Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 182318 dokumen yang sesuai dengan query
cover
Muchammad Naseer
"Deteksi informasi menjadi langkah krusial untuk melawan penyebaran berita palsu. Sistem deteksi berita palsu konvensional menghasilkan dua keputusan: apakah berita palsu atau asli, begitu pula hasil pengecekan fakta hanya menentukan apakah informasi benar atau salah. Verifikasi fakta menyajikan tiga kemungkinan hasil: informasi didukung bukti (SUPPORTS), dibantah bukti (REFUTES), atau tidak ada cukup bukti untuk mendukung maupun membantah informasi (NOT ENOUGH INFORMATION).
Penelitian ini dimulai dengan menguji performa algoritma BERT, RoBERTa, dan Electra, dengan RoBERTa menunjukkan hasil terbaik. RoBERTa kemudian dikembangkan menjadi RoBERTaEns, sebuah algoritma yang diperkenalkan dalam penelitian ini, melalui penggabungan keunggulan model RoBERTa dengan pendekatan homogeneous ensemble pada FEVER Dataset. Model ini menggabungkan tiga arsitektur RoBERTa (RoBERTa-m1, m2, m3) menggunakan metode bagging ensemble dan persamaan linier untuk meningkatkan ketahanan, membatasi bias, serta mengoptimalkan biaya dan kompleksitas komputasi. RoBERTaEns dibandingkan dengan BERT, XL-Net, dan XLM, menghasilkan akurasi 78,4% dan F1-Score 84,2%, melampaui algoritma lain.
Penelitian juga mengevaluasi algoritma khusus untuk tugas verifikasi fakta, yaitu Neural Semantic Matching Networks (NSMN), dengan performa rendah (akurasi 69,43%) yang berdasarkan hipotesis diakibatkan dari overfitting yang disebabkan oleh BiLSTM dalam arsitekturnya. Untuk mengatasi ini, model Deep One-Directional Neural Semantic Siamese Network (DOD-NSSN) berbasis Siamese MaLSTM diperkenalkan. Model ini menggunakan Manhattan Fact Relatedness Score (MFRS) sebagai fact-relatedness score baru yang juga diperkenalkan dalam penelitian ini untuk prediksi klasifikasi akhir. Saat dibandingkan dengan NSMN, BERT, RoBERTa, XLM, dan XLNet, DOD-NSSN menunjukkan akurasi tertinggi (91,86%). Hal ini membuktikan bahwa DOD-NSSN cocok untuk klasifikasi data tekstual dan meningkatkan akurasi verifikasi fakta. Studi ini berkontribusi signifikan dalam pengembangan algoritma berbasis transformer (RoBERTaEns), dan neural network (DOD-NSSN), serta dalam menghasilkan metrik pengukuran jarak kedekatan antara klaim dan evidence (MFRS) untuk mekanisme verifikasi fakta dengan akurasi yang baik.

Information detection is a crucial step in combating the spread of fake news. Conventional fake news detection systems typically produce two decisions: whether the news is fake or real, and fact-checking results determine whether the information is true or false. Fact verification, however, provides three possible outcomes: information supported by evidence (SUPPORTS), refuted by evidence (REFUTES), or insufficient evidence to either support or refute the information (NOT ENOUGH INFORMATION).
This study was started by evaluating the performance of the BERT, RoBERTa, and Electra algorithm were compared, with RoBERTa demonstrating superior results. Building upon these findings, RoBERTa was extended into RoBERTaEns, an algorithm introduced in this study, by combining the strengths of the RoBERTa model using a homogeneous ensemble approach on the FEVER Dataset. This model integrates three RoBERTa architectures (RoBERTa-m1, m2, m3) using the bagging ensemble method and linear equations to enhance robustness, reduce bias, and optimize computational cost and complexity. RoBERTaEns was benchmarked against BERT, XL-Net, and XLM, achieving an accuracy of 78,4% and an F1-Score of 84,2%, outperforming other algorithms.
