Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 119209 dokumen yang sesuai dengan query
cover
Muhammad Azka Zulfa Hermawan
"Penelitian ini bertujuan memanfaatkan kalsium oksida (CaO) dari pasir kuarsa Lombok sebagai katalis pada sintesis aviation fuel melalui proses pirolisis limbah ban. Tiga variasi utama dilakukan, yaitu variasi persen berat katalis (1 wt%, 3 wt%, dan 5 wt%), proses treatment terhadap pasir Pantai Pink, serta perbandingan sumber pasir (Pantai Pink, Tanjung Aan, Kuta Mandalika, dan CaO analitik). Penelitian ini menguji beberapa parameter, termasuk uji GC-MS, uji FTIR, uji XRD, uji BET, uji XRF, uji SEM-EDX, densitas, dan viskositas. Hasil menunjukkan bahwa katalis CaO dari pasir pantai Lombok berhasil berpengaruh terhadap perubahan sifat fisik dan kimia aviation fuel yang dibuktikan dengan uji BET dimana luas permukaan spesifik tinggi (368,927 m²/g), uji SEM-EDX dimana permukaan partikel yang tidak beraturan dan berpori yang menujukkan luas permukaan katalis besar dan dapat mengidentifikasi Ca (42,1% weight) dan O (57,4% weight) sebagai unsur dominan,  uji XRF yang mendapatkan kandungan (CaO) dengan konsentrasi sangat tinggi yaitu 89,919%. dan XRD yang menunjukkan puncak khas CaO pada 2θ = 37,37°, yang sesuai dengan karakteristik kristal kalsium oksida (CaO). Meski demikian, aviation fuel yang dihasilkan masih belum memenuhi standar Jet A/A-1 karena densitas yang didapatkan aviation fuel sekitar 892–909,38 kg/m³ dan viskositas sekitar 2,406–2,804 mm²/s masih di tidak sesuai standar, yaitu pada densitas (775–840 kg/m³) dan viskositas (idealnya 1,3–1,9 mm²/s pada 40 °C). Temuan ini menunjukkan bahwa pasir pantai Lombok memiliki potensi kuat sebagai katalis pada proses pirolisis limbah ban, namun masih perlu dilakukannya proses upgrading lanjutan terhadap aviation fuel hasil pirolisis, guna menurunkan densitas dan viskositas agar sesuai dengan standar Jet A/Jet A-1. Penelitian ini diharapkan memberikan hasil yang komprehensif dalam skala laboratorium dan berkontribusi pada pengembangan teknologi pembuatan aviation fuel dari limbah ban menggunakan katalis kalsium oksida.

This study aims to utilize calcium oxide (CaO) from Lombok quartz sand as a catalyst in the synthesis of aviation fuel through the pyrolysis process of waste tires. Three main variations were conducted, namely the weight percent variation of the catalyst (1 wt%, 3 wt%, and 5 wt%), the treatment process of Pink Beach sand, and the comparison of sand sources (Pink Beach, Tanjung Aan, Kuta Mandalika, and analytical CaO). This study tested several parameters, including GC-MS test, FTIR test, XRD test, BET test, XRF test, SEM-EDX test, density, and viscosity. The results showed that the CaO catalyst from Lombok beach sand successfully influenced the changes in the physical and chemical properties of aviation fuel as evidenced by BET test where the specific surface area was high (368.927 m²/g), SEM-EDX test where the irregular and porous particle surface indicated a large catalyst surface area and could identify Ca (42.1% weight) and O (57.4% weight) as the dominant elements, XRF test which obtained a very high concentration of (CaO) of 89.919%. and XRD which showed a typical CaO peak at 2θ = 37.37°, which is consistent with the crystalline characteristics of calcium oxide (CaO). However, the aviation fuel produced still does not meet the Jet A/A-1 standard because the density obtained by the aviation fuel is around 892-909.38 kg/m³ and the viscosity is around 2.406-2.804 mm²/s which is still not in accordance with the standard, which is in density (775-840 kg/m³) and viscosity (ideally 1.3-1.9 mm²/s at 40 °C). These findings indicate that Lombok beach sand has strong potential as a catalyst in the pyrolysis process of waste tires, but there is still a need for further upgrading of the pyrolyzed aviation fuel, in order to reduce density and viscosity to comply with Jet A/Jet A-1 standards. This research is expected to provide comprehensive results on a laboratory scale and contribute to the development of aviation fuel production technology from waste tires using calcium oxide catalyst."
