumor ganas dan jinak dilakukan menggunakan kurva receiver-operating characteristic ROC.
Hasil: Dari 33 sampel diperoleh 17 tumor ganas dan 16 tumor jinak. Hasil histopatologis mayoritas pada kelompok tumor ganas dan jinak masing-masing adalah limfoma 4/17 dan meningioma grade I 9/16. Median dan range nilai ADC pada kelompok tumor ganas adalah 0,8 0,6-2,1 10 minus;3 mm2/s yang berbeda bermakna dengan kelompok tumor jinak 1,1 0,8-2,6 10 minus;3 mm2/s p=0,001. Nilai ambang optimal ADC untuk membedakan tumor ganas dan jinak adalah 0,88 10 minus;3 mm2/s dengan perkiraan sensitivitas 76,5 dan spesifisitas 93,8.
Simpulan: Nilai ADC pada kelompok tumor ganas orbita lebih rendah dibandingkan tumor jinak dan bisa digunakan untuk memperkirakan karakteristik suatu tumor orbita.

Background and purpose: Differentiating between malignant and benign orbital tumor using standard MRI sometimes is difficult because of nonspecific imaging characteristics, meanwhile biopsy in certain area such as orbital apex and periorbital skull base is difficult to do with higher risk of complication so that ophthalmologist may need suggestion from MRI result to predict the characteristic of tumor. In previous studies, the Apparent Diffusion Coefficient ADC value using MRI 3Tesla T, 1,5T, and combination of both, are able to differentiate between them but with variable cut-off value. This study aims to find out the ADC value of malignant and benign orbital tumor using MRI 1,5T and calculate the optimum cut-off value to differentiate them.
Methods: Thirty-three patients with orbital tumor who has undergone MRI examination and get the ADC value of tumor are classified into malignant and benign group. ADC value between malignant and benign group is statistically analyzed using nonparametric test. The optimal cut off value between malignant and benign tumor is calculated receiver-operating characteristic ROC curve.
Results: Among all samples, 17 are malignant and 16 are benign. Majority of histopathological result in malignant group are lymphoma 4/17 while in benign group are meningioma grade I 9/16. The mean ADC value in malignant group 0,8 10 minus;3 mm2/s is significantly different from benign group 1,1 10 minus;3 mm2/s p=0,001. The optimum cut-off ADC value to differentiate between malignant and benign orbital tumor is 0,88 10 minus;3 mm2/s with prediction of sensitivity 76,5 and specificity 93,8.
Conclusion: ADC value in malignant orbital tumor is lower than benign tumor and it can be used to predict the characteristic of orbital tumor.
"
Jakarta: Fakultas Kedokteran Universitas Indonesia, 2018
SP-PDF
UI - Tugas Akhir  Universitas Indonesia Library
cover
Adila Rachmatika
"Kanker payudara (KPD) merupakan salah satu penyakit yang masih banyak terjadi di negara berkembang seperti Indonesia. Di Indonesia sendiri, KPD menempati peringkat pertama terbanyak dari berbagai jenis kanker yang terjadi.  Pendeteksian kanker ini dapat dilakukan sejak dini dengan memeriksa manual apakah terdapat benjolan atau kelainan pada payudara. Jika terasa ada benjolan, maka disarankan untuk diperiksa ke dokter dengan berbagai metode, seperti mammogram, Magnetic Resonance Imaging (MRI), dan USG. Diagnosa citra ini sering terkendala karena tidak setiap rumah sakit memiliki tenaga spesialis radiologi. Maka dari itu, untuk mengatasinya diperlukan bantuan komputer untuk mendiagnosa citra tersebut yang sering disebut computer aided diagnostis (CAD). Algoritma Convolutional Neural Network didasari pada hasil pemeriksaan rutin citra x-ray payudara normal/abnormal yang cenderung menunjukkan perubahan, salah satunya tekstur (konten). Data yang digunakan pada penelitian ini diambil dari website Pilot European Image Processing Archive (PEIPA) yaitu dataset Mammographic Image Analysis Society (MIAS). Sistem dimulai dengan mengenal dan mempelajari data 3 jenis mamografi, yakni mamografi normal (sehat), mamografi benign, dan mamografi malignant. Setelah mempelajari data tersebut, sistem akan mencoba untuk mendeteksi jenis kanker payudara dari data baru yang dimasukkan. Nilai akurasi yang didapatkan adalah 100%, dengan rasio data pembelajaran sebanyak 1247 data (setelah diaugmentasi) dan data pengujian sebanyak 93 data, sehingga disimpulkan bahwa sistem ini baik. Namun nilai ini hanya untuk data MIAS, sehingga masih perlu pengembangan lebih lanjut supaya dapat diterapkan ke data-data yang lain juga.

