Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 134953 dokumen yang sesuai dengan query
cover
Raissa Tito Safaraz
"Penelitian ini bertujuan untuk mengatasi kekurangan Global Positioning System (GPS) dalam penentuan posisi di dalam ruangan dengan mengembangkan sebuah indoor positioning system (IPS) yang mengkombinasikan Wi-Fi fingerprinting dengan pedestrian dead reckoning (PDR). Wi-Fi fingerprinting memanfaatkan infrastruktur dalam ruangan yang tersebar luas sehingga implementasi menjadi praktis dan meminimalkan biaya instalasi. Namun, Wi-Fi fingerprinting memiliki tantangan karena adanya overhead dalam proses pengumpulan data. PDR melengkapi Wi-Fi fingerprinting dengan melacak pergerakan pengguna melalui deteksi langkah dan arah dengan memanfaatkan sensor inersia dalam smartphone untuk mengurangi kebutuhan pemindaian fingerprint yang sering sambil tetap mempertahankan atau meningkatkan akurasi posisi. Fokus dari penelitian ini adalah penggabungan Wi-Fi fingerprinting dengan PDR untuk menciptakan sebuah IPS yang praktis dan efisien. Teknik machine learning digunakan untuk prediksi posisi pada Wi-Fi fingerprinting. Thresholding digunakan untuk deteksi langkah (step detection), fixed step length digunakan untuk panjang langkah (step length), dan magnetometer dimanfaatkan untuk deteksi arah (heading detection). Implementasi dilakukan pada perangkat Android, di mana desain antarmuka (interface) dan pengalaman pengguna (user experience) tidak termasuk dalam cakupan penelitian. Desain sistem melibatkan aplikasi sisi klien (client-side application), backend service, machine learning service, serta algoritma penggabungan Wi-Fi fingerprinting dengan PDR. Studi ini menemukan bahwa integrasi antara Wi-Fi fingerprinting dengan PDR secara signifikan mengurangi overhead, serta meningkatkan akurasi dari penentuan posisi dalam ruangan.

This research aims to address the shortcomings of the Global Positioning System (GPS) in indoor positioning by developing an indoor positioning system (IPS) that combines Wi-Fi fingerprinting with pedestrian dead reckoning (PDR). Wi-Fi fingerprinting leverages widely available indoor infrastructure, making implementation practical and minimizing installation costs. However, Wi-Fi fingerprinting faces challenges due to the overhead involved in data collection. PDR complements Wi-Fi fingerprinting by tracking user movement through step detection and direction using inertial sensors in smartphones, thereby reducing the need for frequent fingerprint scanning while maintaining or improving positioning accuracy. The focus of this research is the integration of Wi-Fi fingerprinting with PDR to create a practical and efficient IPS. Machine learning techniques are used for position prediction in Wi-Fi fingerprinting. Thresholding is used for step detection, fixed step length for step length measurement, and a magnetometer for heading detection. The implementation is done on Android devices, with interface design and user experience not being within the scope of this research. The system design involves a client-side application, backend services, machine learning services, and algorithms for integrating Wi-Fi fingerprinting with PDR. This study finds that the integration of Wi-Fi fingerprinting with PDR significantly reduces overhead and improves the accuracy of indoor positioning."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Julius Prayoga Raka Nugroho
"Penelitian ini bertujuan untuk mengatasi kekurangan Global Positioning System (GPS) dalam penentuan posisi di dalam ruangan dengan mengembangkan sebuah indoor positioning system (IPS) yang mengkombinasikan Wi-Fi fingerprinting dengan pedestrian dead reckoning (PDR). Wi-Fi fingerprinting memanfaatkan infrastruktur dalam ruangan yang tersebar luas sehingga implementasi menjadi praktis dan meminimalkan biaya instalasi. Namun, Wi-Fi fingerprinting memiliki tantangan karena adanya overhead dalam proses pengumpulan data. PDR melengkapi Wi-Fi fingerprinting dengan melacak pergerakan pengguna melalui deteksi langkah dan arah dengan memanfaatkan sensor inersia dalam smartphone untuk mengurangi kebutuhan pemindaian fingerprint yang sering sambil tetap mempertahankan atau meningkatkan akurasi posisi. Fokus dari penelitian ini adalah