Depok: Fakultas Teknik Universitas Indonesia, 2025
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Daffa Satria Agung Wicaksana
"Deoxygenation is a thermal process that produces alkanes by removing hydrogen, oxygen, and carbon atoms from fatty biomass by releasing CO2 , CO, and H2O. This process converts directly from fatty acids preserving the number of carbon atoms while removing oxygenated species. In this study, the catalytic deoxygenation process will be implemented with beef tallow to produce renewable diesel. Beef tallow has a low sulfur content and has the potential to be used as a cheap feedstock for biofuels based on its chemical composition. The catalytic deoxygenation process will utilize temperatures of 300°C, 350°C, and 375°C and catalyst weight ratios of 4%. The experiment will take about 1.5 hours with an average reaction pressure depending on the temperature. The results of the synthesis of renewable diesel in the form of liquid products will be adjusted to the Decree of the Director General of Oil and Gas Number 146.K/10/DJM/2020 so that it can be useful for the development of renewable diesel to be marketed in Indonesia. The results of the beef tallow synthesis that have been carried out show that the most optimum results are using a temperature of 350 ° C and 4%wt catalyst. This is indicated by the large percentage of alkane area of renewable diesel (C11-C20) produced which is 31.29%.

Deoksigenasi adalah proses termal yang mengubah asam lemak menjadi alkana dengan menghilangkan hidrogen, oksigen, dan karbon dari biomassa lemak, menghasilkan CO₂, CO, dan H₂O. Dalam penelitian ini, deoksigenasi katalitik diterapkan pada lemak sapi, yang memiliki kandungan sulfur rendah dan potensial sebagai bahan baku murah untuk renewable diesel. Lemak sapi memiliki kandungan sulfur yang rendah dan berpotensi untuk digunakan sebagai bahan baku yang murah untuk bahan bakar nabati berdasarkan komposisi kimianya. Proses dilakukan pada suhu 300°C, 350°C, dan 375°C dengan rasio katalis 4% selama 1,5 jam. Hasil sintesis renewable diesel diuji sesuai Keputusan Dirjen Migas No. 146.K/10/DJM/2020. Temperatur 350°C dan 4% katalis menghasilkan hasil optimal dengan 31,29% area alkana (C11-C20) pada produk cair."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Azhari
"Transesterifikasi adalah reaksi kimia yang mengubah minyak hewani menjadi biodiesel yang berguna melalui proses kimia transesterifikasi. Pada penelitian ini, biodiesel diproduksi dengan cara mentransesterifikasi lemak sapi dalam reaktor dengan katalis CaO berbahan dasar cangkang telur puyuh. Enam sampel menjalani transesterifikasi pada suhu 55 OC dengan perbedaan jumlah katalis yang digunakan (1,5 wt%, 6,5 wt%, dan 10 wt%). Variasi jenis katalis, yang terdiri dari katalis komersial dan berbasis limbah, juga dipakai dalam penelitian ini. Katalis CaO berbasis limbah disintesis dari cangkang telur puyuh melalui proses kalsinasi pada suhu 900 OC dengan durasi 2 jam. Katalis berhasil disiapkan dengan persentase hasil 92,4% kalsium oksida. Hasil pengujian sampel terbaik ditunjukkan oleh biodiesel dengan penggunaan katalis berbasis limbah 6,5% dan katalis komersial 6,5%. Untuk biodiesel dengan katalis berbasis limbah 6,5%, diperoleh yield 91,747%, densitas 856 kg/m3, viskositas 5,2915 mm2/cst, angka keasaman 0,94 mg-KOH/g, dan angka iodin 33,96 g-I2/100g. Untuk biodiesel dengan katalis komersial 6,5% diperoleh yield 90,236%, densitas 861,1 kg/m3, viskositas 5,414 mm2/cst, angka keasaman 4,13 mg-KOH/g, dan angka iodin 29,37 g-I2/100g. Angka keasaman standar dengan maksimum 0,5 mg-KOH/g tidak dipenuhi oleh kedua sampel.

