Ditemukan 133482 dokumen yang sesuai dengan query
Raissa Tito Safaraz
"Penelitian ini bertujuan untuk mengatasi kekurangan Global Positioning System (GPS) dalam penentuan posisi di dalam ruangan dengan mengembangkan sebuah indoor positioning system (IPS) yang mengkombinasikan Wi-Fi fingerprinting dengan pedestrian dead reckoning (PDR). Wi-Fi fingerprinting memanfaatkan infrastruktur dalam ruangan yang tersebar luas sehingga implementasi menjadi praktis dan meminimalkan biaya instalasi. Namun, Wi-Fi fingerprinting memiliki tantangan karena adanya overhead dalam proses pengumpulan data. PDR melengkapi Wi-Fi fingerprinting dengan melacak pergerakan pengguna melalui deteksi langkah dan arah dengan memanfaatkan sensor inersia dalam smartphone untuk mengurangi kebutuhan pemindaian fingerprint yang sering sambil tetap mempertahankan atau meningkatkan akurasi posisi. Fokus dari penelitian ini adalah penggabungan Wi-Fi fingerprinting dengan PDR untuk menciptakan sebuah IPS yang praktis dan efisien. Teknik machine learning digunakan untuk prediksi posisi pada Wi-Fi fingerprinting. Thresholding digunakan untuk deteksi langkah (step detection), fixed step length digunakan untuk panjang langkah (step length), dan magnetometer dimanfaatkan untuk deteksi arah (heading detection). Implementasi dilakukan pada perangkat Android, di mana desain antarmuka (interface) dan pengalaman pengguna (user experience) tidak termasuk dalam cakupan penelitian. Desain sistem melibatkan aplikasi sisi klien (client-side application), backend service, machine learning service, serta algoritma penggabungan Wi-Fi fingerprinting dengan PDR. Studi ini menemukan bahwa integrasi antara Wi-Fi fingerprinting dengan PDR secara signifikan mengurangi overhead, serta meningkatkan akurasi dari penentuan posisi dalam ruangan.
This research aims to address the shortcomings of the Global Positioning System (GPS) in indoor positioning by developing an indoor positioning system (IPS) that combines Wi-Fi fingerprinting with pedestrian dead reckoning (PDR). Wi-Fi fingerprinting leverages widely available indoor infrastructure, making implementation practical and minimizing installation costs. However, Wi-Fi fingerprinting faces challenges due to the overhead involved in data collection. PDR complements Wi-Fi fingerprinting by tracking user movement through step detection and direction using inertial sensors in smartphones, thereby reducing the need for frequent fingerprint scanning while maintaining or improving positioning accuracy. The focus of this research is the integration of Wi-Fi fingerprinting with PDR to create a practical and efficient IPS. Machine learning techniques are used for position prediction in Wi-Fi fingerprinting. Thresholding is used for step detection, fixed step length for step length measurement, and a magnetometer for heading detection. The implementation is done on Android devices, with interface design and user experience not being within the scope of this research. The system design involves a client-side application, backend services, machine learning services, and algorithms for integrating Wi-Fi fingerprinting with PDR. This study finds that the integration of Wi-Fi fingerprinting with PDR significantly reduces overhead and improves the accuracy of indoor positioning."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership Universitas Indonesia Library
Julius Prayoga Raka Nugroho
"Penelitian ini bertujuan untuk mengatasi kekurangan Global Positioning System (GPS) dalam penentuan posisi di dalam ruangan dengan mengembangkan sebuah indoor positioning system (IPS) yang mengkombinasikan Wi-Fi fingerprinting dengan pedestrian dead reckoning (PDR). Wi-Fi fingerprinting memanfaatkan infrastruktur dalam ruangan yang tersebar luas sehingga implementasi menjadi praktis dan meminimalkan biaya instalasi. Namun, Wi-Fi fingerprinting memiliki tantangan karena adanya overhead dalam proses pengumpulan data. PDR melengkapi Wi-Fi fingerprinting dengan melacak pergerakan pengguna melalui deteksi langkah dan arah dengan memanfaatkan sensor inersia dalam smartphone untuk mengurangi kebutuhan pemindaian fingerprint yang sering sambil tetap mempertahankan atau meningkatkan akurasi posisi. Fokus dari penelitian ini adalah penggabungan