Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 183665 dokumen yang sesuai dengan query
cover
Leonardo Jeremy Pong Pare Munda
"Penelitian ini mengembangkan sistem deteksi intrusi jaringan dengan mengintegrasikan Zeek, model machine learning, dan Wazuh sebagai platform Security Information and Event Management (SIEM). Data dikumpulkan secara mandiri melalui proses monitoring jaringan selama dua jam menggunakan Zeek pada empat skenario: normal, GoldenEye, Slowloris, dan SlowHTTP. Log Zeek dianalisis secara real-time menggunakan model machine learning yang telah dilatih sebelumnya. Model dijalankan melalui pipeline Python yang membaca conn.log secara terus-menerus, memprediksi label “benign” atau jenis serangan, dan menyimpan hasilnya dalam file JSON. File ini kemudian dikirim ke Wazuh Server untuk dianalisis dan ditampilkan sebagai alert. Seluruh log Zeek juga dikirim ke Wazuh untuk mendukung proses threat hunting. Hasil pengujian menunjukkan bahwa sistem mampu mendeteksi serangan DoS secara efektif dengan detection rate mencapai 98,9% pada GoldenEye, 96,8% pada Slowloris, dan 77,3% pada SlowHTTPTest, jauh lebih tinggi dibandingkan pendekatan rule-based Zeek script yang hanya mencapai 46,7%, 55,1%, dan 28,4%. False positive rate juga tetap rendah, dengan ratarata di bawah 2% pada semua skenario. Selain itu, mean time to detect (MTTD) sistem menunjukkan performa yang responsif dan bersaing dengan Zeek script. Temuan ini membuktikan bahwa integrasi SIEM berbasis machine learning efektif dalam mendeteksi ancaman siber secara real-time di lingkungan yang terkendali.

This research develops a network intrusion detection system by integrating Zeek, a machine learning model, and Wazuh as a Security Information and Event Management (SIEM) platform. Data was independently collected through two hours of network monitoring using Zeek under four scenarios: normal, GoldenEye, Slowloris, and SlowHTTP. The Zeek logs were analyzed in real-time using a pre-trained machine learning model. The model was executed through a Python-based pipeline that continuously reads the conn.log, predicts whether each connection is benign or a specific attack type, and stores the results in a JSON file. This file is then sent to the Wazuh Server for analysis and displayed as alerts. In addition, all Zeek logs are forwarded to Wazuh to support threat hunting activities. Evaluation results show that the system can effectively detect DoS attacks, achieving a detection rate of 98.9% for GoldenEye, 96.8% for Slowloris, and 77.3% for SlowHTTPTest. These results significantly outperform the rule-based Zeek scripts, which only reached 46.7%, 55.1%, and 28.4% respectively. The system also maintains a low false positive rate, averaging below 2% across all scenarios. Moreover, the system demonstrates a responsive and competitive mean time to detect (MTTD) compared to Zeek scripts. These findings confirm that a machine learning-based SIEM integration can effectively enhance real-time cyber threat detection in controlled environments. "
Depok: Fakultas Teknik Universitas Indonesia, 2025
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Farrel Mirawan
"Keamanan sistem jaringan menjadi fokus penting dalam menghadapi kompleksitas serangan siber yang terus berkembang dan mengancam kerahasiaan, integritas, dan ketersediaan. Penelitian ini menganalisis sistem deteksi intrusi (Intrusion Detection System/IDS) berbasis machine learning untuk klasifikasi biner yang memanfaatkan fitur-fitur lalu lintas jaringan pada dataset UNSW-NB15 dan NSL-KDD guna membedakan trafik normal dan serangan. Enam algoritma diuji, yaitu K-Nearest Neighbors (K-NN), Random Forest, Support Vector Machine (SVM), Naive Bayes, Decision Tree, dan Logistic Regression, menggunakan dataset NSL-KDD dan UNSW-NB15. Variasi rasio data training dan testing (50:50 hingga 90:10) turut diuji untuk memperoleh konfigurasi optimal, di mana rasio 80:20 memberikan performa terbaik secara konsisten. Hasil pengujian menunjukkan bahwa Random Forest merupakan algoritma dengan akurasi tertinggi (98,59% pada UNSW-NB15 dan 98,02% pada NSL-KDD) dan mampu mempertahankan performa yang kuat pada data uji baru dengan komposisi seimbang normal dan serangan (86,86% pada UNSW-NB15 dan 80,67% pada NSL-KDD). Sistem yang dikembangkan berhasil menyajikan hasil deteksi dalam laporan, sekaligus memperlihatkan kemampuan generalisasi yang baik sebagai IDS berbasis machine learning.