Breast Cancer (BC) is one of the diseases that still occur a lot in developing countries like Indonesia. In Indonesia alone, BC is the number one most occurrence cancer. This cancer detection can be done early by manual, checking if there is any lump or abnormality in breast. If there are any lump, it is recommended to go check in hospital. There are a lot of methods like Magnetic Resonance Imaging (MRI), and Ultrasonography (USG). This image diagnostics sometimes got constrained by the lack of radiology specialist in some hospital. Therefore, to counter this problem, Computer Aided Diagnostics (CAD) help is needed to detect those images. Convolutional Neural Network algorithm is based on the result of the routine x-ray's check of breast, both normal and abnormal which tend to show some changes, which one of them is texture (content). Data used in this research came from Pilot European Image Processing Archive (PEIPA) website, Mammographic Image Analysis Society (MIAS) database. The system start by recognizing and learning 3 types of mammograph data, normal (healthy), benign and malignant. Then, system will try to detect and classify breast cancer type from the new input data. The accuracy score is 100%, with a ratio of 1247 datas for learning (after augmented) and 93 datas for testing, so it can be concluded that this system is good. But this score is achieved only for MIAS data, it still need further improvement  so it can be applied to another data."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Theresia Diah Kusumaningrum
"ABSTRAK
Deteksi dan pengenalan wajah merupakan salah satu pengolah citra yang dapat digunakan untuk surveillance pada UAV. Namun kasus pengenalan wajah dan deteksi wajah ini merupakan pekerjaan yang sangat sulit dilakukan karena komputer harus dapat melakukan lokalisasi wajah dengan baik kemudian melakukan klasifikasi wajah. Tesis ini membahas penelitian metode deep learning yaitu deteksi wajah dengan menggunakan metode RCNN dan pengenalan wajah dengan menggunakan metode CNN. Eksperimen dengan menggunakan variasi sudut wajah dan jarak wajah terhadap kamera dilakukan untuk mengamati pengaruh parameter terhadap performa model. Hasil penelitian menunjukkan bahwa model RCNN dengan menggunakan satu wajah subjek dapat digunakan untuk melakukan deteksi wajah pada subjek dengan recognition rate sebesar 74% pada parameter IoU > 0.5. Nilai recognition rate pada sistem terintegrasi deteksi dan
pengenalan wajah sangat tergantung dari hasil prediksi area wajah yang dihasilkan dari model RCNN. Percobaan membuktikan bahwa jarak subjek kamera mempengaruhi recognition rate dari model deteksi wajah.

ABSTRACT
Face detection and recognition is an image processor that can be used for surveillance on UAVs. However, the case of face recognition and face detection is a very difficult job to do because the computer must be able to do localization of the face well then do face classification. This thesis discusses the research of deep learning methods, namely face detection using the RCNN method and face recognition using the CNN method. Experiments using variations in face angle and face distance to the camera were conducted to observe the effect of parameters on the performance of the model. The results showed that the RCNN model using one subject's face could be used to detect faces on subjects with a recognition rate of 74% on the IoU parameter > 0.5. The value of recognition rate in the integrated detection and face recognition system is highly dependent on the results of the prediction of face areas generated from the RCNN model. Experiments prove that the distance of the camera subject affects the recognition rate of the face detection model."
Depok: Fakultas Teknik Universitas Indonesia, 2020
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Lunnardo Soekarno Lukias
"