Transesterification is a chemical reaction that transforms animal oils into useful biodiesel by the chemical process of transesterification. In this study, the biodiesel is produced by transesterifying beef tallow in a reactor with a CaO catalyst made from quail eggshell. Six samples are subjected to transesterification at a temperature of of 55 OC with different amounts of catalyst being used (1.5 wt%, 6.5 wt%, and 10 wt%). A variation of catalyst type, that consists of the commercial and waste-based catalyst, is also integrated to this study. Waste-based CaO catalyst is synthesized from quail eggshells through a calcination process at 900 OC with the duration of 2 hours. The catalyst was successfully prepared with the yield percentage of 92.4% calcium oxide. The best sample test results were exhibited by the biodiesel with the usage of 6.5% waste-based catalyst and 6.5% commercial catalyst. For biodiesel with 6.5% waste-based catalyst, 91.747% yield, 856 kg/m3 density, 5.2915 mm2/cst viscosity, 0.94 mg-KOH/g acidity number, and 33.96 g-I2/100g iodine number were obtained. For biodiesel with 6,5% commercial catalyst, 90.236% yield, 861.1 kg/m3 density, 5.414 mm2/cst viscosity, 4.13 mg-KOH/g acidity number, and 29.37 g-I2/100g iodine number were obtained. The standard acidity number with the maximum of 0.5 mg-KOH/g is not satisfied by both samples.
"
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Farizan
"

Transesterifikasi adalah reaksi kimia yang digunakan untuk mengubah minyak hewani menjadi biodiesel yang dapat digunakan. Pada penelitian ini, bahan bakar biodiesel disintesis dari lemak sapi dalam reaktor menggunakan katalis CaO yang disintesis dari cangkang telur bebek. Katalis CaO berbasis limbah disintesis dari cangkang telur bebek melalui proses kalsinasi pada suhu 900 OC selama 2 jam. Transesterifikasi dilakukan pada suhu 55 OC pada 6 sampel dengan variasi penggunaan jumlah katalis (1.5 wt%, 6.5 wt%, dan 10 wt%) serta variasi katalis CaO komersial dan limbah. Katalis yang disintesis dari cangkang telur itik menghasilkan kadar Kalsium Oksida (CaO) sebesar 93.2%. Hasil pengujian sampel terbaik diperoleh untuk biodiesel dengan katalis 6.5% berbahan dasar limbah dan 10% katalis komersial. Untuk biodiesel dengan katalis berbasis limbah 6.5%, rendemen 90.75%, densitas 855.1 kg/m3, viskositas 5.73 mm2/cst, keasaman 1.69 mg-KOH/g, dan bilangan yodium 30.87 g-I2/100g. Untuk biodiesel dengan katalis berbasis limbah 10%, rendemen 90.81%, densitas 860.5 kg/m3, viskositas 6.52 mm2/cst, keasaman 2.03 mg-KOH/g, dan bilangan yodium 27.51 g-I2/100g. Angka keasaman standar tidak tercapai dimana maksimumnya adalah 0.5 mg-KOH/g.


Transesterification is a chemical reaction used to convert animal oils into usable biodiesel. In this study, biodiesel fuel was synthesized from beef tallow in a reactor using a CaO catalyst which also synthesized from duck eggshells. Waste-based CaO catalyst synthesized from duck eggshells through a calcination process at 900 OC for 2 hours. Transesterification carried out at a temperature of 55 OC on 6 samples with variations in the use of the amount of catalyst (1.5 wt%, 6.5 wt%, and 10 wt%) as well as variations of commercial and waste based CaO catalysts. The catalyst synthesized from duck eggshells obtained a yield of 93.2% amount of Calcium Oxide (CaO). The synthesized biodiesel also tested for its chemical and physical properties to fulfill the Indonesian National Standard (SNI). The best sample test results were obtained for biodiesel with 6.5% catalyst from waste-based and 10% catalyst from commercial. For biodiesel with 6.5% waste-based catalyst, 90.75% yield, 855.1 kg/m3 density, 5.73 mm2/cst viscosity, 1.69 mg-KOH/g acidity, and 30.87 g-I2/100g iodine number. For biodiesel with 10% waste-based catalyst, 90.81% yield, 860.5 kg/m3 density, 6.52 mm2/cst viscosity, 2.03 mg-KOH/g acidity, and 27.51 g-I2/100g iodine number. The standard acidity number is not reached where the maximum is 0.5 mg-KOH/g.