penggabungan Wi-Fi fingerprinting dengan PDR untuk menciptakan sebuah IPS yang praktis dan efisien. Teknik machine learning digunakan untuk prediksi posisi pada Wi-Fi fingerprinting. Thresholding digunakan untuk deteksi langkah (step detection), fixed step length digunakan untuk panjang langkah (step length), dan magnetometer dimanfaatkan untuk deteksi arah (heading detection). Implementasi dilakukan pada perangkat Android, di mana desain antarmuka (interface) dan pengalaman pengguna (user experience) tidak termasuk dalam cakupan penelitian. Desain sistem melibatkan aplikasi sisi klien (client-side application), backend service, machine learning service, serta algoritma penggabungan Wi-Fi fingerprinting dengan PDR. Studi ini menemukan bahwa integrasi antara Wi-Fi fingerprinting dengan PDR secara signifikan mengurangi overhead, serta meningkatkan akurasi dari penentuan posisi dalam ruangan.

This research aims to address the shortcomings of the Global Positioning System (GPS) in indoor positioning by developing an indoor positioning system (IPS) that combines Wi-Fi fingerprinting with pedestrian dead reckoning (PDR). Wi-Fi fingerprinting leverages widely available indoor infrastructure, making implementation practical and minimizing installation costs. However, Wi-Fi fingerprinting faces challenges due to the overhead involved in data collection. PDR complements Wi-Fi fingerprinting by tracking user movement through step detection and direction using inertial sensors in smartphones, thereby reducing the need for frequent fingerprint scanning while maintaining or improving positioning accuracy. The focus of this research is the integration of Wi-Fi fingerprinting with PDR to create a practical and efficient IPS. Machine learning techniques are used for position prediction in Wi-Fi fingerprinting. Thresholding is used for step detection, fixed step length for step length measurement, and a magnetometer for heading detection. The implementation is done on Android devices, with interface design and user experience not being within the scope of this research. The system design involves a client-side application, backend services, machine learning services, and algorithms for integrating Wi-Fi fingerprinting with PDR. This study finds that the integration of Wi-Fi fingerprinting with PDR significantly reduces overhead and improves the accuracy of indoor positioning."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2024
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Julius Prayoga Raka Nugroho
"Penelitian ini bertujuan untuk mengatasi kekurangan Global Positioning System (GPS) dalam penentuan posisi di dalam ruangan dengan mengembangkan sebuah indoor positioning system (IPS) yang mengkombinasikan Wi-Fi fingerprinting dengan pedestrian dead reckoning (PDR). Wi-Fi fingerprinting memanfaatkan infrastruktur dalam ruangan yang tersebar luas sehingga implementasi menjadi praktis dan meminimalkan biaya instalasi. Namun, Wi-Fi fingerprinting memiliki tantangan karena adanya overhead dalam proses pengumpulan data. PDR melengkapi Wi-Fi fingerprinting dengan melacak pergerakan pengguna melalui deteksi langkah dan arah dengan memanfaatkan sensor inersia dalam smartphone untuk mengurangi kebutuhan pemindaian fingerprint yang sering sambil tetap mempertahankan atau meningkatkan akurasi posisi. Fokus dari penelitian ini adalah penggabungan Wi-Fi fingerprinting dengan PDR untuk menciptakan sebuah IPS yang praktis dan efisien. Teknik machine learning digunakan untuk prediksi posisi pada Wi-Fi fingerprinting. Thresholding digunakan untuk deteksi langkah (step detection), fixed step length digunakan untuk panjang langkah (step length), dan magnetometer dimanfaatkan untuk deteksi arah (heading detection). Implementasi dilakukan pada perangkat Android, di mana desain antarmuka (interface) dan pengalaman pengguna (user experience) tidak termasuk dalam cakupan penelitian. Desain sistem melibatkan aplikasi sisi klien (client-side application), backend service, machine learning service, serta algoritma penggabungan Wi-Fi fingerprinting dengan PDR. Studi ini menemukan bahwa integrasi antara Wi-Fi fingerprinting dengan PDR secara signifikan mengurangi overhead, serta meningkatkan akurasi dari penentuan posisi dalam ruangan.

