Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 174538 dokumen yang sesuai dengan query
cover
Alifya Zhafira Ananda
"Prediksi vessel turnaround time (VTT) di pelabuhan merupakan langkah strategis untuk meningkatkan efisiensi operasional dan mendukung pengambilan keputusan berbasis data. Penelitian ini berfokus pada rancang bangun sistem prediksi berbasis machine learning untuk memperkirakan durasi waktu tunggu kapal, melalui pengembangan model regresi dengan pendekatan yang sistematis. Model dirancang dan dievaluasi dengan membandingkan rentang data historis (5 tahun vs 10 tahun), dua metode seleksi fitur—RFE (Recursive Feature Elimination) dan SHAP (SHapley Additive exPlanations)—serta penerapan hyperparameter tuning untuk mengoptimalkan performa.
Evaluasi dilakukan secara menyeluruh menggunakan 50 variasi model seed dan pendekatan rolling time window. Hasil menunjukkan bahwa penggunaan dataset 10 tahun dan model LightGBM memberikan performa terbaik dengan RMSE validasi sebesar 2.7882 jam. SHAP menghasilkan performa hampir setara dengan RFE meskipun menggunakan jumlah fitur yang lebih sedikit. Setelah proses tuning, sistem prediktif yang dirancang menjadi jauh lebih stabil antar pengulangan (RMSE validasi: 2.7865, IQR RMSE: 0.0099), dan tetap menunjukkan hasil yang baik pada data uji serta evaluasi lintas waktu. Secara keseluruhan, rancang bangun sistem prediksi VTT ini membuktikan bahwa kombinasi data historis yang memadai, pemilihan fitur yang tepat, dan pengaturan parameter yang optimal mampu menghasilkan model yang akurat, konsisten, dan siap diterapkan dalam operasional pelabuhan secara nyata.

Predicting vessel turnaround time (VTT) at ports is a strategic effort to improve operational efficiency and support data-driven decision-making. This study focuses on the design and development of a predictive system based on machine learning to estimate vessel waiting durations, through a systematic approach to regression model construction. The models are designed and evaluated by comparing different historical data ranges (5 years vs. 10 years), two feature selection methods—RFE (Recursive Feature Elimination) and SHAP (SHapley Additive exPlanations)—as well as the implementation of hyperparameter tuning to optimize performance.
Comprehensive evaluation was carried out using 50 model seed variations and a rolling time window approach. The results show that the use of a 10-year dataset and the LightGBM model achieved the best performance, with a validation RMSE of 2.7882 hours. SHAP yielded nearly comparable performance to RFE, despite using fewer features. After tuning, the predictive system became significantly more stable across repetitions (validation RMSE: 2.7865, IQR RMSE: 0.0099), and consistently produced reliable results on the test set as well as in various time-based evaluation windows. Overall, this predictive system design for VTT demonstrates that the combination of sufficient historical data, appropriate feature selection, and optimal parameter configuration can produce a model that is accurate, robust, and ready for real-world port operations.
"
Depok: Fakultas Teknik Universitas Indonesia, 2025
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fika Minata Wathan
"Latar Belakang: Kelahiran preterm merupakan penyebab tertinggi kematian neonatal. Indonesia menduduki posisi tertinggi di ASEAN dan kelima di dunia untuk kelahiran preterm. Rumusan masalah: Belum adanya model prediksi kelahiran preterm yang memperlihatkan prediktor yang berguna untuk mengembangkan program pencegahan. Tujuan: Menemukan model prediksi kelahiran preterm berbasis machine learning untuk deteksi dini kelahiran preterm di Fasilitas Kesehatan Tingkat Pertama (FKTP). Metode: Penelitian ini menggunakan desain studi case control dengan menggunakan data rekam medis Rumah Sakit (RS) di Palembang yaitu RS YK Madira, RSMH, RS Bunda, RS Ar Rasyid, RS Muhammadiyah, dan RS Bhayangkara tahun 2019 dengan jumlah sampel 1758 responden yang terdiri dari 879 preterm dan 879 aterm. Faktor risiko yang digunakan pada penelitian ini didapatkan dari Systematic Literature Review yang terdiri dari faktor sosiodemografi (10 variabel), faktor perilaku/gaya hidup (5 variabel), faktor maternal/kondisi ibu sebelum kehamilan (8 variabel), faktor kehamilan/obstetri ginekologi (21 variabel), faktor biologis (3 variabel), faktor pelayanan kesehatan (2 variabel) dan faktor janin (4 variabel). Pemodelan dilakukan dengan menggunakan machine learning dengan menggunakan algoritme decision tree, K-Nearest Neighbour (KNN), naïve bayes, logistic regression, Support Vector Machine (SVM) dan neural network (CNN1D, multilayer perceptron dan backpropagation). Hasil: Ditemukan 21 variabel penelitian dari 53 variabel yang dibutuhkan, dan menemukan 6 variabel yang menjadi prediktor utama kelahiran preterm di antaranya pre-eklamsia, perdarahan dalam kehamilan, riwayat ketuban pecah dini, jarak antar dua kehamilan, paritas, dan anemia. Pada penelitian ini ditemukan algoritme terbaik yaitu decision tree dengan nilai akurasi 95% untuk training dan 96% untuk testing dan telah dibuat prototype berupa aplikasi berbasis web untuk deteksi dini di FKTP. Kesimpulan: Ditemukan research novelty yaitu diperoleh model prediksi kelahiran preterm, dimana model ini potensial untuk digunakan di FKTP sebagai upaya deteksi dini. Model prediksi ini akan mendeteksi ibu hamil akan berisiko preterm atau tidak berisiko. Apabila diketahui ibu berisiko kelahiran preterm, maka ibu dianjurkan untuk melakukan pemeriksaan di RS, agar tidak terjadi keterlambatan penanganan yang menyebabkan kematian ibu maupun bayi. Dibandingkan tidak ada model prediksi, maka risiko kelahiran preterm tidak dapat dicegah, sehingga keterlambatan penanganan akan terjadi.