Dalam kehidupan kita sehari-hari umumnya banyak barang yang kita butuhkan dan gunakan dalam rumah tangga kita. Mulai dari bahan pangan, minuman, barang untuk membersihkan rumah, barang untuk mencuci pakaian, kudapan, dan lain sebagainya, Pada masyarakat kini banyak barang keperluan sehari-hari tersebut kita beli dan jumpai di berbagai tempat mulai dari warung di dekat rumah, supermarket, toko sembako, dan lain sebagainya. Akhir-akhir ini jumlah supermarket dan minimarket mulai menjamur. Pada tahun 2021 jumlah minimarket di Indonesia mencapai 38.323 gerai yang merupakan peningkatan sebanyak 21,7% dibandingkan pada tahun 2017 yakni hanya sebanyak 31.488 gerai saja. Dengan jumlah gerai yang semakin banyak, banyak masyarakat yang semakin banyak menggunakan jasanya untuk mendapatkan barang-barang kebutuhan sehari-hari mereka. Apalagi bila barang yang dibeli juga cukup banyak sehingga akan sulit untuk mendata barang-barang apa saja yang telah dibeli. Untuk memudahkan hal tersebut, penulis mengajukan sebuah solusi untuk membuat sebuah rancangan sistem yang akan memanfaatkan teknologi Deep Learning untuk mendeteksi tulisan pada struk belanja dari hasil pembelian barang pada minimarket. Hasilnya dari pengujian yang sudah dilakukan pada penelitian ini, masing-masing model Deep Learning memiliki tingkat akurasi mAP50 99,4% dan mAP50:95 72,9% untuk YOLOv5, tingkat akurasi mAP50 99,61% dan mAP50:95 65,19% untuk Faster R-CNN, dan tingkat akurasi mAP50 61,77% dan mAP50:95 98,09% untuk RetinaNet. Dimana YOLOv5 memiliki tingkat akurasi mAP50:95 tertinggi yakni 72,9% dan Faster R-CNN memiliki tingkat akurasi mAP50 tertinggi yakni 99,61%. Dimana pada proses implementasi sistem YOLOv5 dan Faster R-CNN berhasil melakukan proses pengenalan sedangkan RetinaNet gagal untuk melakukannya.