This research aims to address the shortcomings of the Global Positioning System (GPS) in indoor positioning by developing an indoor positioning system (IPS) that combines Wi-Fi fingerprinting with pedestrian dead reckoning (PDR). Wi-Fi fingerprinting leverages widely available indoor infrastructure, making implementation practical and minimizing installation costs. However, Wi-Fi fingerprinting faces challenges due to the overhead involved in data collection. PDR complements Wi-Fi fingerprinting by tracking user movement through step detection and direction using inertial sensors in smartphones, thereby reducing the need for frequent fingerprint scanning while maintaining or improving positioning accuracy. The focus of this research is the integration of Wi-Fi fingerprinting with PDR to create a practical and efficient IPS. Machine learning techniques are used for position prediction in Wi-Fi fingerprinting. Thresholding is used for step detection, fixed step length for step length measurement, and a magnetometer for heading detection. The implementation is done on Android devices, with interface design and user experience not being within the scope of this research. The system design involves a client-side application, backend services, machine learning services, and algorithms for integrating Wi-Fi fingerprinting with PDR. This study finds that the integration of Wi-Fi fingerprinting with PDR significantly reduces overhead and improves the accuracy of indoor positioning."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Asyraf
"Penelitian ini bertujuan untuk mengatasi kekurangan Global Positioning System (GPS) dalam penentuan posisi di dalam ruangan dengan mengembangkan sebuah indoor positioning system (IPS) yang mengkombinasikan Wi-Fi fingerprinting dengan pedestrian dead reckoning (PDR). Wi-Fi fingerprinting memanfaatkan infrastruktur dalam ruangan yang tersebar luas sehingga implementasi menjadi praktis dan meminimalkan biaya instalasi. Namun, Wi-Fi fingerprinting memiliki tantangan karena adanya overhead dalam proses pengumpulan data. PDR melengkapi Wi-Fi fingerprinting dengan melacak pergerakan pengguna melalui deteksi langkah dan arah dengan memanfaatkan sensor inersia dalam smartphone untuk mengurangi kebutuhan pemindaian fingerprint yang sering sambil tetap mempertahankan atau meningkatkan akurasi posisi. Fokus dari penelitian ini adalah penggabungan Wi-Fi fingerprinting dengan PDR untuk menciptakan sebuah IPS yang praktis dan efisien. Teknik machine learning digunakan untuk prediksi posisi pada Wi-Fi fingerprinting. Thresholding digunakan untuk deteksi langkah (step detection), fixed step length digunakan untuk panjang langkah (step length), dan magnetometer dimanfaatkan untuk deteksi arah (heading detection). Implementasi dilakukan pada perangkat Android, di mana desain antarmuka (interface) dan pengalaman pengguna (user experience) tidak termasuk dalam cakupan penelitian. Desain sistem melibatkan aplikasi sisi klien (client-side application), backend service, machine learning service, serta algoritma penggabungan Wi-Fi fingerprinting dengan PDR. Studi ini menemukan bahwa integrasi antara Wi-Fi fingerprinting dengan PDR secara signifikan mengurangi overhead, serta meningkatkan akurasi dari penentuan posisi dalam ruangan.