Background: Preterm birth is the highest cause of neonatal death. Indonesia occupies the highest position in ASEAN and fifth in the world for preterm births. Formulation of the problem: There is no predictive model of preterm birth that provides a useful predictor for developing prevention programs. Objective: To find prediction model of preterm birth based on machine learning for early detection of preterm birth in First Level Health Facilities (FKTP). Methods: This study uses a case control study design using medical record data at the Hospital (RS) in Palembang that isYK Madira Hospital, RSMH, Bunda Hospital, Ar Rasyid Hospital, Muhammadiyah Hospital, and Bhayangkara Hospital in 2019 with a total sample of 1758 respondents consisting of 879 preterm and 879 term. The risk factors used in this study were obtained from a Systematic Literature Review consisting of: sociodemographic factors (10 variables), behavioral/lifestyle factors (5 variables), maternal factors/mother's condition before pregnancy (8 variables), pregnancy/gynecological factors (21 variables), biological factors (3 variables), health service factors (2 variables) and fetal factors (4 variables). The modeling is done using machine learning using decision tree algorithms, K-Nearest Neighbor (KNN), nave Bayes, logistic regression, Support Vector Machine (SVM) and neural networks (CNN1D, multilayer perceptron and backpropagation). Results: Found 21 research variables from 53 variables were needed, and found 6 variables that were the main predictors of preterm birth including pre-eclampsia, bleeding in pregnancy, history of premature rupture of membranes, distance between two pregnancies, parity, and anemia. In this study, the best algorithm was found, namely decision tree with an accuracy value of 95% for training and 96% for testing and a prototype was made in the form of a web-based application for early detection in FKTP. Conclusion: It was found that the research novelty obtained a predictive model of preterm birth, which is the main cause of AKN, where this model has the potential to be used in FKTP as an early detection effort. This predictive model will detect pregnant women will be at risk of preterm or not at risk. If it is known that the mother is at risk of preterm birth, the mother is recommended to do an examination at the hospital, so that there is no delay in handling that causes the death of both mother and baby. Compared to no predictive model, the risk of preterm birth cannot be prevented, so that delays in treatment will occur."
Depok: Fakultas Kesehatan Masyarakat Universitas Indonesia, 2022
D-pdf
UI - Disertasi Membership  Universitas Indonesia Library
cover
Herry Susanto
"ABSTRAK
Di Indonesia, salah satu penyebab tingginya biaya BBM adalah adanya tindak pencurian
dan penyelewengan BBM yang sering kali terjadi di tengah lautan. Hal ini bisa terjadi
karena pada saat di tengah lautan, segala kegiatan kapal tersebut tidak bisa dipantau oleh
pusat operasional manajemen kapal. Selain upaya hukum, upaya pengawasan kapal
melalui teknologi terbaru juga terus dilakukan, salah satunya adalah teknologi Vessel
Monitoring System (VMS) berbasis Machine to machine (M2M). Perkembangan
teknologi VMS dan telemetri telah memungkinkan pengawasan kondisi mesin dan
pemakaian BBM kapal yang sedang berlayar secara online dan real time. Dengan
menambah perangkat pengukuran pemakaian bahan bakar tersebut, diharapkan
meningkatkan kecepatan koordinasi dan penanganan di lapangan saat terjadi
ketidakwajaran pemakaian BBM. Kecepatan dalam mengetahui adanya ketidakwajaran
ini sangat penting, karena proses pencurian minyak sering kali dilakukan dalam waktu
singkat. Pencurian minyak dengan modus ilegal tapping di darat hanya memerlukan
waktu 15 menit untuk 2000 liter (2 ton) BBM, sementara di laut diperlukan sekitar 5 jam
untuk memindahkan 12 ton BBM, atau sekitar 2.4 ton per jam untuk sebuah kapal saja.
Masalahnya untuk mengetahui ketidakwajaran tersebut masih tergantung pada analisa
tenaga ahli yang memerlukan waktu yang lama untuk melakukan analisa berbagai
parameter telemetri yang ada. Berdasarkan kondisi di atas, penelitian ini melakukan
analisis statistik terhadap data telemetri terutama data pergerakan kapal dan aktivitas
mesin untuk menentukan koefisien pergerakan kapal, lalu merancang sistem
pengklasifikasi kewajaran pemakaian BBM dengan metode Naive Bayes dan Logistic
Regression. Metode ini dipilih karena bisa memberikan hasil yang baik untuk prediksi
data-­data numerik maupun diskrit. Hasil penelitian ini menunjukkan bahwa data telemetri
dari sistem VMS dapat digunakan untuk mendeteksi adanya ketidakwajaran pemakaian
BBM. Untuk kebutuhan klasifikasi kewajaran pemakaian BBM pada data telemetri kapal,
algoritma pengklasifikasi Naive Bayes memiliki akurasi hingga 92% pada data sampel
dan Logistic Regression mampu mendeteksi dengan akurasi hingga 96% pada data
sampel.