The study also evaluated a specialized algorithm for fact verification tasks, i.e., Neural Semantic Matching Networks (NSMN), which exhibited low performance (accuracy 69.43%). This underperformance was hypothesized to result from overfitting caused by the BiLSTM architecture. To address it, a novel model, Deep One-Directional Neural Semantic Siamese Network (DOD-NSSN), based on Siamese MaLSTM, was introduced. The model used Manhattan Fact Relatedness Score (MFRS) as a newly introduced fact-relatedness score in this study for final classification predictions. DOD-NSSN was tested against NSMN, BERT, RoBERTa, XLM, and XL-Net, achieving the highest accuracy (91,86%), demonstrating the suitability of DOD-NSSN for textual data classification and enhancing fact verification accuracy. This study contributes significantly to the development of transformer-based algorithm (RoBERTaEns), and neural network algorithm (DOD-NSSN), also in producing metrics for measuring the relatedness between claims and evidence (MFRS) for fact verification mechanisms with good accuracy.
"
Depok: Fakultas Teknik Universitas Indonesia, 2025
D-pdf
UI - Disertasi Membership  Universitas Indonesia Library
cover
Jauzak Hussaini Windiatmaja
"Sumber informasi di jejaring berita daring adalah instrumen yang memungkinkan individu membaca berita, menerbitkan berita, dan berkomunikasi. Hal ini sudah menjadi tren dalam masyarakat yang sangat mobile. Oleh karena itu, proses verifikasi fakta suatu pemberitaan menjadi sangat penting. Dengan pertimbangan tersebut, sebuah tools berbasis web service untuk verifikasi fakta menggunakan metode deep learning dengan teknik ensemble dibangun. Penggunaan teknik ensemble pada model deep learning adalah proses beberapa model pembelajaran mesin digabungkan secara strategis untuk menyelesaikan masalah menggunakan lebih dari satu model. Untuk melatih model, dibangun sebuah dataset. Dataset berisi pasangan klaim dan label. Klaim dibangun dengan data crawling di kanal berita berbahasa Indonesia. Tiga model deep learning dibangun dan dilatih menggunakan dataset yang dibuat, dengan arsitektur jaringan dan hyperparameter yang berbeda. Setelah model dilatih menggunakan dataset, ketiga model diagregasikan untuk membentuk sebuah model baru. Untuk memastikan bahwa model agregat berfungsi lebih baik daripada model tunggal, performa model deep learning ensemble dibandingkan dengan model deep learning dasar. Hasil penelitian menunjukkan bahwa model ensemble memiliki akurasi 85,18% sedangkan model tunggal memiliki akurasi 83,9%, 83,19%, dan 81,94%. Hasil ini menunjukkan bahwa model ensemble yang dibangun meningkatkan kinerja verifikasi fakta dari tiga model tunggal. Hasil penelitian juga menunjukkan bahwa metode deep learning mengungguli performa metode machine learning lain seperti naive bayes dan random forest. Untuk memvalidasi kinerja tools yang dibangun, response time dari web service diukur. Hasil pengukuran menunjukkan rata-rata response time 6.447,9 milidetik.

Information sources on social networks are instruments that allow individuals to read news, publish news, and communicate. This is a trend in a highly mobile society. Therefore, the process of verifying facts is very important. With these considerations, we built a web service-based tool for fact verification using deep learning methods with ensemble technique. The use of ensemble techniques in deep learning models is a process in which several machine learning models are combined to solve problems. To train the model, we created a dataset. Our dataset of Indonesian news contains pairs of claims along with labels. Claims are built by crawling data on Indonesian news channels. Three deep learning models have been built and trained using the previously created dataset with different network architectures and hyperparameters. After the model is trained, three models are aggregated to form a new model. To ensure that the aggregated model performs better than the single model, the deep learning ensemble model is compared to the single models. The results showed that the ensemble model has an accuracy of 85.18% while the single models have an accuracy of 83.9%, 83.19%, and 81.94% consecutively. These results indicate that the ensemble model built improves the fact-verification performance of the three single models. The results also show that by using the same dataset, deep learning methods outperform other machine learning methods such as naive bayes and random forest. To validate the performance of the tools we created, the response time of the web service is measured. The measurement result shows an average response time of 6447.9 milliseconds."