Network security has become a critical focus in addressing the complexity of evolving cyberattacks that threaten confidentiality, integrity, and availability. This study analyzes a machine learning-based Intrusion Detection System (IDS) for binary classification, leveraging network traffic features in the UNSW-NB15 and NSL-KDD datasets to distinguish between normal traffic and attacks. Six algorithms were evaluated, namely K-Nearest Neighbors (K-NN), Random Forest, Support Vector Machine (SVM), Naive Bayes, Decision Tree, and Logistic Regression. Various training and testing data split ratios (from 50:50 to 90:10) were tested to determine the optimal configuration, where the 80:20 ratio consistently delivered the best performance. The results show that Random Forest achieved the highest accuracy (98.59% on UNSW-NB15 and 98.02% on NSL-KDD) and maintained strong performance when tested on new data with a balanced composition of normal and attack traffic (86.86% on UNSW-NB15 and 80.67% on NSL-KDD). The developed system successfully presents detection results in reports while demonstrating good generalization capability as a machine learning-based IDS."
Depok: Fakultas Teknik Universitas Indonesia, 2025
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Farhan Haniftyaji
"Arsitektur 5G Core (5GC) menjawab permintaan akan koneksi berkecepatan tinggi dan aman dengan janji konektivitas yang lebih cepat dan keandalan jaringan yang lebih baik. Namun, tantangan keamanan siber terhadap serangan pada Session Management Function (SMF) melalui Packet Forwarding Control Protocol (PFCP) mendorong pengembangan Intrusion Detection System (IDS) menggunakan Machine Learning. Dataset yang digunakan dalam penelitian adalah 5G Core PFCP Intrusion Dataset milik George Amponis, dkk. Penelitian dilakukan dengan menggunakan metode fitur seleksi seperti filter dengan korelasi Pearson, embedded, dan wrapper dengan Recursive Feature Elimination (RFE). Model Machine Learning yang diujikan adalah Random Forest, Gradient Boost Machine (GBM), Light Gradient Boost Machine (LGBM), Extreme Gradient Boost (XGB), dan AdaBoost. Skenario penelitian dibuat menjadi dua berdasarkan data awal dari 5G Core PFCP Intrusion Dataset dengan lima kelas target dan skenario setelah dilakukan penggabungan pada serangan PFCP Session Modification Flood Attack menjadi empat kelas target. Penelitian mendapatkan bahwa kombinasi model GBM dengan metode seleksi fitur embedded pada skenario empat kelas target memiliki kinerja terbaik dalam mendeteksi serangan PFCP pada jaringan 5G Core dengan nilai akurasi sebesar 97,366%, presisi 97,383%, recall 97,366%, dan f1-score sebesar 97,375%.