"
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Yusuf Efendi
"Ketersediaan minyak bumi yang semakin menipis, harganya yang tidak stabil, dan potensi kerusakan lingkungan akibat pemakaian bahan bakar fosil mendorong pengembangan bahan bakar alternatif yang dapat menggantikan bahan bakar fosil, termasuk avtur. Bioavtur merupakan bahan bakar terbarukan yang memiliki karakteristik serupa dengan avtur. Bahan baku potensial untuk produksi bioavtur di Indonesia adalah minyak kelapa. Komposisi asam lemak dalam minyak kelapa sesuai dengan kisaran rantai atom karbon avtur. Selain itu, Indonesia juga merupakan negara dengan pangsa ekspor minyak kelapa terbesar kedua di dunia yang menunjukkan bahwa pemanfaatan minyak kelapa di Indonesia masih sangat minim.
Pada penelitian ini, bioavtur disintesis dari minyak kelapa melalui reaksi hidrodeoksigenasi untuk mengonversi asam lemak menjadi hidrokarbon dengan menghilangkan oksigen. Katalis yang digunakan dalam reaksi ini adalah katalis NiMoP/Al2O3. Reaksi hidrodeoksigenasi dilakukan dengan variasi tekanan dan suhu, yaitu pada tekanan 10, 15, dan 20 bar, dan suhu 375, 385, dan 400°C. Reaksi dihentikan apabila telah mencapai kesetimbangan berdasarkan analisis produk gas dengan GC-TCD. Reaksi hidrodeoksigenasi pada suhu 375°C dan tekanan 10 bar mampu menghasilkan konversi sebesar 92,16%, hydrocarbon content sebesar 87,18%, serta selektivitas dan yielad bioavtur sebesar 79,36% dan 55,56%. Produk cair didistilasi untuk memperoleh produk fraksi avtur. Dari hasil uji densitas, viskositas, bilangan asam, nilai kalor, dan titik beku pada distilat bioavtur diperoleh nilai yang cukup baik.

The increasing of scarce of petroleum availability, unstable prices, and potential environmental damage due to the use of fossil fuel encourage the development of alternative fuels that can replace fossil fuels, including jet fuel. Bio-jet fuel is a renewable fuel that has similar characteristics to jet fuel. The potential raw material for bio-jet fuel production in Indonesia is coconut oil. The composition of fatty acids in coconut oil corresponds to the range of carbon atomic chain of jet fuel. In addition, Indonesia is also the country with the second largest share of coconut oil exports in the world which shows that the use of coconut oil in Indonesia is very less.
In this study, bio-jet fuel was synthesized from coconut oil through hydrodeoxygenation reaction to convert fatty acids to hydrocarbons by removing oxygen. The catalyst used in this reaction was NiMoP/Al2O3 catalyst. The hydrodeoxygenation reaction was carried out with variations of pressure and temperature, at pressures of 10, 15, and 20 bar, and temperatures of 375, 385, and 400°C. The reaction was stopped if it had reached equilibrium based on GC-TCD analysis of gas product. The hydrodeoxygenation reaction at 375°C and 10 bar was able to produce high conversion (92.16%), much hydrocarbon content (87.18%), high selectivity and also yield of bio-jet fuel (79.36% and 55.56%). Liquid products were distilled to obtain avtur fraction products. From the results of the density, viscosity, acid number, heating value, and freezing point analysis of the bio-jet fuel distillate, good values were obtained.
"
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Sugiarti
"Salah satu minyak nabati yang potensial untuk dimanfaatkan sebagai bahan bakar alternatif adalah minyak jarak pagar (Jatropha curcas), karena memiliki komponen yang mirip dengan minyak bumi. Minyak jarak tidak dapat dikonsumsi karena beracun, sehingga tidak terjadi kompetisi antara penggunaannya sebagai bahan bakar atau bahan pangan. Namun, minyak jarak memiliki viskositas sepuluh kali lebih tinggi daripada solar, sehingga dibutuhkan metode yang tepat untuk menurunkan viskositasnya.