This research aims to address the shortcomings of the Global Positioning System (GPS) in indoor positioning by developing an indoor positioning system (IPS) that combines Wi-Fi fingerprinting with pedestrian dead reckoning (PDR). Wi-Fi fingerprinting leverages widely available indoor infrastructure, making implementation practical and minimizing installation costs. However, Wi-Fi fingerprinting faces challenges due to the overhead involved in data collection. PDR complements Wi-Fi fingerprinting by tracking user movement through step detection and direction using inertial sensors in smartphones, thereby reducing the need for frequent fingerprint scanning while maintaining or improving positioning accuracy. The focus of this research is the integration of Wi-Fi fingerprinting with PDR to create a practical and efficient IPS. Machine learning techniques are used for position prediction in Wi-Fi fingerprinting. Thresholding is used for step detection, fixed step length for step length measurement, and a magnetometer for heading detection. The implementation is done on Android devices, with interface design and user experience not being within the scope of this research. The system design involves a client-side application, backend services, machine learning services, and algorithms for integrating Wi-Fi fingerprinting with PDR. This study finds that the integration of Wi-Fi fingerprinting with PDR significantly reduces overhead and improves the accuracy of indoor positioning."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
cover
Irsan Taufik Ali
"Masalah pokok penggunaan fingerprinting Receive Signal Strength (RSS) pada indoor localization adalah pengaruh lingkungan terhadap hasil pengukuran RSS, menyikapi variabilitas nilai RSS dan akurasi penentuan posisi. Penelitian ini mengkombinasikan penggunaan keunggulan teknologi LoRa dengan metode deep learning yang menggunakan semua variasi hasil pengukuran nilai RSS di setiap posisi sebagai fitur alami dari kondisi dalam ruangan sebagai fingerprinting untuk melatih model pada deep learning. Teknik ini diberi nama DeepFi-LoRaIn, yang menggambarkan teknik untuk menggunakan data fingerprinting dari RSS perangkat LoRa pada indoor localization menggunakan metode deep learning. Penelitian ini dilakukan tidak hanya sebatas pengujian dan pembuktian metode menggunakan pendekatan testbed dan simulasi, namun berlanjut hingga tahapan implementasi menggunakan RSS fingerprinting dari hasil pengukuran sebenarnya. Skenario pengujian yang digunakan untuk mengevaluasi model adalah skenario tanpa gangguan dan skenario dengan memberikan gangguan. Skenario gangguan dilakukan dengan cara memberikan gangguan pada nilai RSS yang diterima di beberapa anchor node. Pada pengujian menggunakan dataset simulasi diperoleh hasil prediksi posisi dengan nilai akurasi 100% untuk skenario tanpa gangguan. Sedangkan pada skenario dengan gangguan diperoleh hasil akurasi prediksi posisi sebesar 86,66%. Hasil pengujian prediksi posisi menggunakan data pengukuran langsung diperoleh nilai akurasi sebesar 96,22%, untuk skenario tanpa gangguan dan 92,45%. untuk skenario pengujian dengan gangguan. Berdasarkan hasil penelitian menggunakan data simulasi dan data pengukuran sebenarnya pada implementasi, diperoleh kesimpulan bahwa, penggunaan Teknik DeepFi-LoRaIn mampu mengatasi permasalahan pada variabilitas nilai RSS didalam ruangan dan mampu menjaga akurasi prediksi posisi jika terjadi gangguan yang disebabkan oleh perubahan kondisi lingkungan.

The main problem using fingerprinting Receive Signal Strength (RSS) in indoor localization is the influence of the environment on the results of RSS measurements, addressing the variability of RSS values and positioning accuracy. This study combines the use of the advantages of LoRa technology with a deep learning method that uses all variations of the RSS value measurement results in each position as a natural feature of indoor conditions as fingerprinting to train models in deep learning. This technique is named DeepFi-LoRaIn, which describes a technique for using RSS fingerprinting data from LoRa devices in indoor localization using deep learning methods. This research is not only limited to testing and proving the method using a testbed and simulation approach, but continues to the implementation stage using RSS fingerprinting from the actual measurement results. The test scenarios used to evaluate the model are the without interference scenario and the with interference scenario. The inteference scenario is done by giving disturbance to the RSS value received at several anchor nodes. In testing using a simulation dataset, position prediction results are obtained with an accuracy value of 100% for without interference scenarios. Meanwhile, in the scenario with interference, the accuracy of position prediction is 86.66%. The results of the position prediction test using direct measurement data obtained an accuracy value of 96.22%, for the scenario without interference and 92.45%. Based on the results of the study using simulation data and actual measurement data in the implementation, it was concluded that the use of the DeepFi-LoRaIn technique was able to overcome the problem of the variability of the RSS value in the room and was able to maintain the accuracy of position prediction in case of disturbances caused by changes in environmental conditions."