The 5G Core (5GC) architecture addresses the demand for high-speed and secure connections with the promise of faster connectivity and better network reliability. However, cybersecurity challenges against attacks on the Session Management Function (SMF) through the Packet Forwarding Control Protocol (PFCP) drive the development of an Intrusion Detection System (IDS) using Machine Learning. The dataset used in the research is the 5G Core PFCP Intrusion Dataset by George Amponis, et al. Research was conducted using feature selection methods such as filters with Pearson correlation, embedded, and wrapper with Recursive Feature Elimination (RFE). The Machine Learning models tested were Random Forest, Gradient Boost Machine (GBM), Light Gradient Boost Machine (LGBM), Extreme Gradient Boost (XGB), and AdaBoost. The research scenarios were made into two based on the initial data from the 5G Core PFCP Intrusion Dataset with five target classes and the scenario after combining the PFCP Session Modification Flood Attack into four target classes. The research found that the combination of the GBM model with the embedded feature selection method in the four target classes scenario has the best performance in detecting PFCP attacks on the 5G Core network with an accuracy value of 97.366%, precision of 97.383%, recall of 97.366%, and f1-score of 97.375%."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Zahra Rubena Putri
"Meningkatnya jumlah pengguna internet saat ini memberikan banyak dampak pada kehidupan manusia, karena internet menghubungkan banyak perangkat setiap hari. Perkembangan ini membawa berbagai dampak positif maupun dampak negatif. Salah satu dampak negatifnya adalah adanya aktivitas berbahaya yang dapat menyerang jaringan. Intrusion detection system merupakan sebuah sistem manajemen keamanan pada jaringan komputer. Data yang dimiliki intrusion detection system mempunyai fitur yang cukup banyak tetapi tidak semua fitur yang ada relevan dengan data yang digunakan dan jika data tersebut diolah akan memakan waktu yang cukup lama. Oleh karena itu, diperlukan pemilihan fitur untuk meningkatkan akurasi serta memperpendek waktu pembelajaran.
Beberapa metode pembelajaran sudah pernah diterapkan untuk menyelesaikan masalah intrusion detection system, seperti Na ? ve Bayes, Decision Tree, Support Vector Machines dan Neuro-Fuzzy Methods. Metode pemilihan fitur yang digunakan untuk skripsi ini adalah metode Chi-Square. Setelah dilakukan pemilihan fitur, akan didapatkan hasil berupa sebuah dataset baru yang kemudian akan diklasifikasi menggunakan metode Extreme Learning Machines. Hasilnya menunjukkan setelah dilakukan pemilihan fitur dengan metode Chi-Square, tingkat akurasi akan meningkat serta waktu yang dibutuhkan algoritma pembelajaran untuk menyelesaikan metode tersebut menjadi semakin singkat.

The increasing rates of internet users nowadays must be give much impacts to our lifes, because the internet things can connect more devices every day. This growth carriers several benefits as well as can attack the network. Intrusion detection system IDS are used as security management system. IDS can be used to detect suspicious activity or alert the system. IDS involves large number of data sets with several different features but not all features are relevant with the data sets and it takes long computational time to solve IDS data sets. Therefore, it has to do feature selection to remove the irrelevant features, to increase the accuracy and to shorten the computational time for the learning methods.
Many researches about learning method to solve intrusion detection system problem have been done to develop and test the best model from various classifiers, such as Na ve Bayes, Decision Tree, Support Vector Machines, and Neuro Fuzzy Methods. For this thesis, the feature selection methods will be used is Chi Square methods to reduce dimentionality of IDS data sets. The new IDS data sets with the best selected features are obtained afterwards, and then these new data sets will be classified with Extreme Learning Machines methods. The result denotes that Extreme Learning Machines classification methods provides better accuracy level while combined with Chi Square feature selection.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2017
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Diwandaru Rousstia