In our daily lives, we generally need and use many items in our households. Starting from food ingredients, drinks, household cleaning items, laundry items, snacks, and so on. Nowadays, many of these daily necessities are bought and found in various places such as small shops near our homes, supermarkets, grocery stores, and so on. Recently, the number of supermarkets and minimarkets has increased. In 2021, the number of minimarkets in Indonesia reached 38,323 branches which is an increase of 21.7% compared to 2017 which was only 31,488 branches. With the increasing number of branches, many people are using their services to obtain their daily necessities. Especially when the purchased items are quite a lot so it will be difficult to record what items have been purchased. To facilitate this matter, the author proposes a solution to create a system design that will utilize Deep Learning technology to detect writing on receipts from purchasing items at minimarkets. The results of testing that have been carried out in this study show that each Deep Learning model has an mAP50 accuracy level of 99.4% and mAP50:95 72.9% for YOLOv5, an mAP50 accuracy level of 99.61% and mAP50:95 65.19% for Faster R-CNN, and an mAP50 accuracy level of 61.77% and mAP50:95 98.09% for RetinaNet. YOLOv5 has the highest mAP50:95 accuracy rate at 72.9%, while Faster R-CNN has the highest mAP50 accuracy rate at 99.61%. Where in the implementation process, YOLOv5 and Faster R-CNN systems were able to perform recognition processes while RetinaNet failed to do so."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Christy Amanda Billy
"Latar belakang: Kanker payudara adalah kanker dengan insiden tertinggi dan penyebab kematian utama akibat kanker pada perempuan di dunia. Magnetic resonance imaging (MRI) adalah modalitas pencitraan yang memiliki sensitivitas tinggi, tetapi spesifisitas terbatas, dalam mendeteksi kanker payudara. Diffusion weighted imaging (DWI) dan magnetic resonance spectroscopy (MRS) adalah sequence MRI fungsional yang dilaporkan memiliki spesifisitas yang lebih baik dibandingkan protokol MRI standar dalam membedakan lesi payudara jinak dan ganas. Telaah sistematis dan meta-analisis ini dibuat dengan tujuan membandingkan akurasi diagnostik sequence DWI dan MRS dalam membedakan lesi payudara jinak dan ganas. Metode: Pencarian sistematis dilakukan untuk mengidentifikasi studi yang membandingkan akurasi diagnostik antara sequence DWI dan MRS dalam membedakan lesi payudara jinak dan ganas yang terdeteksi lewat pemeriksaan fisik atau radiologis, dengan referensi baku pemeriksaan patologi anatomi. Pencarian dilakukan pada Maret 2021 lewat data dasar Scopus dan PubMed menggunakan kata kunci yan telah ditentukan, daftar pustaka dari artikel terpilih, dan grey literature. Temuan utama yang diekstraksi dari tiap studi adalah jumlah positif benar, positif palsu, negatif benar, dan negatif palsu untuk mendapatkan nilai sensitivitas, spesifisitas, likelihood ratio (LR), dan diagnostic odds ratio (DOR) masing-masing uji indeks. Penilaian kualitas metodologi studi dilakukan menggunakan QUADAS-2. Penilaian kualitas bukti dilakukan menggunakan GRADE. Hasil: Delapan studi (632 perempuan, 687 lesi payudara) diidentifikasi. Proporsi lesi ganas payudara 38,2–72,4%. Tiga studi menunjukkan risiko bias yang tinggi pada salah satu domain. Empat studi menunjukkan setidaknya dua risiko bias yang tidak jelas. Sensitivitas spesifisitas, LR+, LR-, dan DOR sequence DWI secara berturutan adalah 90% (95% CI 86–93%), 83% (95% CI 67–93%), 5,4 (95% CI 2,6–11,4), 0,12 (95% CI 0,09–0,17), dan 45 (95% CI 18–109). Sensitivitas, spesifisitas, LR+, LR-, dan DOR sequence MRS secara berturutan adalah 85% (95% CI 66–94%), 85% (95% CI 76–91%), 5,7 (95% CI 3,3–10,0), 0,17 (95% CI 0,07–0,45), dan 33 (95% CI 8–131). Kualitas bukti rendah–sedang. Kesimpulan: Sequence DWI dan MRS memiliki akurasi diagnostik yang hampir sebanding dalam membedakan lesi payudara jinak dan ganas. Sequence DWI memiliki sensitivitas lebih baik, sedangkan sequence MRS memiliki spesifisitas lebih baik. Akan tetapi, penerapan temuan telaah sistematis dan meta-analisis ini terbatas karena kualitas metodologi studi dan kualitas bukti yang terbatas.