Wi-Fi fingerprinting dengan PDR untuk menciptakan sebuah IPS yang praktis dan efisien. Teknik machine learning digunakan untuk prediksi posisi pada Wi-Fi fingerprinting. Thresholding digunakan untuk deteksi langkah (step detection), fixed step length digunakan untuk panjang langkah (step length), dan magnetometer dimanfaatkan untuk deteksi arah (heading detection). Implementasi dilakukan pada perangkat Android, di mana desain antarmuka (interface) dan pengalaman pengguna (user experience) tidak termasuk dalam cakupan penelitian. Desain sistem melibatkan aplikasi sisi klien (client-side application), backend service, machine learning service, serta algoritma penggabungan Wi-Fi fingerprinting dengan PDR. Studi ini menemukan bahwa integrasi antara Wi-Fi fingerprinting dengan PDR secara signifikan mengurangi overhead, serta meningkatkan akurasi dari penentuan posisi dalam ruangan.
This research aims to address the shortcomings of the Global Positioning System (GPS) in indoor positioning by developing an indoor positioning system (IPS) that combines Wi-Fi fingerprinting with pedestrian dead reckoning (PDR). Wi-Fi fingerprinting leverages widely available indoor infrastructure, making implementation practical and minimizing installation costs. However, Wi-Fi fingerprinting faces challenges due to the overhead involved in data collection. PDR complements Wi-Fi fingerprinting by tracking user movement through step detection and direction using inertial sensors in smartphones, thereby reducing the need for frequent fingerprint scanning while maintaining or improving positioning accuracy. The focus of this research is the integration of Wi-Fi fingerprinting with PDR to create a practical and efficient IPS. Machine learning techniques are used for position prediction in Wi-Fi fingerprinting. Thresholding is used for step detection, fixed step length for step length measurement, and a magnetometer for heading detection. The implementation is done on Android devices, with interface design and user experience not being within the scope of this research. The system design involves a client-side application, backend services, machine learning services, and algorithms for integrating Wi-Fi fingerprinting with PDR. This study finds that the integration of Wi-Fi fingerprinting with PDR significantly reduces overhead and improves the accuracy of indoor positioning."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2024
S-Pdf
UI - Skripsi Membership Universitas Indonesia Library
Julius Prayoga Raka Nugroho
"Penelitian ini bertujuan untuk mengatasi kekurangan Global Positioning System (GPS) dalam penentuan posisi di dalam ruangan dengan mengembangkan sebuah indoor positioning system (IPS) yang mengkombinasikan Wi-Fi fingerprinting dengan pedestrian dead reckoning (PDR). Wi-Fi fingerprinting memanfaatkan infrastruktur dalam ruangan yang tersebar luas sehingga implementasi menjadi praktis dan meminimalkan biaya instalasi. Namun, Wi-Fi fingerprinting memiliki tantangan karena adanya overhead dalam proses pengumpulan data. PDR melengkapi Wi-Fi fingerprinting dengan melacak pergerakan pengguna melalui deteksi langkah dan arah dengan memanfaatkan sensor inersia dalam smartphone untuk mengurangi kebutuhan pemindaian fingerprint yang sering sambil tetap mempertahankan atau meningkatkan akurasi posisi. Fokus dari penelitian ini adalah penggabungan Wi-Fi fingerprinting dengan PDR untuk menciptakan sebuah IPS yang praktis dan efisien. Teknik machine learning digunakan untuk prediksi posisi pada Wi-Fi fingerprinting. Thresholding digunakan untuk deteksi langkah (step detection), fixed step length digunakan untuk panjang langkah (step length), dan magnetometer dimanfaatkan untuk deteksi arah (heading detection). Implementasi dilakukan pada perangkat Android, di mana desain antarmuka (interface) dan pengalaman pengguna (user experience) tidak termasuk dalam cakupan penelitian. Desain sistem melibatkan aplikasi sisi klien (client-side application), backend service, machine learning service, serta algoritma penggabungan Wi-Fi fingerprinting dengan PDR. Studi ini menemukan bahwa integrasi antara Wi-Fi fingerprinting dengan PDR secara signifikan mengurangi overhead, serta meningkatkan akurasi dari penentuan posisi dalam ruangan.