"Risiko serangan siber berbanding lurus dengan pertumbuhan aplikasi dan jaringan komputer. Intrusion Detection System (IDS) diimplementasikan agar dapat mendeteksi serangan siber dalam lalu lintas jaringan. Akan tetapi terdapat permasalahan pada pendeteksian serangan yang belum diketahui atau jenis serangan baru. Selain itu juga terdapat masalah kinerja tentang waktu deteksi, akurasi deteksi, dan false alarm. Dibutuhkan deteksi anomali dalam lalu lintas jaringan untuk mengurangi permasalahan tersebut dengan pendekatan machine learning. Pengembangan dan pemanfaatan IDS dengan machine learning telah diterapkan dalam beberapa penelitian sebagai solusi untuk meningkatkan kinerja dan evaluasi prediksi deteksi serangan. Memilih pendekatan machine learning yang tepat diperlukan untuk meningkatkan akurasi deteksi serangan siber. Penelitian ini menggunakan metode homogeneous ensemble learning yang mengoptimalkan algoritma tree khususnya gradient boosting tree - LightGBM. Dataset Communications Security Establishment dan Canadian Institute of Cybersecurity 2018 (CSE-CIC-IDS 2018) digunakan untuk mengevaluasi pendekatan yang diusulkan. Metode Polynom-fit SMOTE (Synthetic Minority Oversampling Technique) digunakan untuk menyelesaikan masalah ketidakseimbangan dataset. Penerapan metode spearman’s rank correlation coefficient pada dataset menghasilkan 24 fitur subset dari 80 fitur dataset yang digunakan untuk mengevaluasi model. Model yang diusulkan mencapai akurasi 99%; presisi 99,2%, recall 97,1%; F1-score 98,1%; ROC-AUC 99,1%; dan average-PR 98,1% serta meningkatkan waktu pelatihan model dari 3 menit 25,10 detik menjadi 2 menit 39,68 detik.

The risk of cyberattacks is directly proportional to the growth of applications and computer networks. An Intrusion Detection System (IDS) is implemented to detect cyber attacks in network traffic. However, there are problems detecting unknown attacks or new types of attacks. In addition, there are performance issues regarding detection time, detection accuracy, and false alarms. A machine learning approach takes anomaly detection in network traffic to reduce these problems. The development and utilization of IDS with machine learning have been applied in several studies to improve performance and evaluate attack detection predictions. Choosing the right machine learning approach is necessary to improve the accuracy of cyberattack detection. This research uses a homogeneous ensemble learning method that optimizes tree algorithms, especially gradient boosting tree - LightGBM. The Communications Security Establishment and Canadian Institute of Cybersecurity 2018 (CSE-CIC-IDS 2018) dataset evaluated the proposed approach. The Polynom-fit SMOTE (Synthetic Minority Oversampling Technique) method solved the dataset imbalance problem. The application of spearman's rank correlation coefficient method to the dataset resulted in 24 subset features of the 80 dataset features used to evaluate the model. The proposed model achieves 99% accuracy; precision 99.2%, recall 97.1%; F1-score 98.1%; ROC-AUC 99.1%; and an average-PR of 98.1% and increased the training time of the model from 3 minutes 25.10 seconds to 2 minutes 39.68 seconds."
Depok: Fakultas Teknik Universitas Indonesia, 2021
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Theodorus Lucas
"Penelitian ini melakukan implementasi dan perbandingan performa antara tools Suricata dan Zeek sebagai IDS yang diintegrasikan dengan SIEM dashboard menggunakan ELK stack. Tujuan dari penelitian ini ialah untuk menunjukkan implementasi dari kedua tools ini untuk mendukung kegiatan network monitoring, dan juga mengukur performa dari masing-masing tools sebagai IDS dalam menghadapi serangan siber berupa denial-of-service (DoS). Penelitian ini dilakukan di dalam sebuah jaringan internal, dengan menggunakan server Linux untuk IDS maupun ELK stack. Pengujian yang dilakukan berupa pengujian tiga buah skenario, yang masing-masing mensimulasikan jenis serangan DoS yang berbeda. Terdapat dua aspek penilaian performa, yaitu performa angka persentase deteksi dan juga angka persentase penggunaan sumber daya CPU dan memori. Hasil yang diperoleh menunjukkan bahwa sebagai IDS, Suricata lebih diunggulkan dibandingkan Zeek karena dashboard yang lebih beragam dan memiliki  fitur alerting; memiliki persentase deteksi yang lebih besar untuk dua dari tiga skenario yang diujikan, yaitu sebesar 86,14% untuk skenario 1 dan 79,41% untuk skenario 3; dan juga memiliki penggunaan sumber daya yang lebih efisien dari seluruh skenario yang diujikan, yaitu penggunaan CPU dan memori masing-masing sebesar 24,32%  dan 3,88% untuk skenario 1, 29,12% dan 4,56% untuk skenario 2, serta 16,96% dan 4,66% untuk skenario 3.