Depok: Fakultas Teknik Universitas Indonesia, 2021
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Tosan Wiar Ramdhani
"Penerapan Named Entity Recognition (NER) dalam pengelolaan dokumen kepegawaian pemerintah menghadapi tantangan khas, seperti struktur semi-terstruktur, keberadaan entitas dengan pola tetap, serta kebutuhan akurasi tinggi dalam proses ekstraksi informasi. Model deep learning telah menunjukkan performa unggul dalam tugas NER berbahasa Indonesia, namun belum sepenuhnya efektif dalam menangani kekhususan struktur dokumen administratif. Untuk menjawab permasalahan tersebut, penelitian ini mengembangkan pendekatan hybrid yang menggabungkan kekuatan generalisasi dari beberapa model deep learning (IndoBERT, T5, Qwen, dan SahabatAI) dengan ketelitian pendekatan rule based linguistik sebagai mekanisme label refinement. Sistem NER hybrid ini dirancang untuk meminimalkan kesalahan prediksi, khususnya pada entitas-entitas dengan struktur tetap seperti nama, NIP, golongan, atau jabatan. Eksperimen dilakukan pada sepuluh jenis dokumen kepegawaian hasil pindai dari instansi pemerintah daerah, dengan total lebih dari 6.000 dokumen. Hasil penelitian menunjukkan bahwa pendekatan hybrid mampu meningkatkan performa model deep learning, dengan skor rata-rata F1 score 98% pada sepuluh jenis dokumen kepegawaian. Temuan ini mengindikasikan bahwa integrasi metode rule-based ke dalam sistem NER berbasis deep learning dapat secara signifikan meningkatkan akurasi dan efisiensi pengelolaan dokumen kepegawaian di lingkungan pemerintahan.

The application of Named Entity Recognition (NER) in managing government personnel documents faces unique challenges, such as semi-structured formats, the presence of entities with fixed patterns, and the need for high accuracy in information extraction. Deep learning models have demonstrated strong performance in Indonesian NER tasks; however, they are not yet fully effective in handling the specific structural characteristics of administrative documents. To address this issue, this study proposes a hybrid approach that combines the generalization capabilities of several deep learning models (IndoBERT, T5, Qwen, and SahabatAI) with the precision of linguistic rule-based methods as a label refinement mechanism. The hybrid NER system is designed to minimize prediction errors, particularly for fixed-structure entities such as names, employee identification numbers (NIP), ranks, and job titles. Experiments were conducted on eight types of scanned personnel documents collected from regional government agencies, totaling over 6,000 documents. The results indicate that the hybrid approach enhances the performance of deep learning models, achieving an average F1 score of 98% across the ten document types. These findings suggest that integrating rule based methods into deep learning-based NER systems can significantly improve the accuracy and efficiency of personnel document management in the public sector."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2025
D-pdf
UI - Disertasi Membership  Universitas Indonesia Library
cover
Putu Bagus Raka Kesawa
"Kemajuan umat manusia dalam penerbangan modern sangat bergantung pada kemampuan untuk melakukan pemodelan sistem idenifikasi penerbangan dari suatu wahana pernerbangan. Pemodelan suatu sistem identifikasi penerbangan bergantung dengan tingkat kualitas dan kuantitas dari data simulasi yang digunakan untuk mendapatkan pendekatan situasi dan kondisi penerbangan aktual yang seakurat mungkin. Akurasi dan presisi dari data simulasi yang digunakan dalam pemodelan sistem penerbangan akan mempengaruhi hasil algoritma yang digunakan dalam sistem identifikasi. Dalam pencapaian kualitas data tersebut, digunakanlah perangkat lunak X-Plane yang berfungsi sebagai simulator penerbangan ultra-realistis yang menyuplai set data yang memungkinkan pembelajaran mesin dari algoritma berbasis komputer. Data pembelajaran pesawat terbang terdiri dari attitude orientasi pesawat. Data yang diperoleh dari simulator tersebut akan diproseskan menggunakan metode preprocessing, sehingga layak digunakan untuk pelatihan sistem identifikasi. Suatu algoritma artificial neural network diterapkan untuk mengidentifikasi sistem pesawat dengan mempelajari dataset yang disebutkan di atas, yang kemudian akan digunakan dalam pengembangan perancangan sistem kontrol. Algoritma artificial neural network yang dirancang dalam penelitian ini telah menunjukkan keberhasilan dalam sistem identifikasi untuk sistem penerbangan pesawat, dan siap digunakan dalam percobaan dan pengujian sistem kontrol pada pesawat.