ABSTRACT
In Indonesia, one of the causes of high fuel costs is the occurrence of theft and misuse of
fuel which often occurs in the middle of the ocean. This can happen because when in the
middle of the ocean, all the activities of the ship cannot be monitored by the ship
management operational center. In addition to legal efforts, efforts to monitor ships
through the latest technology are also being carried out, one of which is the Machine to
Machine (M2M) Vessel Monitoring System (VMS) technology. The development of
VMS and telemetry technology has enabled monitoring of engine conditions and fuel
consumption of ships that are sailing online and real time. By adding the fuel consumption
measurement device, it is expected to increase the speed of coordination and handling in
the field when there is an irregularity in the use of fuel. Speed in knowing the existence
of this irregularity is very important, because the process of oil theft is often done in a
short time. Theft of oil by illegal tapping on land only takes 15 minutes for 2000 liters (2
tons) of fuel, while at sea it takes around 5 hours to move 12 tons of fuel, or around 2.4
tons per hour for a ship. The problem is to find out the irregularities that still depend on
the analysis of experts who need a long time to analyze various parameters of existing
telemetry. Based on the above conditions, this study conducted a statistical analysis of
telemetry data, especially ship movement data and machine activity to determine the
coefficient of ship movements, then designed the fuel usage irregularity classification
system with the Naive Bayes and Logistics Regression. This method was chosen because
it can provide good results for predicting numerical and discrete data. The results of this
study indicate that telemetry data from the VMS system can be used to detect any
irregularities in using BBM. For the needs of the fairness classification of BBM usage on
ship telemetry data, the Naive Bayes classification algorithm has an accuracy of up to
92% in sample data and Logistic Regression is able to detect with accuracy up to 96% in
sample data."
2019
T53091
UI - Tesis Membership  Universitas Indonesia Library
cover
Richie Ghifari
"Rancang campur beton merupakan proses bertahap dan kompleks untuk mencoba menemukan komposisi bahan terbaik guna menghasilkan beton dengan performa terbaik. Kuat tekan beton merupakan sifat terpenting dalam kualitas beton dibandingkan sifat-sifat lain. Dalam proses pembuatannya, banyak variabel terutama jumlah komposisi material penyusun yang dapat memengaruhi kuat tekan beton. Terdapat beberapa metode konvensional dalam memprediksi beton yang terkadang memberikan hasil prediksi lebih atau kurang dari kuat tekan yang ditargetkan. Diperlukan metode yang akurat dalam memprediksi kuat tekan beton agar dapat memberikan keuntungan secara signifikan terhadap penggunaan bahan. Oleh karena itu, penelitian ini menggunakan Deep Neural Network (DNN) sebagai subbidang dari Machine Learning (ML) dan Artificial Intelligence (AI), untuk memprediksi kuat tekan beton berdasarkan komposisi campuran dan properti materialnya. Penelitian ini menghasilkan formula matematika berupa persamaan yang dihasilkan dari model DNN terbaik dengan melihat aspek error model dan grafik model loss. Terdapat total 2048 model yang dianalisis dengan variasi jumlah variabel input (feature) yang berbeda-beda. Model 280 pada kasus 1 dan model 23 pada kasus 5 merupakan model terbaik yang dihasilkan penelitian ini, dengan masing-masing nilai error model 43,8028 dan 5778,5850 untuk Mean Squared Error (MSE) serta 5,0073 dan 59,8225 Maen Absolute Error (MAE).