Background: Breast cancer is cancer with the highest incidence and leading cause of cancer death among women worldwide. Magnetic resonance imaging (MRI) is an imaging modality of high sensitivity, but limited specificity in detecting breast cancer. Diffusion weighted imaging (DWI) and magnetic resonance spectroscopy (MRS) are functional MRI sequences reported to have higher specificity compared to standard MRI protocol in differentiating benign and malignant breast lesions. This systematic review and meta-analysis are written to compare diagnostic accuracy of DWI and MRS sequence in differentiating benign and malignant breast lesion. Methods: Studies that compared diagnostic accuracy of DWI and MRS sequence in differentiating benign and malignant breast lesions, previously detected through physical or radiological examination, with pathological examination as reference standard were identified. Scopus and PubMed were systematically searched through March 2021. Reference lists of eligible studies and various grey literatures searches were searched additionally. Findings extracted from each eligible study included true positive, true negative, false positive, dan false negative value to estimate sensitivity, specificity, likelihood ratio (LR), and diagnostic odds ratio (DOR) of each index tests. Methodological quality was assessed using QUADAS-2. Evidence quality was summarized using GRADE. Results: Eight studies (632 women, 687 breast lesions) were identified. Proportion of malignant breast lesions were 38.2–72.4%. Three studies displayed high risks of bias in one domain. Four studies displayed at least two unclear risk of bias. Sensitivity, specificity, LR+, LR-, and DOR of DWI sequence were 90% (95% CI 86–93%), 83% (95% CI 67–93%), 5.4 (95% CI 2.6–11.4), 0.12 (95% CI 0.09–0.17), and 45 (95% CI 18–109), respectively. Sensitivity, specificity, LR+, LR-, and DOR of MRS sequence were 85% (95% CI 66–94%), 85% (95% CI 76–91%), 5.7 (95% CI 3.3–10.0), 0.17 (95% CI 0.07–0.45), and 33 (95% CI 8–131), respectively. The quality of evidence was low to moderate. Conclusion: DWI and MRS sequence has comparable diagnostic accuracy in differentiating benign and malignant breast lesions. DWI sequence has higher sensitivity, while MRS sequence has higher specificity. However, limited methodological and evidence quality limits the application of research findings."
Depok: Fakultas Kedokteran Universitas Indonesia, 2021
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Achmad Rofiqi Rapsanjani
"Pemerintah Indonesia telah menerapkan kebijakan wajib menggunakan masker di ruang publik untuk mencegah penularan Covid-19. Sebagai dukungan terhadap inisiatif ini, petugas bekerja untuk memastikan kepatuhan, terutama di area ramai seperti mal dan gedung perkantoran. Namun, mengandalkan penegakan secara manual menimbulkan tantangan karena potensi kesalahan dan kelalaian manusia. Untuk mengatasi hal ini, penelitian ini berfokus pada pengembangan sistem deteksi masker menggunakan YOLOv5, yang mampu mendeteksi tiga kelas masker yang berbeda. Penulis mengumpulkan dan menyusun dataset dari berbagai sumber, yang terdiri dari total 1500 bounding box, dengan sekitar 500 bounding box per kelas. Selain itu, penulis melakukan perbandingan dengan model CNN sederhana untuk menemukan praktik terbaik sehingga mendapatkan model YOLOv5 yang paling optimal. Melalui berbagai eksperimen dengan parameter yang berbeda, penulis menemukan bahwa hasil terbaik dicapai menggunakan dataset dengan ukuran gambar 640px dan ukuran batch 8. Model menunjukkan nilai precision sebesar 0,864, nilai recall sebesar 0,824, dan nilai mAP50 sebesar 0,877. Penelitian ini memberikan kontribusi dalam upaya kesehatan masyarakat dengan menyediakan sistem deteksi masker otomatis yang dapat membantu pihak berwenang dalam memantau kepatuhan penggunaan masker secara efektif dan efisien, sehingga dapat mengurangi penyebaran Covid-19.

The Indonesian government has implemented a mandatory mask-wearing policy in public spaces to prevent the transmission of Covid-19. In support of this initiative, officials are working to ensure compliance, particularly in crowded areas such as malls and office buildings. However, relying solely on manual enforcement poses challenges due to the potential for human error and negligence. To address this, this research focuses on developing a mask detection system using YOLOv5, capable of detecting three different classes of masks. We collected and curated a dataset from various sources, comprising a total of 1500 bounding boxes, with approximately 500 bounding boxes per class. In addition, we conducted a comparison with a CNN model to find best practice so as to get the most optimal YOLOv5 model. Through various experiments with different parameters, we found that the best results were achieved using a dataset with 640px image size and a batch size of 8. The model demonstrated a precision value of 0.864, recall value of 0.824, and Map50 value of 0.877. This research contributes to the ongoing efforts in public health by providing an automated mask detection system that can assist authorities in monitoring mask compliance effectively and efficiently, thereby mitigating the spread of Covid-19"
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rista
"