Humanitys progress in modern aviation is very dependent on the ability to model the flight identification system of a flight vehicle. Modeling a flight identification system depends on the quality and quantity of simulation data used to get the most accurate representation of the actual flight situation and condition. The accuracy and precision of the simulation data used in the flight system modeling will affect the results of the algorithm used in the identification system. In achieving this data quality, X-Plane software is used which functions as an ultra realistic flight simulator that supplies data sets that enable machine learning from computer based algorithms. Airplane learning data consists of airplane orientation attitude. Data obtained from the simulator will be processed using the preprocessing method, so it is feasible to use for identification system training. An artificial neural network algorithm is applied to identify aircraft systems by studying the dataset mentioned above, which will then be used in the development of control system design. The artificial neural network algorithm designed in this study has shown success in the identification system for aircraft flight systems, and is ready to be used in the testing and testing of control systems on aircraft."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Jessica Naraiswari Arwidarasti
"Seringkali kita mengelompokkan dokumen berdasarkan hasil identifikasi topik. Identifikasi topik terhadap sejumlah dokumen tidak terstruktur, contohnya abstrak, dapat dibantu dengan algoritma pemodelan topik. Namun, pelatihan model topik membutuhkan dokumen dengan jumlah yang memadai. Dengan pembelajaran zero shot, kita dapat melakukan prediksi topik terhadap dokumen dengan jumlah yang kurang memadai dengan mentransfer hasil pembelajaran dari dokumen dalam bahasa lain, contohnya Bahasa Inggris, walaupun tidak ada contoh dari bahasa yang diuji (Bahasa Indonesia). Pemanfaatan zero-shot learning sudah dilakukan oleh Bianchi et al. (2021) dengan Contextual Topic Model (CTM). Koherensi topik yang diprediksi CTM dapat ditingkatkan contohnya jika dokumen terkait dengan knowledge graph (KG). Dengan penambahan informasi dari KG, frekuensi kemunculan kata penting menjadi lebih tinggi. Adapun kualitas topik juga dapat ditingkatkan dengan memodifikasi bag-of-word (BoW) kata tunggal menjadi n-gram. Namun, CTM terbatas pada 1-gram. Penelitian ini bertujuan untuk memperkaya topik serta meningkatkan koherensi prediksi topik untuk dokumen unseen dengan memanfaatkan KG dan kualitas topik dengan memodifikasi BoW pada CTM menjadi n-gram. Hasil eksperimen menunjukkan koherensi topik (dalam ukuran NPMI) tertinggi terhadap dokumen Bahasa Inggris yaitu dengan abstrak singkat dan BoW n-gram sebesar 0,24 dengan margin 0.1019 terhadap Bianchi et al.. Namun, prediksi topik terhadap dokumen Bahasa Indonesia memiliki tingkat similaritas yang lebih baik dengan penambahan KG dilihat dari peningkatan nilai Match sebesar 6% untuk 1-gram dan 4.34% untuk n-gram, centroid similarity sebesar 0.02 untuk 1-gram, dan Kullback-Leibler Divergence 0.1 untuk 1-gram dan 0.04 untuk n-gram. Peningkatan kualitas topik juga terjadi dengan modifikasi BoW menjadi n-gram yang ditunjukkan oleh kemunculan topik yang tidak didapatkan sebelum modifikasi BoW. Adapun, model juga dapat memprediksi dokumen dari sumber lain, contohnya berita. Namun, jika topik dokumen tidak tampak pada pelatihan, topik yang diprediksi kurang koheren terhadap dokumen.