Concrete mix design is a gradual and complex process of trying to find the best ingredient composition to produce the best performing concrete. The compressive strength of concrete is the most important property in concrete quality compared to other properties. In the manufacturing process, many variables, especially the amount of material composition, can affect the compressive strength of concrete. There are several conventional methods of predicting concrete that sometimes give predictive results more or less than the targeted compressive strength. An accurate method of predicting the compressive strength of concrete is needed in order to significantly benefit the use of materials. Therefore, this research utilizes Deep Neural Network (DNN), a subfield of Machine Learning (ML) and Artificial Intelligence (AI), to predict the compressive strength of concrete based on its mix composition and material properties. This research produces mathematical formulas in the form of equations generated from the best DNN model by looking at the aspects of model error and model loss graphs. There are a total of 2048 models analyzed with different variations in the number of input variables (features). Model 280 in case 1 and model 23 in case 5 are the best models produced by this study, with model error values of 43.8028 and 5778.5850 for Mean Squared Error (MSE) and 5.0073 and 59.8225 Maen Absolute Error (MAE), respectively.
"
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Jonathan Aurelius Faren
"Jakarta sebagai kota besar yang memiliki tingkat kepadatan yang tinggi pada saat jam-jam dan hari-hari kerja memiliki peraturan guna mengurangi kemacetan di jalan. Salah satu peraturannya adalah pemberlakukan plat nomor kendaraan ganjil genap sesuai dengan tanggal. Peraturan ini cukup efektif dalam mengurangi tingkat kemacetan di jalan-jalan protokol. Namun masih saja ada oknum-oknum yang melanggar peraturan ini dikarenakan kemampuan manusia yang terbatas sehingga tidak dapat selalu mengawasi plat nomor kendaraan secara maksimal. Dengan berkembangnya teknologi terutama di bidang computer vision masalah ini dapat dikurangi. Dengan menggunakan bantuan machine learning yaitu computer vision menggabungkan alat fisik yaitu kamera dengan komputer sehingga dapat mendeteksi dan membaca plat nomor pada kendaraan. Perkembangan teknologi membuat machine learning semakin berkembang sehingga proses melakukan deteksi dapat dilakukan dengan lebih cepat dan akurat. Untuk melakukan hal ini algoritma YOLOv7 dilatih untuk melakukan deteksi pada plat nomor kendaraan serta membacanya sehingga dapat diklasifikasian termasuk ganjil / genap sesuai dengan tanggal pendeteksian. Pada penelitian ini dilakukan pembangunan prototype sistem pendeteksi dan klasifikasi ini menggunakan machine learning dan computer vision untuk melakukan deteksi plat nomor pada kendaraan yang lewat di jalan-jalan protokol. Hasil dari penelitan ini adalah dengan menggunakan algoritma YOLOv7, model yang dihasilkan memiliki akurasi sebesar 86%, melakukan pembacaan plat nomor hasil deteksi dengan EeasyOCR memiliki tingkat kesalahan pembacaan per karakter 3.81% dan kesalahan pembacaan per kata sebesar 11.90%, sistem dapat melakukan deteksi dan pembacaan plat nomor secara real time dengan baik, melakukan identifikasi pada jenis tanggal (ganjil  genap) dan memberikan alert ketika ada plat nomor yang tidak sesuai ketentuan tanggal.