This research aims to address the shortcomings of the Global Positioning System (GPS) in indoor positioning by developing an indoor positioning system (IPS) that combines Wi-Fi fingerprinting with pedestrian dead reckoning (PDR). Wi-Fi fingerprinting leverages widely available indoor infrastructure, making implementation practical and minimizing installation costs. However, Wi-Fi fingerprinting faces challenges due to the overhead involved in data collection. PDR complements Wi-Fi fingerprinting by tracking user movement through step detection and direction using inertial sensors in smartphones, thereby reducing the need for frequent fingerprint scanning while maintaining or improving positioning accuracy. The focus of this research is the integration of Wi-Fi fingerprinting with PDR to create a practical and efficient IPS. Machine learning techniques are used for position prediction in Wi-Fi fingerprinting. Thresholding is used for step detection, fixed step length for step length measurement, and a magnetometer for heading detection. The implementation is done on Android devices, with interface design and user experience not being within the scope of this research. The system design involves a client-side application, backend services, machine learning services, and algorithms for integrating Wi-Fi fingerprinting with PDR. This study finds that the integration of Wi-Fi fingerprinting with PDR significantly reduces overhead and improves the accuracy of indoor positioning."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership Universitas Indonesia Library
Muhammad Asyraf
S-pdf
Unggah3 Universitas Indonesia Library
Muhammad Asyraf
"Penelitian ini bertujuan untuk mengatasi kekurangan Global Positioning System (GPS) dalam penentuan posisi di dalam ruangan dengan mengembangkan sebuah indoor positioning system (IPS) yang mengkombinasikan Wi-Fi fingerprinting dengan pedestrian dead reckoning (PDR). Wi-Fi fingerprinting memanfaatkan infrastruktur dalam ruangan yang tersebar luas sehingga implementasi menjadi praktis dan meminimalkan biaya instalasi. Namun, Wi-Fi fingerprinting memiliki tantangan karena adanya overhead dalam proses pengumpulan data. PDR melengkapi Wi-Fi fingerprinting dengan melacak pergerakan pengguna melalui deteksi langkah dan arah dengan memanfaatkan sensor inersia dalam smartphone untuk mengurangi kebutuhan pemindaian fingerprint yang sering sambil tetap mempertahankan atau meningkatkan akurasi posisi. Fokus dari penelitian ini adalah penggabungan Wi-Fi fingerprinting dengan PDR untuk menciptakan sebuah IPS yang praktis dan efisien. Teknik machine learning digunakan untuk prediksi posisi pada Wi-Fi fingerprinting. Thresholding digunakan untuk deteksi langkah (step detection), fixed step length digunakan untuk panjang langkah (step length), dan magnetometer dimanfaatkan untuk deteksi arah (heading detection). Implementasi dilakukan pada perangkat Android, di mana desain antarmuka (interface) dan pengalaman pengguna (user experience) tidak termasuk dalam cakupan penelitian. Desain sistem melibatkan aplikasi sisi klien (client-side application), backend service, machine learning service, serta algoritma penggabungan Wi-Fi fingerprinting dengan PDR. Studi ini menemukan bahwa integrasi antara Wi-Fi fingerprinting dengan PDR secara signifikan mengurangi overhead, serta meningkatkan akurasi dari penentuan posisi dalam ruangan.