Kegiatan monitoring adalah salah satu hal penting dalam proses perawatan pohon kelapa sawit. Penyakit Ganoderma merupakan salah satu penyakit pada pohon kelapa sawit yang proses penyebarannya cepat. Saat ini kegiatan monitoring kesehatan kelapa sawit masih dilakukan secara manual (konvensional) yaitu dengan melihat secara langsung satu persatu pohon kelapa sawit. Proses ini membutuhkan waktu yang lama serta tenaga yang tidak sedikit. Teknik deteksi menggunakan potongan sampel daun dapat memungkinkan terjadi perubahan biologis pada daun dan proses pengambilan data sampel yang rumit. Pendeteksian menggunakan sampel citra dari drone lebih mudah dilakukan, namun belum dapat menghasilkan informasi terkait vegetasi tanaman. Berdasarkan permasalahan tersebut, pada penelitian ini dilakukan deteksi dan klasifikasi kesehatan pohon kelapa sawit menggunakan sampel citra pohon tampak atas. Pengambil data citra menggunakan drone DJI Air 2S yang dilengkapi dengan kamera multispektral enam kanal (red, green, blue, orange, cyan, dan near infrared) untuk mendapatkan informasi yang lebih lengkap terkait vegetasi tanaman, sehingga prosesnya jauh lebih mudah dan cepat. Data citra yang diperoleh dilakukan pemodelan YOLO dan middle level fusion CNN untuk mendapatkan hasil lokasi pohon dan status kesehatannya. Pengambilan data citra dilakukan di PT Perkebunan Nusantara III (PERSERO) kelapa sawit Cikasungka, Wilayah Distrik Jawa Barat Banten pada pohon kelapa sawit sehat dan pohon kelapa sawit terinfeksi penyakit Ganoderma. Dalam penelitian ini, pemodelan YOLO menggunakan citra RGB mampu mendeteksi banyaknya objek pohon terdeteksi dengan baik (convidence score > 0,75) sebanyak 1426 pohon (703 pohon sehat dan 723 pohon tidak sehat) dengan mAP (mean Average Precision) sebesar 0,911. Pada pemodelan CNN menggunakan metode middle fusion dengan citra multispektral mampu mengklasifikasi kesehatan pohon kelapa sawit lebih baik dibandingkan hanya menggunakan citra RGB maupun citra OCN dengan performa akurasi sebesar 89,72 %.


Monitoring activities is one of the essential things the oil palm maintenance process. Ganoderma disease is one of the fastest spreading diseases of oil palm trees. Currently, monitoring the health of oil palms is still done manually (conventional) by looking directly at each oil palm tree. This process certainly requires a long time and a lot of energy. Detection techniques using leaf sample pieces can allow for biological changes in the leaf and the collection process are too tricky. Detection techniques using image sample captured by drone can be easier, but it does not provide complete information related to plant vegetation. Based on these problems, in this research the detection and classification of oil palm tree health using top view tree image samples. Image data collection using DJI Air 2S drone equipped with a six-band multispectral camera (red, green, blue, orange, cyan, and near infrared) to obtain more complete information related to plant vegetation, so that the process will be much easier and faster. The image data obtained is then performed YOLO modeling and middle level fusion CNN using multispectral images (RGB and OCN) to get the results of tree location and health status. The data was collected at PT Perkebunan Nusantara III (PERSERO) Cikasungka Oil Palm Plantation, West Java District Area Banten on healthy oil palm trees and oil palm trees infected with Ganoderma disease. In this research, YOLO modeling using RGB images was able to detect the number of tree objects detected well (convidence score > 0,75) as many as 1426 trees (703 healthy trees and 723 unhealthy trees) with mAP (mean Average Precision) of 0,911. CNN modeling using the middle fusion method is able to classify the health status of oil palm trees better than only using RGB images and OCN images with an accuracy performance of 89,72%.

"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Muhammad Luthfi Ramadhan
"Pengawasan distribusi bahan radioaktif atau radionuklida merupakan hal yang penting. Hal ini mengingat bagaimana serangan dan terorisme berbasis radioaktif merupakan ancaman yang nyata. Untuk itu, diperlukan suatu algoritma yang dapat digunakan untuk mendeteksi keberadaan dan jenis dari radionuklida. Algoritma identifikasi radioaktif atau RIID (Radioisotope Identification) telah disusun secara klasik menggunakan metode seperti peak-matching atau ROI (Region of Interest). Akan tetapi, performa dari algoritma tersebut sudah didahului dengan munculnya machine learning. Salah satu subdisiplin dari machine learning, yakni deep learning, melahirkan apa yang dinamakan dengan CNN atau Convolutional Neural Network. Jenis algoritma machine learning ini sudah jamak digunakan untuk permasalahan identifikasi dan pengenalan obyek. Di dalam kerangka RIID sendiri, studi yang membahas mengenai penggunaan CNN sebagai algoritma identifikasi radionuklida sudah tidak dapat dihitung menggunakan jari. Teknik baru seperti transformasi spektrum gamma dari radionuklida menjadi data 2-D seperti suatu citra mulai diperkenalkan beberapa tahun terakhir. Penelitian ini menggabungkan teknik tersebut dengan proses colormapping, yakni ‘pewarnaan’ dari data skalar yang bergantung pada nilai data tersebut. Melalui penggabungan teknik tersebut, model CNN yang disusun pada penelitian ini mampu untuk melakukan identifikasi multikelas radionuklida dengan akurasi di atas 95%.