Often we group documents based on the results of topic identification. Topic identification against a number of unstructured documents, for example abstracts, can be assisted by topic modeling algorithms. However, topic model training requires a sufficient number of documents. With zero shot learning, we can predict the topic of an inadequate number of documents by transferring learning outcomes from documents in other languages, for example English, even though there are no examples from the tested language (Indonesian). The use of zero-shot learning has been carried out by Bianchi et al. (2021) with the Contextual Topic Model (CTM). The coherence of topics predicted by CTM can be improved, for example if the document is related to a knowledge graph (KG). With the addition of information from KG, the frequency of occurrence of important words becomes higher. The topic quality can also be improved by modifying the single word bag-of-word (BoW) into n-grams. However, CTM is limited to 1-gram. This study aims to enrich the topic and improve the coherence of topic prediction for unseen documents by utilizing KG and topic quality by modifying BoW on CTM to n-grams. The experimental results show the highest topic coherence (in terms of NPMI) to English documents with a short abstract and a BoW n-gram of 0.24 with a margin of 0.1019 to Bianchi et al.. However, topic predictions for Indonesian documents have a better level of similarity with the addition of KG seen from the increase in the Match value by 6% for 1-gram and 4.34% for n-gram, centroid similarity of 0.02 for 1-gram, and Kullback-Leibler Divergence 0.1 for 1-gram and 0.04 for n-gram. An increase in the quality of the topic also occurs with the modification of BoW to n-grams which is indicated by the appearance of topics that are not obtained before the BoW modification. Meanwhile, the model can also predict documents from other sources, for example news. However, if the topic of the document does not appear in the training, the predicted topic is less coherent with the document."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2021
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Adi Yudho Wijayanto
"Tujuan utama penggunaan peralatan Pressure Relief Device (PRD) adalah untuk memastikan keamanan bejana tekan dalam sistem bertekanan. Seiring berjalannya waktu, peralatan PRD dapat mengalami penurunan kualitas dan gagal menjalankan fungsi yang diharapkan, sehingga harus diidentifikasi sebagai mode kegagalan. Untuk memitigasi potensi risiko yang terkait dengan hal ini, direkomendasikan agar pendekatan seperti inspeksi berbasis risiko (RBI) diterapkan. Meskipun RBI telah diadopsi secara luas, metode ini bergantung pada teknik kualitatif, sehingga menyebabkan variasi yang signifikan dalam penilaian risiko peralatan. Studi ini mengusulkan metode analisis risiko baru yang menggunakan pembelajaran mesin berbasis pembelajaran mendalam untuk mengembangkan model penilaian risiko untuk peralatan PRD terkait dengan mode kegagalan failure on leakage. Pendekatan inovatif ini akan mengurangi waktu penilaian, meningkatkan akurasi, dan menurunkan biaya pemrosesan dengan memberikan hasil penghitungan yang tepat. Penelitian ini mengembangkan program prediksi risiko yang menggunakan pembelajaran mesin berbasis deep learning yang dirancang secara eksplisit untuk mode kegagalan failure on leakage pada peralatan pelepas tekanan. Dataset yang digunakan dalam proses pengembangan model mengikuti standar API 581 dan berisi 168 dataset. Berbagai parameter model digunakan, antara lain test size 20%, nilai random state 0, 150 epoch, learning rate 0,001, dan 3 layers dengan nilai dense 128, 64, dan 32. Performa model dievaluasi menggunakan validation confusion matrix, yang menunjukkan akurasi 94%.