This research aims to address the shortcomings of the Global Positioning System (GPS) in indoor positioning by developing an indoor positioning system (IPS) that combines Wi-Fi fingerprinting with pedestrian dead reckoning (PDR). Wi-Fi fingerprinting leverages widely available indoor infrastructure, making implementation practical and minimizing installation costs. However, Wi-Fi fingerprinting faces challenges due to the overhead involved in data collection. PDR complements Wi-Fi fingerprinting by tracking user movement through step detection and direction using inertial sensors in smartphones, thereby reducing the need for frequent fingerprint scanning while maintaining or improving positioning accuracy. The focus of this research is the integration of Wi-Fi fingerprinting with PDR to create a practical and efficient IPS. Machine learning techniques are used for position prediction in Wi-Fi fingerprinting. Thresholding is used for step detection, fixed step length for step length measurement, and a magnetometer for heading detection. The implementation is done on Android devices, with interface design and user experience not being within the scope of this research. The system design involves a client-side application, backend services, machine learning services, and algorithms for integrating Wi-Fi fingerprinting with PDR. This study finds that the integration of Wi-Fi fingerprinting with PDR significantly reduces overhead and improves the accuracy of indoor positioning."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership Universitas Indonesia Library
Irsan Taufik Ali
"Masalah pokok penggunaan fingerprinting Receive Signal Strength (RSS) pada indoor localization adalah pengaruh lingkungan terhadap hasil pengukuran RSS, menyikapi variabilitas nilai RSS dan akurasi penentuan posisi. Penelitian ini mengkombinasikan penggunaan keunggulan teknologi LoRa dengan metode deep learning yang menggunakan semua variasi hasil pengukuran nilai RSS di setiap posisi sebagai fitur alami dari kondisi dalam ruangan sebagai fingerprinting untuk melatih model pada deep learning. Teknik ini diberi nama DeepFi-LoRaIn, yang menggambarkan teknik untuk menggunakan data fingerprinting dari RSS perangkat LoRa pada indoor localization menggunakan metode deep learning. Penelitian ini dilakukan tidak hanya sebatas pengujian dan pembuktian metode menggunakan pendekatan testbed dan simulasi, namun berlanjut hingga tahapan implementasi menggunakan RSS fingerprinting dari hasil pengukuran sebenarnya. Skenario pengujian yang digunakan untuk mengevaluasi model adalah skenario tanpa gangguan dan skenario dengan memberikan gangguan. Skenario gangguan dilakukan dengan cara memberikan gangguan pada nilai RSS yang diterima di beberapa anchor node. Pada pengujian menggunakan dataset simulasi diperoleh hasil prediksi posisi dengan nilai akurasi 100% untuk skenario tanpa gangguan. Sedangkan pada skenario dengan gangguan diperoleh hasil akurasi prediksi posisi sebesar 86,66%. Hasil pengujian prediksi posisi menggunakan data pengukuran langsung diperoleh nilai akurasi sebesar 96,22%, untuk skenario tanpa gangguan dan 92,45%. untuk skenario pengujian dengan gangguan. Berdasarkan hasil penelitian menggunakan data simulasi dan data pengukuran sebenarnya pada implementasi, diperoleh kesimpulan bahwa, penggunaan Teknik DeepFi-LoRaIn mampu mengatasi permasalahan pada variabilitas nilai RSS didalam ruangan dan mampu menjaga akurasi prediksi posisi jika terjadi gangguan yang disebabkan oleh perubahan kondisi lingkungan.