This research conducts the implementation and performance comparison between Suricata and Zeek tools as an IDS integrated with a SIEM dashboard using the ELK stack. The aim of this study is to demonstrate the implementation of both tools to support network monitoring activities and measure the performance of each tool as an IDS in facing denial-of-service (DoS) cyber attacks. The research was conducted within an internal network, utilizing Linux servers for both IDS and the ELK stack. The testing involved three scenarios, each simulating different types of DoS attacks. There are two performance evaluation aspects: detection rate (DR) performance and CPU and memory resource utilization rate. The results indicate that Suricata is favored over Zeek as an IDS due to its more enhanced dashboard and better alerting features; a better DR for two of the three scenarios tested, with DR values of 86,14% for scenario 1 and 79,41% for scenario 2; and also more efficient resource usage for all three scenarios tested, which  for CPU and memory usage respectively is 24,32% and 3,88% for scenario 1, 29,12% and 4,56% for scenario 2, and 16,96% and 4,66% for scenario 3."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Pinem, Josua Geovani
"Keamanan data (data security) sudah menjadi bagian vital didalam suatu organisasi yang menggunakan konsep sistem informasi. Semakin hari ancaman-ancaman yang datang dari Internet menjadi semakin berkembang hingga dapat mengelabuhi firewall maupun perangkat antivirus. Selain itu jumlah serangan yang masuk menjadi lebih besar dan semakin sulit untuk diolah oleh firewall maupun antivirus. Untuk dapat meningkatkan keamanan dari suatu sistem biasanya dilakukan penambahan Intrusion Detection Sistem IDS , baik sistem dengan kemampuan anomaly-based maupun sistem pendeteksi dengan kemampuan signature-based. Untuk dapat mengolah serangan yang jumlahnya besar maka digunakan teknik Big Data. Penelitian yang dilakukan ini menggunakan teknik anomaly-based dengan menggunakan Learning Vector Quantization dalam pendeteksian serangan.
Learning Vector Quantization adalah salah satu jenis neural network yang bisa mempelajari sendiri masukan yang masuk kemudian memberi keluaran sesuai dengan masukan tersebut. Beberapa modifikasi dilakukan untuk meningkatkan akurasi pengujian, antara lain dengan melakukan variasi parameter-parameter uji yang ada pada LVQ. Dengan melakukan variasi pada parameter uji learning rate, epoch dan k-fold cross validation dihasilkan keluaran dengan hasil yang lebih efisien.
Keluaran diperoleh dengan menghitung nilai information retrieval dari tabel confusion matrix tiap- tiap kelas serangan. Untuk meningkatkan kinerja sistem maka digunakan teknik Principal Component Analysis untuk mereduksi ukuran data. Dengan menggunakan 18-Principal Component data berhasil direduksi sebesar 47.3 dengan nilai Recognition Rate terbaik sebesar 96.52 dan efesiensi waktu lebih besar 43.16 daripada tanpa menggunakan PCA.

Data security has become a very serious part of any organizational information system. More and more threats across the Internet has evolved and capable to deceive firewall as well as antivirus software. In addition, the number of attacks become larger and become more dificult to be processed by the firewall or antivirus software. To improve the security of the system is usually done by adding Intrusion Detection System IDS , which divided into anomaly based detection and signature based detection. In this research to process a huge amount of data, Big Data technique is used. Anomaly based detection is proposed using Learning Vector Quantization Algorithm to detect the attacks.