Jakarta as the big city and the capital of Indonesia that have high density rate in the work hours and days have a special rule to decrease the congestion rate in the road. One of the rules is the enforcement of odd even license plate rules that connect to the real time date. This rule is effective in decreasing the congestion rate in the major arterial roads. but there's still a loophole that makes people violate this rule, the human limited ability makes them can't always observe all the license plate. With the help of technology development in computer vision, can help to reduce the problem. Computer vision combines the video camera and computer to work side by side so it can read and detect the license plate number. Technology development also develops the computer vision ability so detection and recognition can be done with more accuracy and less time. To do this thing YOLOv7 algorithm trains a model to detect the license plate in a car and read the license plate so it can classify the license plate type (odd/even) and compare it with the research date type. This research build the prototype of detection and classifier system with machine learning and computer vision, to do the automatic odd /even license plate detection and recognition at the car in artery road. As the result of the research , the detection model made by YOLOv7 algorithm have a 86 % accuracy, and the character recognition with EasyOCR have a character error rate 3.81 %  and word error rate 11.90 % , the system prototype can run the detection and OCR in real time, the prototype can get the real time date and classified it as odd or even number, and give an alert when the detected license plate number violated the odd even rule.
"
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nagisa Eremia Anju
"Tenaga kerja kesehatan pada masa pandemi bekerja sebagai garda terdepan yang memiliki resiko tertinggi tertular virus corona. Sampai pada hari ini, perawatan dan pemeriksaan kondisi vital pasien COVID-19 masih banyak dilakukan dengan kontak langsung minimal sebanyak empat kali dalam sehari. Hal ini berisiko meningkatkan penyebaran virus hingga menurunkan jumlah tenaga kerja kesehatan. Sampai pada saat ini, hampir seluruh rumah sakit masih menggunakan sphygmomanometer tradisional dengan cuff yang membutuhkan bantuan tenaga medis ataupun tanpa bantuan, namun pengukuran dilakukan secara invasif. Oleh karena itu, dibutuhkan suatu alat yang dapat memonitor kondisi vital pasien tanpa kontak langsung terutama dalam mengukur tekanan darah dan bersifat noninvasif. Penelitian ini bertujuan untuk membuat suatu algoritma pengolahan sinyal plethysmography berbasis ekstraksi fitur dan machine learning untuk prediksi tekanan darah. Dengan menggunakan sensor MAX30102 dan ESP32, sinyal PPG yang didapat dari jari akan dilakukan pre-processing dengan menenerapkan baseline fitting, kemudian deteksi puncak, hingga empat fitur utama sinyal PPG, yaitu systolic peak, diastolic peak, dicrotic notch, dan foot dapat diekstrak. Data ekstraksi fitur sinyal PPG secara ­real-time ini digabungkan menjadi satu dataset dan dimasukkan ke dalam machine learning untuk diprediksi nilai tekanan darahnya. Evaluasi hasil prediksi tekanan darah menunjukkan nilai Mean Absolute Error yang kecil, yaitu 1,56/2,35 yang masih diterima oleh standar ISO 81060-2:2013 sehingga dapat dijadikan fundamental untuk sistem pengukuran tekanan darah noninvasif.