The primary objective of deploying Pressure Relief Device (PRD) equipment is to ensure the safety of pressure vessels within a pressurized system. Over time, PRD equipment may degrade and fail to perform its intended function, which must be identified as a failure mode. To mitigate potential risks associated with this, it is recommended that an approach such as risk-based inspection (RBI) be implemented. Despite the widespread adoption of RBI, the method relies on qualitative techniques, leading to significant variations in equipment risk assessments. This study proposes a novel risk analysis method that uses deep learning-based machine learning to develop a risk assessment model for PRD equipment related to the fail-on-leakage failure mode. This innovative approach will reduce assessment times, improve accuracy, and lower processing costs by providing precise calculation results. The research develops a risk prediction program that uses deep learning-based machine learning designed explicitly for failure-on-leakage failure mode in pressure relief equipment. The dataset used in the model development process adheres to API 581 standards and comprises 168 data points. Various model parameters are employed, including a test size of 20%, a random state value of 0, 150 epochs, a learning rate of 0.001, and 3 layers with dense values of 128, 64, and 32. The model's performance is evaluated using a validation confusion matrix, which indicates an accuracy of 94%."
Depok: Fakultas Teknik Universitas Indonesia, 2024
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Mirsa Salsabila
"Grammatical Error Correction (GEC) adalah salah satu task Natural Language Processing (NLP) yang mendeteksi dan mengoreksi kesalahan tata bahasa dalam sebuah teks. Task ini terus berkembang sampai saat ini dan telah diterapkan menggunakan berbagai metode, seperti rule-based, machine learning-based, dan sebagainya. Tugas akhir ini bertujuan membandingkan dua metode state-of-the-art Grammatical Error Correction yaitu metode T5 dan GECToR menggunakan dataset bahasa Inggris dan bahasa Indonesia. Untuk metode T5, akan dibandingkan model Flan-T5 dan mT5 dengan variasi ukuran base dan large. Adapun model yang dibandingkan untuk metode GECToR adalah model RoBERTa dan XLNet dengan variasi ukuran base dan large. Untuk dataset bahasa Inggris, akan digunakan dataset FCE untuk training dan dataset CoNLL-14 untuk testing. Sedangkan untuk dataset bahasa Indonesia, akan digunakan dataset Gramatika. Kemudian, untuk evaluasi digunakan metrik F0.5. Berdasarkan hasil uji coba, didapatkan bahwa untuk dataset bahasa Inggris FCE+CoNLL-14, metode T5 dengan varian model Flan-T5 unggul dari kedua varian metode GECToR dengan skor F0.5 sebesar 52,85%. Varian Flan-T5 ini unggul dengan margin sebesar 15,83% dari varian terbaik metode GECToR, yaitu RoBERTa. Sedangkan, metode GECToR dengan varian RoBERTa lebih unggul dengan margin 10,12% dari metode T5 dengan varian model mT5. Untuk dataset bahasa Indonesia Gramatika, kedua varian metode T5 lebih unggul dari metode GECToR. Varian terbaik metode T5 dengan skor F0.5 sebesar 45,38% dengan margin 31,05% dari varian terbaik metode GECToR, yaitu RoBERTa.

Grammatical Error Correction (GEC) is one of the Natural Language Processing (NLP) tasks that detect and correct grammatical errors in a text. This task continues to grow today and has been implemented using various methods, such as rule-based, machine learning-based, and so on. This final project aims to compare two state-of-the-art Grammatical Error Correction methods, namely the T5 and GECToR methods using English and Indonesian datasets. For the T5 method, Flan-T5 and mT5 models will be compared with base and large size variations. As for the GECToR method, RoBERTa and XLNet models will be compared with base and large size variations. For the English dataset, the FCE dataset will be used for training and the CoNLL-14 dataset for testing. As for the Indonesian dataset, the Grammatical dataset will be used. Then, the F0.5 metric is used for evaluation. Based on the experimental results, it is found that for the FCE+CoNLL-14 English dataset, the T5 method with the Flan-T5 model variant is superior to both variants of the GECToR method with an F0.5 score of 52.85%. The Flan-T5 variant is superior by a margin of 15.83% to the best variant of the GECToR method, RoBERTa. Meanwhile, the GECToR method with the RoBERTa variant is superior by a margin of 10.12% to the T5 method with the mT5 model variant. For the Indonesian Grammatical dataset, both variants of the T5 method are superior to the GECToR method. The best variant of the T5 method with an F0.5 score of 45.38% with a margin of 31.05% from the best variant of the GECToR method, which is RoBERTa."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hasbullah