The main problem using fingerprinting Receive Signal Strength (RSS) in indoor localization is the influence of the environment on the results of RSS measurements, addressing the variability of RSS values and positioning accuracy. This study combines the use of the advantages of LoRa technology with a deep learning method that uses all variations of the RSS value measurement results in each position as a natural feature of indoor conditions as fingerprinting to train models in deep learning. This technique is named DeepFi-LoRaIn, which describes a technique for using RSS fingerprinting data from LoRa devices in indoor localization using deep learning methods. This research is not only limited to testing and proving the method using a testbed and simulation approach, but continues to the implementation stage using RSS fingerprinting from the actual measurement results. The test scenarios used to evaluate the model are the without interference scenario and the with interference scenario. The inteference scenario is done by giving disturbance to the RSS value received at several anchor nodes. In testing using a simulation dataset, position prediction results are obtained with an accuracy value of 100% for without interference scenarios. Meanwhile, in the scenario with interference, the accuracy of position prediction is 86.66%. The results of the position prediction test using direct measurement data obtained an accuracy value of 96.22%, for the scenario without interference and 92.45%. Based on the results of the study using simulation data and actual measurement data in the implementation, it was concluded that the use of the DeepFi-LoRaIn technique was able to overcome the problem of the variability of the RSS value in the room and was able to maintain the accuracy of position prediction in case of disturbances caused by changes in environmental conditions."
Depok: Fakultas Teknik Universitas Indonesia, 2021
D-pdf
UI - Disertasi Membership Universitas Indonesia Library
Afdal Ridho Arman
"
Alat ini dibuat untuk memudahkan para pengemudi mobil untuk mencari tempat parkir gedung dan rubanah yang kosong. Alat ini menggunakan System-On-Chip NodeMCU ESP32 Wi-Fi yang diintegrasikan dengan sensor ultrasonic HC-SR04 dan aplikasi android yang dirancang dengan bahasa pemrograman Flutter. Alat utama pada proyek ini adalah sensor ultrasonic HC-SR04 yang bekerja untuk menentukan jarak ke objek mobil dalam ambang batas yang telah ditetapkan dan menjelaskan keberadaan mobil pada parkir mobil yang tersedia. Informasi yang dibaca oleh sensor ditransfer ke NodeMCU ESP32 Wi-Fi, lalu informasi tersebut kemudian ditransfer ke aplikasi android. Aplikasi android diprogram dengan bahasa pemrograman Flutter. Aplikasi akan menampilkan informasi kepada pengguna apakah tempat parkir tersedia atau tidak. Dalam hasil pengujian, perangkat lunak dan perangkat keras pada proyek ini dapat bekerja dengan baik dan dapat membaca keberadaan berbagai jenis mobil dan bukan jenis mobil.
This tool is made to make it easier for car drivers to find an empty parking space and basement. This tool uses the System-On-Chip NodeMCU ESP32 Wi-Fi which is integrated with the HC-SR04 ultrasonic sensor and an android application designed with the Flutter programming language. The main tool in this project is the HC-SR04 ultrasonic sensor to determine the distance to a car within a predetermined threshold and explain the presence of the car in the car park. Information read by the sensor is transferred to NodeMCU ESP32 Wi-Fi, and then it transferred to the android application. The android application is programmed with the Flutter programming language. The application will display information to users whether a parking space is available or not. In the testing result, This project successfully work either in software and hardware, and can read the existence of various types of cars and not cars.
"
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-Pdf
UI - Skripsi Membership Universitas Indonesia Library
Firmansyah Raharjo
"
ABSTRAKIklan tentunya bukanlah suatu konsep yang asing bagi masyarakat masa kini. Periklanan sekarang dapat ditemukan dimana-mana, dan sektor periklanan sendiri adalah sektor media terbesar di dunia, dengan nilai triliunan Rupiah. Seiring berkembangnya teknologi, bentuk periklanan pun juga ikut berevolusi. Mulai dari papan iklan tradisional, hingga ke iklan digital yang bertarget. Penggunaan iklan bertarget ini semakin banyak dilakukan di bentuk iklan yang bersifat online. Namun pada saat ini, bentuk iklan tradisional seperti papan iklan, belum dapat memanfaatkan teknologi tersebut agar dapat menyampaikan iklan secara lebih efektif. Penelitian ini bertujuan untuk merancang dan mengimplementasi sistem yang menggunakan WiFi Fingerprinting-Based Indoor Positioning untuk melacak pergerakan konsumen, dan menggunakan sejarah pelacakannya untuk menentukan preferensi, dan juga menggunakan pergerakan konsumen untuk memicu layar digital untuk menampilkan iklan yang relevan dengan preferensi mereka saat memasuki jangkauan tertentu. Analisis dari penelitian ini membuktikan bahwa walaupun konsepnya sendiri baik-baik saja, implementasi yang telah dilakukan, yang menggunakan perangkat lunak FIND untuk melakukan pelacakan konsumen, tidak memadai karena adanya delay dalam pelacakan yang berkisar dari 10 hingga 30 detik, yang mengakibatkan sistem tidak dapat digunakan, karena membutuhkan semua gerakan untuk dilacak secara real time.