Health workers during the pandemic act as the frontliner who have the highest risk of contracting the coronavirus. Most of the treatment and examination of the vital condition of COVID-19 patients is carried out with direct contact at least four times a day. This increases the risk of virus spreading, moreover reducing the number of health workers. To date, almost all hospitals still require medical assistance to measure blood pressure using the traditional cuff sphygmomanometer or without assistance however, the measurements are carried out invasively. Therefore, a device that can monitor the patient's vital condition without direct contact, especially in measuring blood pressure and non-invasive is needed. This thesis aims to develop a plethysmography signal processing algorithm based on feature extraction and machine learning for blood pressure prediction. By using the MAX30102 and ESP32 sensors, the PPG signal obtained from the finger will be preprocessed by applying a baseline fitting and peak detection, thus the four main features of the PPG signal, namely systolic peak, diastolic peak, dicrotic notch, and foot can be extracted. This real-time PPG signal feature extraction data is then combined into a single dataset and by using machine learning, blood pressure values are predicted. Evaluation of the blood pressure predictions shows a small Mean Absolute Error value, 1.56/2.35 which meets the ISO 81060-2:2013 standard. Hence, the results demonstrate the applicability of the proposed algorithm in predicting blood pressure and can be developed as a noninvasive real-time blood pressure measurement system in the future.
"
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ivan Widjanarko
"Seiring dengan berjalannya waktu, jumlah populasi di dunia terus bertambah. Dengan demikian, lebih banyak upaya dan inovasi yang dibutuhkan dalam meningkatkan produksi pertanian secara berkelanjutan. Hal ini bertujuan untuk mengurangi kehilangan dan pemborosan pangan, serta memastikan bahwa tidak ada yang menderita kelaparan dan kekurangan gizi. Dengan berdasarkan kepada Kebijakan RPJMN 2020-2024 dan mengingat bahwa Indonesia merupakan negara agraris, penelitian ini bertujuan untuk mengimplementasikan dan mengevaluasi suatu sistem yang mampu mengklasifikasikan tanaman sehat dan gulma berbasis Machine Learning (ML) dengan metode Local Binary Pattern (LBP) sebagai feature extraction dan Extra-Trees sebagai classifier utama. Penelitian ini membuktikan bahwa sistem klasifikasi dengan LBP lebih optimal jika dibandingkan dengan sistem klasifikasi tanpa LBP serta membuktikan bahwa Extra-Trees merupakan classifier yang paling optimal untuk dikombinasikan dengan LBP jika dibandingkan dengan classifier lainnya. Hasilnya, tingkat akurasi dari sistem klasifikasi yang mengimplementasikan LBP sebagai ekstraksi fitur, yakni 99.65%, lebih tinggi daripada sistem klasifikasi yang tidak mengimplementasikan LBP, yakni 98%. Sistem klasifikasi yang mengimplementasikan LBP memperoleh nilai TPR / Sensitivity sebesar 99.3915, FPR sebesar 0.0986, TNR / Specificity sebesar 99.9014, dan FNR sebesar 0.6085. Selain itu, Extra-Trees menjadi classifier dengan tingkat akurasi tertinggi ketika dikombinasikan dengan LBP, jika dibandingkan dengan classifier lainnya. Urutan classifier yang dikombinasikan dengan LBP mulai dari tingkat akurasi tertinggi hingga tingkat akurasi terendah adalah Extra-Trees (99.65%), Stacking (99.55%), Bagging (99.4%), Random Forest (99.4%), Ada Boost (99.35%), Extra Tree (99.25%), Linear SVC (99.25%), MLP (99.2%), Decision Tree (99%), dan NuSVC (98.8%). Dengan demikian, sistem klasifikasi dengan LBP lebih optimal jika dibandingkan dengan sistem klasifikasi tanpa LBP serta Extra-Trees menjadi classifier yang paling optimal untuk dikombinasikan dengan LBP jika dibandingkan dengan classifier lainnya.

Over time, the world's population continues to grow. Thus, more efforts and innovations are needed to increase agricultural production in a sustainable manner. This aims to reduce food loss and waste, as well as ensure that no one suffers from hunger and malnutrition. Based on Kebijakan RPJMN 2020-2024 and remembering that Indonesia is an agricultural country, the author decided to implement and evaluate a system that capable to classifying healthy plants and weeds based on Machine Learning (ML) using the Local Binary Pattern (LBP) method as feature extraction and Extra-Trees as main classifier. This study proves that the classification system with LBP is more optimal than the classification system without LBP and proves that Extra-Trees is the most optimal classifier to be combined with LBP when compared to other classifiers. As a result, the level of accuracy of the classification system that implements LBP as feature extraction, which is 99.65%, is higher than the classification system that does not implement LBP, which is 98%. The classification system that implements LBP has a TPR / Sensitivity value of 99.3915, an FPR of 0.0986, a TNR / Specificity of 99.9014, and an FNR of 0.6085. In addition, Extra-Trees is a classifier with the highest level of accuracy when combined with LBP, if compared to other classifiers. The order of classifiers combined with LBP starting from the highest level of accuracy to the lowest level of accuracy is Extra-Trees (99.65%), Stacking (99.55%), Bagging (99.4%), Random Forest (99.4%), Ada Boost (99.35%), Extra Tree (99.25%), Linear SVC (99.25%), MLP (99.2%), Decision Tree (99%), and NuSVC (98.8%). Thus, the classification system with LBP is more optimal than the classification system without LBP and Extra-Trees is the most optimal classifier to be combined with LBP if compared to other classifiers."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ratna Aminah
"ABSTRAK
<