"Survei Kesehatan Indonesia (SKI) tahun 2023 yang dilakukan oleh Kementerian Kesehatan (Kemenkes) ada sekitar 70 juta perokok aktif di Indonesia. Apabila dihitung dari populasi penduduk Indonesia ada 28,62% penduduk yang merokok di tahun 2023 dan persentase ini meningkat dari tahun sebelumnya sebanyak 0,36%. Perilaku merokok ini menyebabkan berbagai penyakit seperti penyakit paru-paru kronis, kerusakan gigi, penyakit mulut, stroke, serangan jantung, kanker rahim, gangguan mata, dan kerusakan pada rambut. Untuk menekan jumlah perokok di Indonesia, diperlukan sistem untuk deteksi perokok. Deteksi perokok saat ini memakan biaya yang mahal, bantuan ahli, dan sistem yang kompleks. Oleh karena itu, deep learning dengan algoritma Convolutional Neural Network hadir sebagai solusi untuk mengatasi masalah tersebut. Skripsi ini membahas bagaimana merancang sistem deep learning dengan Convolutional Neural Network (CNN) untuk keperluan deteksi wajah perokok. Skripsi ini juga membahas bagaimana pengaruh berbagai skenario jumlah data pelatihan dan data pengujian serta penambahan ekstraksi fitur wajah terhadap metrik evaluasi . Hasil dari rancangan dievaluasi dengan metrik evaluasi kalkulasi loss function, akurasi, dan F1 score. Hasil simulasi menunjukan skenario data pelatihan 70% dan data pengujian 30% adalah skenario terbaik dengan nilai metrik evaluasi pengujian pada skenario ini sebesar 2.236 untuk loss, 54.5% untuk akurasi, dan 34.9% untuk F1 score. Skenario ini diimprovisasi dengan adanya penambahan ekstraksi fitur perokok pada awal preprocessing yang ditandai dari penurunan loss sebesar 65.65%, peningkatan akurasi sebesar 19%, dan peningkatan F1 score sebesar 24.08%.

The 2023 Indonesian Health Survey (SKI) conducted by the Ministry of Health (Kemenkes) reported that there are approximately 70 million active smokers in Indonesia. This accounts for 28.62% of the Indonesian population in 2023, representing a 0.36% increase from the previous year. Smoking behavior leads to various diseases such as chronic lung disease, tooth damage, oral diseases, stroke, heart attacks, uterine cancer, eye disorders, and hair damage. To reduce the number of smokers in Indonesia, a smoker detection system is necessary. Current smoker detection methods are expensive, require expert assistance, and involve complex systems. Therefore, deep learning with Convolutional Neural Network (CNN) algorithms presents a solution to address these issues. This thesis discusses how to design a deep learning system using Convolutional Neural Networks (CNN) for smoker face detection. It also examines the impact of different training and testing data scenarios and the addition of facial feature extraction on evaluation metrics. The designed system is evaluated using metrics such as loss function calculation, accuracy, and F1 score. The simulation results show that a scenario with 70% training data and 30% testing data is the best scenario, yielding evaluation metric values of 2.236 for loss, 54.5% for accuracy, and 34.9% for F1 score. This scenario was improved with the addition of smoker feature extraction in the preprocessing stage, resulting in a 65.65% reduction in loss, a 19% increase in accuracy, and a 24.08% increase in F1 score."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Kivlan Rafly Bahmid
"Salah satu aspek pertahanan negara yang cukup penting adalah pertahanan udara negara. Sayangnya, Industri Pertahanan Indonesia masih cukup kurang mendukung. Salah satu isu yang diakibatkan oleh masalah ini adalah kurang berkembangnya teknologi pertahanan udara di Indonesia dibanding dengan negara-negara lain, seperti teknologi pengendalian pesawat, seperti Unmanned Aerial Vehicle (UAV). Oleh karena ini, diperlukan pengembangan teknologi pengendalian pesawat yang mandiri dan bersetara dengan pihak luar negeri. Dinamika penerbangan merupakan masalah yang bersifat non-linear, time-varying, memiliki coupling, dan terefek oleh gangguan eksternal. Untuk memecahkan masalah ini, diperlukan pengendali pesawat berbasis metode Direct Inverse Control. Direct Inverse Control memerlukan sistem identifikasi dari sistem yang ingin dikendalikan agar dapat mengembangkan neural network inverse. Pada penelitian ini, diajukan sistem identifikasi pesawat Cessna-172P berbasis Deep Neural Network dan Recurrent Neural Network. Kinerja kedua sistem identifikasi sudah cukup dalam mereplikasikan dinamika penerbangan pesawat Cessna-172P. Dari analisis kinerja kedua sistem identifikasi, sistem identifikasi berbasis recurrent neural network menghasilkan kesahalan prediksi yang lebih rendah, tetapi menggunakan daya dan waktu komputasi yang lebih banyak.