Depok: Fakultas Teknik Universitas Indonesia, 2021
D-pdf
UI - Disertasi Membership  Universitas Indonesia Library
cover
Immanuel Brilan Solvanto Darmawan
"Smart campus telah menjadi salah satu tren teknologi yang diterapkan di berbagai universitas. Salah satu layanan yang dihasilkan dari smart campus adalah layanan berbasis lokasi (LBS) yang dapat digunakan untuk berbagai kegunaan, seperti navigasi indoor. Implementasi LBS memerlukan teknologi indoor positioning system (IPS) agar dapat menentukan posisi seseorang secara akurat dalam lingkup suatu gedung atau ruangan (indoor). Salah satu metode yang populer digunakan dalam IPS adalah fingerprinting dengan teknik mengukur received signal strength indicator (RSSI) dan menggunakan teknologi penunjang Wi-Fi. Metode fingerprinting terdiri dari dua tahap, yaitu tahap pengumpulan data fingerprint (tahap offline) dan prediksi (tahap online). Proses pengumpulan fingerprint untuk tahap offline memiliki overhead yang sangat tinggi. Pada penelitian ini, tim penulis mengemukakan IPS berbasis semi-autonomous fingerprint collection untuk mengatasi overhead yang sangat tinggi tersebut dengan menerapkan konsep smart campus. Hasil evaluasi menunjukkan bahwa IPS yang dikembangkan dapat mengurangi overhead pengumpulan fingerprint manual sebanyak 550.550 data fingerprint, dengan tingkat accuracy IPS sebesar 52%. Dengan data training yang lebih banyak dan bervariasi yang digunakan untuk melatih model machine learning, hasil eksperimen menunjukkan bahwa performa IPS semi-autonomous fingerprint collection mampu bersaing dengan IPS manual fingerprint collection.

Smart campus has become one of the technology trends applied in various universities. One of the services that arose due to smart campus is location-based service (LBS) which can be used for various purposes, such as indoor navigation. The implementation of LBS requires indoor positioning system (IPS) technology that determines a person's position accurately within the scope of a building or room (indoor). One of the popular methods used in IPS is fingerprinting by measuring received signal strength indicator (RSSI) and with the help of Wi-Fi technology. The fingerprinting method consists of two stages, namely the fingerprint data collection stage (offline stage) and the prediction stage (online stage). The fingerprint collection process for the offline stage has a very high overhead. In this research, the author team proposes a semi-autonomous fingerprint collection-based IPS to overcome the very high overhead using smart campus. The evaluation results show that the developed IPS can reduce the overhead of manual fingerprint collection by 550,550 fingerprint data, with an IPS accuracy level of 52%. With larger amount and more varied training data used to train the machine learning model, the experimental results show that the performance of the semi-autonomous fingerprint collection IPS can compete with the manual fingerprint collection IPS."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
cover
Titterton, David
"Inertial navigation is widely used for the guidance of aircraft, missiles ships and land vehicles, as well as in a number of novel applications such as surveying underground pipelines in drilling operations. This book sets out to provide a clear and concise description of the physical principles of inertial navigation, the associated growth of errors and their compensation. There is also detailed treatment of recent developments in inertial sensor technology and a description of techniques for implementing and evaluating such systems.
This new edition includes a number of refinements covering sensor technology, geodesy and error modelling, the major additions to the original text are new chapters on MEMS technology and inertial system applications."
