Ditemukan 95831 dokumen yang sesuai dengan query
Ahmad Haulian Yoga Pratama
"Penerapan teknik Explainable AI (XAI) telah menjadi fokus utama penelitian dalam upaya untuk meningkatkan interpretabilitas dan kepercayaan dalam model AI, khususnya pada bidang outlier detection. Penelitian ini bertujuan untuk mengungkapkan proses pengambilan keputusan yang kompleks di balik proses outlier detection, serta untuk memberikan pemahaman yang lebih dalam tentang faktor-faktor yang mempengaruhi keputusan tersebut. Dalam penelitian ini, diselidiki berbagai teknik XAI yang dapat digunakan dalam konteks outlier detection. Penelitian ini memberikan evaluasi komprehensif tentang aplikasi XAI dalam outlier detection, dengan mengevaluasi kelebihan dan kelemahan dari setiap teknik yang digunakan. Hasil eksperimen menunjukkan bahwa penerapan XAI dalam outlier detection dapat memberikan wawasan yang berharga tentang faktor-faktor yang mempengaruhi keputusan model, dan dapat meningkatkan interpretabilitas dan kepercayaan dalam model outlier detection.
The application of Explainable AI (XAI) techniques has been the main focus of research to improve interpretability and trust in AI models, particularly in the field of outlier detection. This study aims to uncover the complex decision-making process behind outlier detection and provide a deeper understanding of the factors influencing these decisions. Various XAI techniques that can be used in outlier detection are investigated in this research. This study provides a comprehensive evaluation of XAI applications in outlier detection by assessing the strengths and weaknesses of each technique used. The experimental results indicate that the implementation of XAI in outlier detection can provide valuable insights into the factors influencing model decisions and can enhance the interpretability and trustworthiness of outlier detection models."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership Universitas Indonesia Library
Quiza, Ramon
"Artificial intelligence (AI) techniques and the finite element method (FEM) are both powerful computing tools, which are extensively used for modeling and optimizing manufacturing processes. The combination of these tools has resulted in a new flexible and robust approach as several recent studies have shown. This book aims to review the work already done in this field as well as to expose the new possibilities and foreseen trends. "
Heidelberg : [Springer, ], 2012
e20398387
eBooks Universitas Indonesia Library
Azizi, Aydin
"This book is to presents and evaluates a way of modelling and optimizing nonlinear RFID Network Planning (RNP) problems using artificial intelligence techniques. It uses Artificial Neural Network models (ANN) to bind together the computational artificial intelligence algorithm with knowledge representation an efficient artificial intelligence paradigm to model and optimize RFID networks.
This effort leads to proposing a novel artificial intelligence algorithm which has been named hybrid artificial intelligence optimization technique to perform optimization of RNP as a hard learning problem. This hybrid optimization technique consists of two different optimization phases. First phase is optimizing RNP by Redundant Antenna Elimination (RAE) algorithm and the second phase which completes RNP optimization process is Ring Probabilistic Logic Neural Networks (RPLNN).
The hybrid paradigm is explored using a flexible manufacturing system (FMS) and the results are compared with well-known evolutionary optimization technique namely Genetic Algorithm (GA) to demonstrate the feasibility of the proposed architecture successfully."
Singapore: Springer Singapore, 2019
e20502759
eBooks Universitas Indonesia Library
Hillsdale: N.J. L. Erlbaum Associates, 1990
371.2 ART
Buku Teks Universitas Indonesia Library
Rendya Yuschak
"Dalam era digital saat ini, banyaknya data finansial yang melimpah dan tidak berlabel menimbulkan tantangan dalam pemilihan teknik pendeteksian outlier (outlier detection) yang optimal. Penelitian ini bertujuan untuk menangani tantangan tersebut dengan membandingkan model unsupervised outlier detection pada data sintetis yang dirancang untuk meniru karakteristik data finansial nyata. Sebagai studi kasus, penelitian ini menggunakan data Laporan Harta Keuangan Penyelenggara Negara (LHKPN) tahun 2022. Proses penelitian mencakup pengumpulan data, pemrosesan, pembuatan data sintetis, pengujian sepuluh algoritma outlier detection, dan penerapan model terbaik pada data LHKPN tahun 2022. Dari proses ini, model Median Absolute Deviation (MAD) dengan threshold 7.8 teridentifikasi sebagai yang paling efektif pada data sintetis yang meniru data LHKPN. Penelitian ini juga menemukan hyperparameter terbaik untuk model lain dan melakukan analisis skor outlier pada data nyata. Hasilnya memberikan wawasan baru dan menunjukkan potensi investigasi lanjutan dalam outlier detection pada data finansial tidak berlabel, dengan pendekatan yang menyeluruh mulai dari analisis distribusi data hingga pengujian model pada data sintetis dan asli.
In the current digital era, the abundance of unlabeled financial data poses challenges in selecting optimal outlier detection techniques. This research aims to address these challenges by comparing unsupervised outlier detection models on synthetic data, designed to mimic real financial data characteristics. Using 2022 data from the Laporan Harta Keuangan Penyelenggara Negara (LHKPN) as a case study, the research process includes data collection, processing, creating synthetic data, testing 10 outlier detection algorithms, and applying the most effective model, identified as Median Absolute Deviation (MAD) with a threshold of 7.8, on synthetic data based on LHKPN data. The study also finds the best hyperparameters for other models and conducts real data outlier score analysis, providing new insights and demonstrating further investigation potential in outlier detection for unlabeled financial data."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership Universitas Indonesia Library
Reading, Mass.: Addison-Wesley, 1984
610.28 REA (1)
Buku Teks SO Universitas Indonesia Library
Shapiro, Stuart C.