ABSTRACTAdvertisement is something that has become very commonplace in society. It is also one of the largest media sectors globally, with market valuation in the billions of dollars. With the growth of technology, the forms of advertising have also evolved, namely the use of targeted advertising have become extremely prevalent. But although targeted marketing has become commonplace online, adapting such a technology for use in pervasive marketing such as in traditional signs and billboards has been difficult. Thie paper explores the design and implementation of a potential system which uses WiFi Fingerprinting Based Indoor Positioning to track consumers and use their movement history to determine their preferences and trigger digital signages to display relevant ads when they are in audio visual range. Analysis of the results prove that although the concept in and of itself is sound, this specific implementation, using the tracking software FIND, is inadequate due to tracking delays ranging from 10 and up to 30 seconds, which renders the entire system obsolete, due to requiring all movements to be tracked in real time."
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership Universitas Indonesia Library
Isyana Paramitha Iskandarputri
"
ABSTRAKArah pengembangan jaringan saat ini adalah pemanfaatan open source mengingat terbatasnya sumber untuk pengembangan teknologi jaringan baik untuk keperluan riset berbasis akademis ataupun enterprise. Open source yang dikembangkan memanfaatkan teknologi Software Defined Networking (SDN) yang memisahkan fungsi kontrol dan pengiriman data dalam pengiriman paket dalam jaringan sehingga pengguna memiliki kontrol atas lalu lintas jaringannya. Adapun OpenFlow sebagai protokol SDN paling umum digunakan kemudian digunakan untuk membangun open network tersebut. Teknologi Internet dan penggunaan perangkat mobile yang berkembang pesat secara bersamaan menyebabkan ketiga kebutuhan tersebut harus dikembangkan secara bersamaan, salah satunya dalam bentuk teknologi jaringan nirkabel berbasis open mobile. Penelitian ini akan fokus pada pengembangan jaringan Wi-Fi berbasis OpenFlow dengan evaluasi pada proses handoff secara horizontal menggunakan skema fast handoff mengingat belum diterapkannya skema ini dalam komunikasi multimedia secara real-time. Hasil pengujian yang dilakukan pada testbed sederhana memperlihatkan bahwa delay proses handoff pada jaringan Wi-Fi berbasis OpenFlow adalah sebesar 79,9 milidetik atau 21% lebih cepat dibanding delay handoff jaringan “tradisional”. Aliran data saat komunikasi terjadi juga lebih stabil akibat adanya flow yang diterapkan di tiap switch berbasis OpenFlow. Namun hasil pengujian harus diteliti lebih lanjut akibat kondisi testbed yang kurang stabil, tools packet capturer yang belum memenuhi standar, dan perumusan flow yang lebih baik.
ABSTRACTResearch in communication network has the limit due to its problem of the supply frequency and equipment. To overcome this problem, open source network using Software Defined Network (SDN) which has been continuously developed due enormous number of installed base equipment and protocols that are inflexible, predefined, and fixed since SDN offers a flexible, dynamic, and programmable functionality of network systems can be developed. By using OpenFlow as its protocol, we can program the network flow in a flow table on different switches and routers. This research approaches an OpenFlow-based Wi-Fi environment using OpenFlow-based Access Point (OFAP) and OpenFlow controller. Through this system we expect to achieve high performance and reliability in in real-time traffic (e.g: video streaming) over WLAN, by reducing the handoff delay compared to normal Wi-Fi environment. Each OFAP is deployed at two different rooms and performed several experiments to evaluate handoff delay. The result of this experiment is the handoff delay between OFAPs is smaller compared to handoff delay between normal vendor’s AP."