One important aspect of national defense is the country's air defense. Unfortunately, the Indonesian Defense Industry still lacks sufficient support. One issue resulting from this problem is the underdevelopment of air defense technology in Indonesia compared to other countries, such as aircraft control technology like Unmanned Aerial Vehicles (UAV). Therefore, the development of independent aircraft control technology that is on par with foreign counterparts is needed. Flight dynamics pose nonlinear, time-varying challenges with coupling and are affected by external disturbances. To address this problem, an aircraft controller based on the Direct Inverse Control method is required. Direct Inverse Control necessitates system identification of the desired controlled system to develop an inverse neural network. In this study, a Deep Neural Network and Recurrent Neural Network-based identification system for the Cessna-172P aircraft is proposed. Both identification systems perform well in replicating the flight dynamics of the Cessna-172P aircraft. From the performance analysis of both identification systems, the recurrent neural network-based identification system produces lower prediction errors but requires more computational power and time."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Theresia Gowandi
"Analisis sentimen adalah salah satu bidang dari Pemrosesan Bahasa Alami yang membangun sistem untuk mengenal opini dalam teks dan mengelompokkan ke dalam sentimen positif atau negatif. Banyak peneliti telah membangun model yang menghasilkan akurasi terbaik dalam melakukan analisis sentimen. Tiga diantaranya adalah Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), dan Gated Recurrent Unit (GRU), yang merupakan bagian dari deep learning. CNN digunakan karena kemampuannya dalam mengekstrak fitur penting dalam penggalan kalimat, sedangkan LSTM dan GRU digunakan karena kemampuannya yang memiliki memori akan input yang telah diproses sebelumnya. GRU memiliki struktur yang lebih sederhana dibandingkan dengan LSTM. Ketiga model tersebut dapat digabungkan menjadi model gabungan LSTM-CNN, CNN-LSTM, GRU-CNN, dan CNN-GRU. Penelitian sebelumnya telah membuktikan bahwa model gabungan tersebut memiliki akurasi yang lebih baik dibandingkan dengan model dasar LSTM, GRU, dan CNN. Implementasi model dilakukan pada data ulasan aplikasi berbahasa Indonesia. Hasilnya, didapatkan bahwa hampir seluruh model gabungan memiliki akurasi yang lebih baik dibandingkan dengan model dasar.

Sentiment analysis is one of the fields of Natural Language Processing that builds a system to recognize and extract opinion in the form of text into positive or negative sentiment. Nowadays, many researchers have developed methods that yield the best accuracy in performing analysis sentiment. Three particular models are Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), and Gated Recurrent Unit (GRU), which are part of deep learning architectures. CNN is used because of its ability to extract important features from each sentence fragment, while LSTM and GRU are used because of their ability to have a memory of prior inputs. GRU has a simpler and more practical structure compared to LSTM. These models can be combined into combined LSTM-CNN, CNN-LSTM, GRU-CNN, and CNN-GRU model. Former researches have proved that these models have better accuracy compared to standard models. This research is focused on the performance of all the combined LSTM-CNN, CNN-LSTM, GRU-CNN, CNN-GRU models and will be compared to the standard LSTM, GRU, CNN models. Implementation of the model is performed on a collection of application review data in Indonesian text. As a result, almost all of the combined models have better accuracy than the standard models."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>