London: Institution of Engineering and Technology, 2004
e20452685
eBooks  Universitas Indonesia Library
cover
Dewita Oktavia Nuur Marwan
"Internet of Things (IoT) merupakan sebuah konsep di mana berbagai perangkat komputasi saling terhubung melalui internet dan memiliki kemampuan untuk mengumpulkan atau mengirimkan data. Perluasan dan kecepatan perangkat komputasi menggunakan jaringan Wi-Fi dapat menghasilkan data yang kompleks dan berdimensi tinggi pada sistem IoT. Data yang berdimensi tinggi dapat menimbulkan beberapa kendala dan perangkat IoT akan menghindari untuk melakukan tugas yang komputasinya berat. Semakin kompleksnya sistem IoT, semakin sulit bagi sistem untuk mengidentifikasi dan menemukan serangan siber. Salah satu upaya yang paling umum digunakan untuk melindungi sistem IoT adalah Intrusion detection system (IDS). Pada penelitian ini dilakukan model berbasis machine learning untuk mengembangkan IDS menggunakan dataset AWID2 dengan tipe “CLS” yang berisikan 2 juta lalu lintas trafik pada jaringan WI-Fi yang dikelompokkan ke dalam empat kelas yaitu, normal, impersonation, injection, dan flooding. Random forest merupakan salah satu teknik ensemble atau gabungan dari sejumlah model decision tree yang memiliki keunggulan-keunggulan dibandingkan dengan metode machine learning lainnya, yaitu dapat mencegah terjadinya overfitting, memiliki waktu komputasi yang rendah, dan memiliki kemampuan lebih baik dalam mengelola dataset yang tidak seimbang. Untuk mengatasi data berdimensi tinggi, dilakukan seleksi fitur mutual information pada algoritma random forest untuk mendapatkan hasil model klasifikasi yang optimal. Hasil dari penelitian menunjukkan bahwa metode seleksi fitur mutual information dengan menggunakan 30 fitur terbaik pada algoritma random forest dengan hyperparameter-tuning random search terbukti dapat meningkatkan performa model klasifikasi dan efisiensi waktu jika dibandingkan menggunakan algoritma random forest tanpa seleksi fitur. Nilai metrik yang diperoleh oleh kombinasi tersebut adalah dengan nilai accuracy = 99,95276%, macro average F1-score = 99,76335%, macro average recall = 99,97962%, dan macro average presicion = 99,54935% dengan waktu prediksi 6,112 detik.

The Internet of Things (IoT) is a concept where various computing devices are interconnected via the internet and have the capability to collect or transmit data. The expansion and speed of computing devices using Wi-Fi networks generate complex and high-dimensional data in IoT systems. High-dimensional data in datasets pose several challenges, as IoT devices tend to avoid tasks that are computationally intensive. As IoT systems become more complex, it becomes increasingly difficult for the system to identify and detect cyber attacks. One of the most common efforts to protect IoT systems is the Intrusion Detection System (IDS). In this study, a machine learning-based model is developed to create an IDS using the AWID dataset with the “CLS” type, which contains 2 million network traffic records on Wi-Fi networks categorized into four classes: normal, impersonation, injection, and flooding. Random forest is an ensemble technique or a combination of multiple decision tree models that has advantages over other machine learning methods, such as preventing overfitting, having low computational time, and having better capabilities in handling imbalanced datasets. To address high-dimensional data, mutual information feature selection is applied to the random forest algorithm to achieve optimal classification model results. The results of the study indicate that the mutual information feature selection method using the top 30 features in the random forest algorithm with random search hyperparameter tuning can improve the performance of the classification model and time efficiency compared to using the random forest algorithm without feature selection. The metrics obtained by this combination are accuracy = 99.95276%, macro average F1-score = 99.76335%, macro average recall = 99.97962%, and macro average precision = 99.54935% with a prediction time of 6.112 seconds."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>