Learning Vector Quantization is a neural network technique that learn the input itself and then give the appropriate output according to the input. Modifications were made to improve test accuracy by varying the test parameters that present in LVQ. Varying the learning rate, epoch and k fold cross validation resulted in a more efficient output.
The output is obtained by calculating the value of information retrieval from the confusion matrix table from each attack classes. Principal Component Analysis technique is used along with Learning Vector Quantization to improve system performance by reducing the data dimensionality. By using 18 Principal Component, dataset successfully reduced by 47.3 , with the best Recognition Rate of 96.52 and time efficiency improvement up to 43.16.
"
Depok: Fakultas Teknik Universitas Indonesia, 2017
S67412
UI - Skripsi Membership  Universitas Indonesia Library
cover
Sherly
"Dengan berkembangnya teknologi menyebabkan banyaknya kerentanan yang dapat terjadi pada jaringan wireless yang sering kali dimanfaatkan oleh berbagai pihak contohnya serangan DoS. Oleh karena itu sangat dibutuhkan sistem yang user friendly untuk memudahkan user dalam mendeteksi dan mencegah serangan tersebut sebelum attacker membahayakan jaringan. System tersebut dinamakan Intrusion Detection System (IDS). Pada pengujian ini menggunakan sistem operasi windows 10 dengan beberapa tools yaitu Snort sebagai IDS software, BASE sebagai report modul, Kiwi Syslog untuk menampilkan alert, dan hub sebagai network device. Ada beberapa jenis serangan yang dilakukan yaitu IP Scan dan Port Scan digunakan untuk mencari IP dan Port yang terbuka agar dapat diserang, dan Flooding sebagai penyerangnya. Dalam pengujian ini, terdapat beberapa skenario yang dilakukan yaitu pengujian Functionality Test pada client 1 – 3 untuk membandingkan nilai serangan, dan juga untuk mengetahui response time dari serangan yang dilakukan tersebut. Pada skenario pertama, dilakukan flooding pada 1 client (komputer target) dengan IP address 192.168.0.8 selama 60 menit lalu mendapatkan hasil 307.758 alert dan response time selama 0.000105741 s. Pada skenario kedua, dilakukan flooding terhadap 2 client sekaligus dengan IP address 192.168.0.1 dan 192.168.0.5 lalu hasil yang didapatkan sebanyak 378.920 alert dan response time selama 0.000127213 s. Dan pada skenario ketiga, dilakukan flooding terhadap 3 client sekaligus dengan IP address 192.168.0.8, 192.168.0.9, dan 192.168.0.4 lalu mendapatkan hasil sebanyak 430.212 alert dan response time selama 0.000142852 s. Pada setiap skenario dilakukan pengujian sebanyak 10 kali untuk melihat hasil yang didapatkan. Hasil yang didapat setelah melakukan pengujian tersebut ternyata mengalami kenaikan alert yang ditunjukan dengan persentase sebagai berikut yaitu dari skenario pertama ke skenario kedua sebesar 23,12%, skenario kedua ke skenario ketiga sebesar 13,53%, skenario pertama ke skenario ketiga sebesar 39,78%. Begitupula dengan response time yaitu dari skenario pertama ke skenario kedua sebesar 20,30%, skenario kedua ke skenario ketiga sebesar 12,29%, skenario pertama ke skenario ketiga sebesar 35,09%
With the development of technology, it causes many vulnerabilities that can occur in wireless networks which are often exploited by various parties, for example DoS attacks. Therefore, a user friendly system is needed to make it easier for users to detect and prevent these attacks before the attacker harms the network. The system is called the Intrusion Detection System (IDS). In this test using the Windows 10 operating system with several tools, namely Snort as IDS software, BASE as a report module, Kiwi Syslog to display alerts, and a hub as a network device. There are several types of attacks carried out, namely IP Scan and Port Scan used to find IP and open ports so that they can be attacked, and Flooding as the attacker. In this test, there are several scenarios that are carried out, namely Functionality Tests on clients 1-3 to compare the attack values, and also to determine the response time of the attacks carried out. In the first scenario, one client (target computer) was flooded with the IP address 192.168.0.8 for 60 minutes and then got 307.758 alerts and 0.000105741 s response time. In the second scenario, 2 clients are flooded at once with IP addresses 192.168.0.1 and 192.168.0.5 then the results obtained are 378,920 alerts and response time is 0.000127213 s. And in the third scenario, 3 clients are flooded at once with IP addresses 192.168.0.8, 192.168.0.9, and 192.168.0.4 and then get 430,212 alerts and a response time of 0.000142852 s. In each scenario, 10 times were tested to see the results obtained. The results obtained after carrying out the test turned out to have increased alerts as indicated by the following percentages, namely from the first scenario to the second scenario of 23.12%, the second scenario to the third scenario of 13.53%, the first scenario to the third scenario of 39.78 %. Likewise, the response time from the first scenario to the second scenario is 20.30%, the second scenario to the third scenario is 12.29%, the first scenario to the third scenario is 35.09%.