Diabetes merupakan penyakit kronis yang terjadi ketika terdapat peningkatan kadar glukosa dalam darah karena tubuh tidak dapat atau tidak cukup menghasilkan hormon insulin atau tidak dapat menggunakan insulin secara efektif. Umumnya untuk mendeteksi penyakit diabetes adalah dengan tes kadar gula darah atau hemoglobin HbA1c yang dilakukan oleh praktisi medis. Pada penelitian ini, dibangun sistem prediksi penyakit diabetes berbasis iridologi atau melalui citra mata, menggunakan machine learning. Sistem yang dikembangkan terdiri dari instrumen akuisisi citra mata dan algoritma pengolahan citra. Metode GLCM (Gray Level Co-Occurence Matrix) digunakan untuk proses ekstraksi ciri, dengan tujuan untuk mendapatkan ciri tekstur pada citra. Metode SVM (Support Vector Machine) dan kNN (k Nearest Neighbor) digunakan untuk proses klasifikasi kelas diabetes dan non-diabetes. Hasil klasifikasi kemudian dilakukan proses validasi dengan menggunakan metode k-fold cross validation. Hasil yang diperoleh menunjukkan bahwa metode kNN memiliki performa yang lebih baik dibandingkan dengan metode SVM. Performa terbaik didapatkan saat variasi kombinasi ukuran area segmentasi 30×360 dengan jarak antar tetangga 30 pixel. Tingkat akurasi yang diapatkan dari pengujian sebesar 79,6%, dengan nilai misclassification rate (MR) 20,4%, false positive rate (FPR) 20,6%, false negative rate (FNR) 20%, sensitivity 87,1%, dan specificity 70,0%.

 


ABSTRACT

Diabetes is a chronic disease that occurs when there is an increase in glucose levels in the blood because the body cannot produce enough of the hormone insulin or cannot use insulin effectively. Generally, to detect diabetes is by pengujian blood sugar levels or hemoglobin HbA1c carried out by medical practitioners. In this study, a diabetes prediction system based on iridology or through eye images was constructed using machine learning. The developed system consists of eye image acquisition instruments and image processing algorithms. The GLCM (Gray Level Co-Occurence Matrix) method is used for feature extraction processes, with the aim of obtaining texture characteristics in the image. The SVM (Support Vector Machine) and kNN (k Nearest Neighbor) methods are used to classify diabetic and non-diabetic classes. The classification results are then validated by using the k-fold cross validation method. The results show that kNN method has better performance compared to the SVM method. The best performance is when size of the segmentation area 30×360 pixel with the distance between neighbors 20 pixel. The results show that the accuracy from pengujian is 79.6%, misclassification rate (MR) 20.4%, false positive rate (FPR) 20.6%, false negative rate (FNR) 20.0%, sensitivity 87.1%, and specificity 70.0%.

 

"
Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Baihaqi Hamiz
"Hemoglobin adalah komponen darah yang penting untuk mengikat oksigen di paru paru dan mendistribusikannya ke seluruh tubuh. Metode invasif tidak memungkinkan pengukuran real-time dalam situasi darurat. Pengembangan metode noninvasif untuk pemeriksaan hemoglobin menghadapi tantangan dalam hal akurasi, ketepatan, dan keringkasan alat. Pada penelitian menggunakan sensor MAX30102 sebagai pembaca gelombang merah dan inframerah, OLED sebagai alat yang menampilkan hasil prediksi, dan Nvidia Jetson Nano sebagai processor. Alat juga dilengkapi dengan pembacaan detak jantung, SpO2, dan dua tombol untuk mengulang pembacaan dan mematikan alat. Pelatihan model dilakukan menggunakan dataset yang diperoleh dari riset sebelumnya, "Pengembangan Instrumentasi Pengukur Konsentrasi Hemoglobin Non-Invasif Berbasis Photoplethysmography dan Machine Learning" oleh Ester Vinia (2023). Setelah melakukan pelatihan pada lima jenis model (Dense Neural Network, Decision Tree, Support Vector, Gradient Boosting, dan Random Forest), didapatkan model dengan metode Dense Neural Network memiliki akurasi R2 sebesar 96%, loss MAE sebesar 0,2 dan MSE sebesar 0,11, metode Decision Tree memiliki akurasi R2 sebesar 90%, loss MAE sebesar 0,27 dan MSE sebesar 0,3, metode Support Vector memiliki akurasi R2 sebesar 17%, loss MAE sebesar 1,2 dan MSE sebesar 2,61, metode Gradient Boosting memiliki akurasi R2 sebesar 89%, loss MAE sebesar 0,43 dan MSE sebesar 0,3, dan metode Random Forest memiliki akurasi R2 sebesar 99%, loss MAE sebesar 0,05 dan MSE sebesar 0,02. Prototipe alat kemudian dibuat menggunakan pembelajaran mesin bermodel Random Forest Regressor. Model kemudian ditanam di Nvidia Jetson Nano sehingga alat dapat dioperasikan dengan efisien dan cepat. Pada pengujian alat, didapatkan nilai akurasi sebesar 93,27%.