Monitoring the distribution of radioactive materials or radionuclides is important. This is because radioactive attacks and terrorism are a real threat. To solve this problem, it is imperative to build an algorithm that can be used to detect and identify the presence of radionuclides. Radionuclide identification or (RIID) algorithm has been made classically using methods such as peak-matching or ROI (Region of Interest). However, the performance of these algorithms has been superseded by the emergence of machine learning. One of the sub-disciplines of machine learning, that is deep learning, has given birth to what is called CNN or Convolutional Neural Network. This machine learning algorithm has been used far and wide to solve object detection and identification problems. Within the RIID framework itself, studies discussing the use of CNN as a radionuclide are already plentiful. New techniques such as transforming the gamma spectrum of radionuclides into 2-D data have been introduced in recent years. This study attempts to combine this technique with color mapping, which is the pseudo-coloring of scalar data which depends on the value of the data. Through this combined technique, CNN models that are devised in this study can perform multiclass radionuclide identification with an accuracy higher than 95%."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Riefky Arif Ibrahim
"Katarak merupakan salah satu jenis kelainan mata yang menyebabkan lensa mata menjadi berselaput dengan pandangan berawan, sehingga memungkinkan untuk mengalami kebutaan total. Penderita katarak dapat disembuhkan dengan operasi setelah sebelumnya dilakukan computed tomography (CT) scan dan magnetic resonance imaging (MRI) sebagai metode untuk mendapatkan citra digital mata. Namun, penggunaan metode ini tidak selalu memungkinkan, terutama untuk fasilitas kesehatan di negara berkembang, karena kurangnya rumah sakit atau klinik mata yang menyediakan fasilitas berteknologi lengkap. Penelitian ini bertujuan untuk membantu proses analisis citra mata agar lebih cepat dan akurat dengan menggunakan model deep learning untuk memprediksi mata katarak menggunakan arsitektur CNN dengan terlebih dahulu menganalisis performa model dan membandingkan akurasi/loss model dengan penelitian sebelumnya. Metode perancangan model deep learning ini dilakukan dimulai dari preprocessing, membangun arsitektur model, proses training, dan diakhiri dnegan evaluasi hasil model dengan mengguakan confusion matrix dan classification report. Dari perancangan ini, didapatkan hasil validasi akurasi model sebesar 92.97% dan hasil validasi loss 0.1539. Dari model yang penulis buat dihasilkan model deep learning dengan nilai evaluasi pendeteksian mata katarak dengan presisi 94.30%, recall 97.47%, dan f-1 score 95.85%. Hasil dari penelitian ini menunjukkan bahwa model yang penulis rancang telah dapat memprediksi gambar penyakit katarak dengan akurasi diatas 80 % dengan loss dibawah 30 % dengan hasil presisi, recall, dan f-1 score >90% dan menunjukkan tingkat overfitting yang minimal.

Cataract is an eye condition in which the lens of the eye becomes webbed and cloudy, resulting in total blindness. Cataract patients can be cured through surgery after undergoing computed tomography (CT) scans and magnetic resonance imaging (MRI) to obtain digital images of the eyes. However, due to a lack of hospitals or eye clinics that provide complete technology facilities, this method is not always feasible, particularly for health facilities in developing countries, particularly in Indonesia. By first examining the model's performance and comparing the model's accuracy/loss with prior research, this study intends to make the eye image analysis process faster and more accurate by employing a deep learning model to predict cataracts using the CNN architecture. Starting with preprocessing, designing the model architecture, training, and finally evaluating the model outcomes using a confusion matrix and classification report, this deep learning model design technique is followed. The model accuracy validation results from this design are 92.97 % and the loss validation results are 0.1539. A deep learning model with an evaluation value of cataract eye detection with a precision of 94.30 %, recall of 97.47 %, and an f-1 score of 95.85 % was produced from the author's model. According to the findings of this study, the author's model can predict cataract images with an accuracy of more than 80%, a loss of less than 30%, precision, recall, and f-1 score greater than 90%, and minimal overfitting.

"
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>