"
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nabil Mafaza
"Penggunaan internet telah mengubah hidup dan perilaku manusia. Internet yang awalnya hanya dimanfaatkan segilintir orang, berubah menjadi sebuah hal yang banyak orang manfaatkan. Perubahan perilaku manusia terlihat dalam cara manusia berkomunikasi, belajar, sampai menikmati konten hiburan. Namun, di balik manfaatnya, internet membawa bahaya yang merugikan banyak pihak. Bahaya tersebut timbul dalam bentuk serangan siber. Untuk mengatasi serangan siber, banyak perangkat keras dan lunak yang digunakan, salah satunya adalah intrusion detection system (IDS). Akan tetapi, IDS tidak dapat mendeteksi serangan baru akibat sifat pendeteksiannya yang rule-based. Penelitian ini bertujuan untuk menambah kemampuan IDS dalam mendeteksi serangan siber dengan menggunakan model machine learning (ML), khususnya autoencoder, untuk mendeteksi serangan siber dalam lalu lintas jaringan. Autoencoder digunakan untuk meng-encode lalu lintas jaringan, kemudian men-decode/merekonstruksi hasil encode. Lalu lintas jaringan akan dideteksi sebagai serangan siber apabila perbedaan hasil rekonstruksi dengan lalu lintas jaringan asli melebihi ambang tertentu. Berdasarkan testing yang dilakukan, model autoencoder paling optimal adalah model yang di-train dengan dataset yang dipisah menjadi dense dan sparse berdasarkan nilai quantile 70% fitur tot_l_fwd_pkt dan tot_l_bwd­_pkt, dilakukan feature selection menggunakan random forest dengan nilai importance 0,2, menggunakan activation function ReLU, dan menggunakan empat layer encoder dan decoder serta jumlah neuron 16, 8, 4, 2, 1, 2, 4, dan 16. Model autoencoder untuk dataset dense terbaik memiliki F1-score 84% (lalu lintas benign) dan 83% (lalu lintas malicious), trainable parameter berjumlah 830, dan ukuran model sebesar 71 KB. Sementara, model autoencoder untuk dataset sparse terbaik memiliki F1-score 71% untuk lalu lintas benign dan malicious, trainable parameter berjumlah 890, dan ukuran model sebesar 72 KB.