New York: D. Van Nostrand Company, 1979
006.3 SHA t
Buku Teks SO Universitas Indonesia Library
Amira Husna Nur Adilah
"Generative Artificial Intelligence (GAI) telah memegang penting dalam berbagai bidang, termasuk sebagai alat bantu pemrograman di Indonesia. Namun, penelitian mengenai adopsi GAI sebagai alat bantu pemrograman masih terbatas. Penelitian ini bertujuan menganalisis faktor yang memengaruhi niat karyawan di Indonesia untuk mengadopsi GAI dalam pemrograman, dengan fokus pada kualitas output kode dan kualitas sistem yang memengaruhi persepsi kegunaan serta kemudahan penggunaan GAI. Penelitian menggunakan metode PLS-SEM dalam analisis kuantitatif dengan 497 data valid, serta analisis kualitatif melalui wawancara 10 narasumber. Hasilnya menunjukkan bahwa persepsi kegunaan dipengaruhi oleh faktor presentation, structure, interactivity, responsiveness, understandability, assurance, dan reliability, sementara persepsi kemudahan penggunaan dipengaruhi oleh presentation, structure, responsiveness, assurance, dan reliability. Kedua persepsi ini memengaruhi niat adopsi GAI untuk pemrograman. Penelitian juga meneliti hubungan ini berdasarkan gender dan usia melalui analisis multigrup. Hasilnya memberikan saran bagi pengembang GAI untuk meningkatkan kualitas kode output dan sistem, yang terbukti memengaruhi persepsi pengguna tentang kegunaan dan kemudahan penggunaan GAI
Generative Artificial Intelligence (GAI) has become significant in various fields, including as a programming aid in Indonesia. However, research on the adoption of GAI as a programming tool remains limited. This study aims to analyze the factors influencing employees in Indonesia to adopt GAI for programming, focusing on output code quality and system quality, which affect the perceived usefulness and ease of use of GAI. The study employs the PLS-SEM method for quantitative analysis with 497 valid data points and qualitative analysis through interviews with 10 informants. The results indicate that perceived usefulness is influenced by factors such as presentation, structure, interactivity, responsiveness, understandability, assurance, and reliability, while perceived ease of use is influenced by presentation, structure, responsiveness, assurance, and reliability. Both perceptions affect the intention to adopt GAI for programming. The study also examines these relationships based on gender and age using multigroup analysis. The findings provide practical suggestions for GAI developers to enhance the quality of output code and system, which significantly influence users' perceptions of the usefulness and ease of use of GAI."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership Universitas Indonesia Library
Fikriaffan Fadlil
"Generative Artificial Intelligence (GAI) telah memegang penting dalam berbagai bidang, termasuk sebagai alat bantu pemrograman di Indonesia. Namun, penelitian mengenai adopsi GAI sebagai alat bantu pemrograman masih terbatas. Penelitian ini bertujuan menganalisis faktor yang memengaruhi niat karyawan di Indonesia untuk mengadopsi GAI dalam pemrograman, dengan fokus pada kualitas output kode dan kualitas sistem yang memengaruhi persepsi kegunaan serta kemudahan penggunaan GAI. Penelitian menggunakan metode PLS-SEM dalam analisis kuantitatif dengan 497 data valid, serta analisis kualitatif melalui wawancara 10 narasumber. Hasilnya menunjukkan bahwa persepsi kegunaan dipengaruhi oleh faktor presentation, structure, interactivity, responsiveness, understandability, assurance, dan reliability, sementara persepsi kemudahan penggunaan dipengaruhi oleh presentation, structure, responsiveness, assurance, dan reliability. Kedua persepsi ini memengaruhi niat adopsi GAI untuk pemrograman. Penelitian juga meneliti hubungan ini berdasarkan gender dan usia melalui analisis multigrup. Hasilnya memberikan saran bagi pengembang GAI untuk meningkatkan kualitas kode output dan sistem, yang terbukti memengaruhi persepsi pengguna tentang kegunaan dan kemudahan penggunaan GAI
Generative Artificial Intelligence (GAI) has become significant in various fields, including as a programming aid in Indonesia. However, research on the adoption of GAI as a programming tool remains limited. This study aims to analyze the factors influencing employees in Indonesia to adopt GAI for programming, focusing on output code quality and system quality, which affect the perceived usefulness and ease of use of GAI. The study employs the PLS-SEM method for quantitative analysis with 497 valid data points and qualitative analysis through interviews with 10 informants. The results indicate that perceived usefulness is influenced by factors such as presentation, structure, interactivity, responsiveness, understandability, assurance, and reliability, while perceived ease of use is influenced by presentation, structure, responsiveness, assurance, and reliability. Both perceptions affect the intention to adopt GAI for programming. The study also examines these relationships based on gender and age using multigroup analysis. The findings provide practical suggestions for GAI developers to enhance the quality of output code and system, which significantly influence users' perceptions of the usefulness and ease of use of GAI."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership Universitas Indonesia Library
"Leak detection is always interesting research topic,where leak location and leak rate are two pipeline leaking parameters that should be detewrmined...."
ITJOICT
Artikel Jurnal Universitas Indonesia Library