Hemoglobin is a vital blood component responsible for binding oxygen in the lungs and distributing it throughout the body. Invasive methods do not allow real-time measurement in emergency situations. Developing noninvasive methods for hemoglobin examination faces challenges in accuracy, precision, and device compactness. In this research, a MAX30102 sensor was used for reading red and infrared waves, an OLED for displaying prediction results, and an Nvidia Jetson Nano as the processor. The device also includes heart rate and SpO2 readings, and two buttons for repeating readings and turning off the device. The model was trained using a dataset obtained from previous research, "Development of Non Invasive Hemoglobin Concentration Measurement Instrumentation Based on Photoplethysmography and Machine Learning" by Ester Vinia (2023). After training on five types of models (Dense Neural Network, Decision Tree, Support Vector, Gradient Boosting, and Random Forest), the Dense Neural Network model achieved an R2 accuracy of 96%, MAE loss of 0.2, and MSE loss of 0.11; the Decision Tree method achieved an R2 accuracy of 90%, MAE loss of 0.27, and MSE loss of 0.3; the Support Vector method achieved an R2 accuracy of 17%, MAE loss of 1.2, and MSE loss of 2.61; the Gradient Boosting method achieved an R2 accuracy of 89%, MAE loss of 0.43, and MSE loss of 0.3; and the Random Forest method achieved an R2 accuracy of 99%, MAE loss of 0.05, and MSE loss of 0.02. The device prototype was then developed using the Random Forest Regressor model. The model was embedded in the Nvidia Jetson Nano, allowing the device to operate efficiently and quickly. During testing, the device achieved an accuracy of 93.27%."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Iryanti Djaja
"Budidaya udang vaname (Litopenaeus vannamei) sangat diminati sehingga permintaan udang ini meningkat setiap tahunnya. Masalah terberat para petambak adalah kegagalan panen yang berakibat kepada keberlangsungan usaha mereka. Perlu adanya usaha perbaikan untuk meningkatkan keberhasilan panen. Penelitian ini bertujuan untuk lebih menggali mengenai penggunaan machine learning dalam prediksi hasil panen dari data kualitas air. Hasil prediksi ini selanjutnya dipakai dan digunakan dalam proses bisnis sehingga dapat meningkatkan produktivitas. Analisis yang digunakan pada penelitian ini adalah analisis kuantitatif dan kualitatif serta perbaikan proses bisnis. Analisis kuantitatif dengan metode big data dan machine learning. Model yang dipakai adalah k-Nearest Neighbor (kNN), Decision Tree (DT) dan Logistic Regression (LR). Analisis kualitatif dilakukan dengan observasi dan interview untuk memperbaiki proses bisnis. Proses bisnis diperbaiki mengikuti BPM Lifecycle dengan memasukan hasil analisis kuantitatif. Dari penelitian ini didapatkan bahwa prediksi machine learning dengan model Decision Tree dari variabel rasio bakteri merugikan dan NH4+ memberikan akurasi tertinggi mencapai 96%. Setelah didapatkan model dan variabel dengan akurasi tertinggi, penelitian ini juga melakukan penerapan ke dalam proses bisnis dengan pendekatan BPM Lifecycle sehingga hasil tersebut dapat diimplementasi dan memberikan hasil yang lebih produktif.

Interest in Vaname shrimp (Litopenaeus vannamei) farming is growing every year. The biggest problem for shrimp farming was the unsuccessful harvest that affected their business sustainability. So, there should be an improvement made to increase the chance of a successful harvest and its productivity. Past research mentioned that vaname shrimp harvest result can be predicted by machine learning approach from water quality data. It gave good accuracy and can be used to have faster decision making. The objective of this research is to deep dive into the utilization of machine learning to predict the successful harvest from water quality data. The predicted result will be utilized in the business process to improve productivity. Analysis that used at this research are quantitative and qualitative with business process improvement. Quantitative analysis used big data methode and machine learning. Models that have been applied are k-Nearest Neighbor (kNN), Decision Tree (DT) dan Logistic Regression (LR). Data that is used for analysis are pH, salinity, NOx, NH4+, and harmful bacteria index. Qualitative analysis was applied by observation and interview with the focus to improve business process. Business processes will be improved using BPM Lifecycle with the utilization of quantitative result. This research showed that prediction machine learning with Decision Tree model from harmful bacteria index and NH4+ giving the best accuracy until 96%. The next step was utilizing the quantitative result at the business process with BPM Lifecycle approach so the result can be implemented and gave more productive result."
Jakarta: Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2023
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>