[, ], 2014
S58963
UI - Skripsi Membership Universitas Indonesia Library
Achmad Eriza Aminanto
"Pandemi COVID-19 sejak tahun 2020 menyebabkan transofrmasi digital secara masif yang terjadi, Tantangan keamanan yang perlu diatasi berasal dari sifat keterbukaan media nirkabel yang menjadi media komunikasi utama di IoT. Hal tersebut menyebabkan besarnya kerugian yang disebabkan kejahatan siber. Kepolisian Republik Indonesia lewat Direktorat Tindak Pidana Siber diharapkan memiliki peran pencegahan dalam melakukan giat pengawasan terhadap serangan-serangan ini, dimana Dittipidsiber belum memiliki fungsi pencegahan serangan siber. Sistem Pendeteksi Intrusi (Intrusion Detection System) atau lebih dikenal sebagai IDS, merupakan salah satu sistem yang dapat memantau serang siber ini, di mana memanfaatkan kecerdasan buatan untuk dapat memisahkan antara serangan siber dan bukan serangan. Pada penelitian ini, akan dihasilkan model pemolisian berbasis machine learning untuk pendeteksian serangan siber pada jaringan Wi-fi dan IoT. Model tersebut melakukan perekaman data jaringan, kemudian data tersebut dilakukan analisa IDS sehingga dapat ditampilkan di command room, yang kemudian ketika adanya indikasi serangan dapat dilakukan penindakan dengan cepat. Dilakukan simulasi dan analisis terhadap berbagai metode seleksi fitur dan model klasifikasi untuk menghasilkan IDS yang baik. Penelitian ini menggunakan dataset publik berisi serangan siber terhadap jaringan Wi-Fi. Dari hasil eksperimen, didapatkan bahwa metode terbaik untuk pengurangan fitur adalah mutual information dengan fitur berjumlah 20, dan metode untuk klasifikasi serangan adalah Neural Network, menghasilkan F-Score sebesar 94% dengan waktu yang dibuthkan 95 detik. Hasil ini menunjukkan IDS yang diusulkan memiliki kemampuan untuk mendeteksi serangan dengan cepat dan hasil deteksi yang sama bagus dengan penelitian sebelumnya.
Since 2020, the Covid-19 pandemic has caused massive digital transformation. Security challenges needed to be overcome is based on the nature of wireless media which is the main communication medium in IoT (Internet of Things). Such condition generates huge loss caused by cybercrime attacks. Indonesian National Police through Directorate of Cyber Crime (Dittipidsiber) is expected to have preventive roles in supervising these attacks, where Dittipidsiber has not had a cyber-attack prevention function. The Intrusion Detection System (IDS) is a system that can identify these cyber-attacks, utilizing artificial intelligence to be able to separate between cyber-attacks and non-attacks. In this study, a machine learning-based policing model will be generated for detecting cyber-attacks on Wi-Fi and IoT networks. The model records network data that will be analysed by IDS so that it can be displayed in the command room. After that, any indications of attacks can be identified quickly. The author performs the simulations and analyses various feature selection methods and classification models in order to produce a good IDS. The study employs a public dataset containing cyber-attacks against Wi-Fi networks. Based the experimental results, it is found that the best method for reducing features is mutual information using twenty features and the method for classifying attacks is Neural Network, resulting F-Score of 94% with a time required of 95 seconds. These results indicate that the proposed IDS have the ability to detect attacks quickly and the detection results are the same as previous studies."
Depok: Sekolah Kajian Stratejik dan Global Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership Universitas Indonesia Library