The use of the internet has transformed human lives and behavior. Initially utilized by a few, the internet has become an essential tool for many. This transformation is evident in how people communicate, learn, and enjoy entertainment content. However, alongside its benefits, the internet also poses significant risks in the form of cyber attacks. To combat these threats, various hardware and software solutions, including intrusion detection systems (IDS), are employed. Traditional IDS, however, struggle to detect new attacks due to their rule-based nature. This research aims to enhance IDS capabilities in detecting cyber attacks by using machine learning (ML) models, specifically autoencoders, to detect cyber attacks in network traffic. Autoencoders encode network traffic and then decode/reconstruct the encoded data. Network traffic is identified as a cyber attack if the reconstruction error exceeds a certain threshold. Based on the testing conducted, the most optimal autoencoder model was trained on a dataset split into dense and sparse categories based on the 70% quantile values of the tot_l_fwd_pkt and tot_l_bwd_pkt features. Feature selection was performed using random forest with an importance threshold of 0.2, employing the ReLU activation function, and using four encoder and decoder layers with neuron counts of 16, 8, 4, 2, 1, 2, 4, and 16. The best autoencoder model for dense dataset achieved an F1-score of 84% for benign traffic and 83% for malicious traffic, with 830 trainable parameters and a model size of 71 KB. Meanwhile, the best autoencoder model for sparse dataset achieved an F1-score of 71% for both benign and malicious traffic, with 890 trainable parameters and a model size of 72 KB."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hada Melino Muhammad
"Anomaly-Based Network Intrusion Detection System (ANIDS) memegang peranan yang sangat penting dengan berkembangnya teknologi internet. ANIDS digunakan untuk mendeteksi trafik jaringan yang membahayakan pengguna internet. Metode tradisional yang digunakan untuk membuat ANIDS masih sulit untuk mengekstrak fitur dari trafik yang banyak dan berdimensi tinggi. Selain itu, jumlah sampel yang sedikit pada beberapa jenis trafik menyebabkan ketidakseimbangan dataset dan mempengaruhi performa deteksi ANIDS. Ketidakseimbangan dataset dapat diatasi dengan oversampling dan atau undersampling. Penulis mengusulkan metode oversampling menggunakan modifikasi dari Deep Convolutional Generative Adversarial Network (DCGAN) yang dapat mengekstrak fitur trafik data secara langsung dan menghasilkan sampel baru untuk menyeimbangkan dataset. Modifikasi DCGAN bertujuan untuk menghindari adanya pemetaan data tabular menjadi data gambar sebelum masuk ke DCGAN. Selain itu, modifikasi DCGAN bertujuan untuk menstabilkan pelatihan model untuk data tabular sehingga data yang dihasilkan lebih berkualitas. Pengujian efek modifikasi DCGAN dilakukan dengan melatih model ANIDS yang terdiri dari model Deep Neural Network (DNN) dan Convolutional Neural Network (CNN). Evaluasi performa deteksi dilakukan dengan confusion matrix serta metrik accuracy, precision, recall, dan F1-Score. Hasil yang didapatkan adalah oversampling menggunakan modifikasi DCGAN meningkatkan validation accuracy dari 75.77% menjadi 81.41% pada model DNN dan 73.94% menjadi 80.76% pada model CNN. Peningkatan metrik lain juga terjadi akibat dari peningkatan validation accuracy.

Anomaly-Based Network Intrusion Detection System (ANIDS) plays a very important role with the development of internet technology. ANIDS is used for detecting network traffic that endangers internet users. The traditional methods used to create ANIDS are still difficult to extract features from high-dimensional traffic. In addition, the small number of samples in some types of traffic causes imbalanced dataset and affects ANIDS detection performance. Imbalanced dataset can be overcome by oversampling and or undersampling. The author proposes an oversampling method using a modification of the Deep Convolutional Generative Adversarial Network (DCGAN) which can extract data traffic features directly and generate new samples to balance the dataset. DCGAN modification aims to avoid mapping tabular data into image data before entering DCGAN. In addition, the DCGAN modification aims to stabilize the training model for tabular data so that the resulting data is of higher quality. Testing the effects of the DCGAN modification was carried out by training the ANIDS model consisting of the Deep Neural Network (DNN) and Convolutional Neural Network (CNN) models. Evaluation of detection performance is carried out using a confusion matrix and the metrics of accuracy, precision, recall, and F1-Score. The results obtained are oversampling using the DCGAN modification increases the validation accuracy from 75.77% to 81.41% in the DNN model and 73.94% to 80.76% in the CNN model. Improvements in other metrics also occurred as a result of the increase in validation accuracy."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>