Penelitian sebelumnya menggunakan metode perengkahan thermal pada tekanan 18 bar dengan sistem batch, menunjukkan bahwa hidrokarbon rantai panjang minyak jarak dapat direngkah menjadi hidrokarbon dengan rantai yang lebih pendek sehingga menghasilkan bio-oil dengan viskositas yang lebih rendah. Namun, viskositas bio-oil tersebut belum setara dengan solar komersial. Di samping itu, tekanan operasi yang tinggi sulit untuk diaplikasikan pada kendaraan bermotor. Agar sesuai dengan sistem yang ada pada kendaraan, maka pada penelitian ini akan dilakukan pirolisis minyak jarak fasa cair secara batch dengan sirkulasi. Pemilihan proses ini dilakukan juga untuk memperoleh kondisi optimum yang diperlukan agar minyak jarak dapat dipirolisis menjadi setara solar.
Pirolisis minyak jarak dilakukan dengan menggunakan reaktor dari bahan stainless steel dengan ukuran diameter = 2,44 cm dan tinggi = 20 cm. Suhu reaksi 320, 340 dan 360 0C dan waktu reaksi 3,47; 4,79; 8,56 dan 13,89 menit. Produk yang diperoleh kemudian dianalisis densitas, viskositas, angka setana, FTIR dan GC ? MS. Hasil analisis menunjukkan viskositas minyak jarak mengalami penurunan dari 63,3052 cSt290C menjadi 56,4448 s/d 60,9578 cSt290C pada suhu 3200C . Hal ini menandakan bahwa hidrokarbon rantai panjang yang terdapat pada minyak jarak mengalami perengkahan. Selain itu viskositasnya juga mengalami peningkatan pada suhu 340 dan 3600C, yang menandakan telah terjadi reaksi propagasi.
Hasil analisis densitas juga menunjukkan tren yang sama. Pada hasil analisis angka setana menunjukkan minyak jarak mengalami peningkatan dari 37 menjadi 41. Pirolisis pada penelitian ini merupakan reaksi orde 2 dengan konstanta laju reaksi 1,74 x 10-5 s/d 0,0053 min-1 dan energi aktivasi 4,40 x 105 s/d 4,49 x 105 J/grmol. Konversi tertinggi yang dihasilkan adalah sebesar 15,28%. Perhitungan simulasi untuk konversi pirolisis 100% diperoleh pada suhu 320, 340 dan 3600C dengan waktu reaksi berturut?turut 38.48, 35.6 dan 30.65 menit. Viskositas bio-oil yang dihasilkan pada kondisi optimum ini berturut ? turut adalah sebesar 34,17;37,16 dan 38,14 cSt(270C). Agar viskositas bio-oil yang dihasilkan pada kondisi optimum ini dapat setara dengan solar, maka sebelum masuk ke ruang pembakaran, bio-oil harus mengalami pemanasan awal pada suhu 230 s/d 2500C. Setelah mengalami pemanasan awal, diperoleh bio-oil dengan viskositas berturut ? turut 4,7; 5,67 dan 4,29 cSt(290C).

One of potential bio oil used for alternative fuel in Indonesia is Jatropha oil (Jatropha curcas), because it has similar components with crude oil. Jatropha oil cannot be consumed because poisonous, therefore no usage competition whether it be used as fuel or food. However, viscosity of jatropha oil is ten times higher than diesel fuel, thence a specific method is required to decrease its viscosity.
Previous research was using gas phase - thermal cracking method at high pressure (18 bar) batch system, showed that long chain hydrocarbon of jatropha oil can be cracked into shorter chain hydrocarbon which produced lower viscosity of biooil. The viscosity of bio-oil produced has equal grade with commercial diesel fuel if heated up to 1000C, but application of high pressure system (18 bar) on vehicle is difficult. In order to achieve the suitable fuel for vehicle application, this research will conduct pyrolysis of liquid phase jatropha oil in batch system with circulation.
This process is selected to provide required optimum condition for pyrolysis process
in reactor. Pyrolysis process is performed in stainless steel reactor with 2,44 cm diameter and 20 cm height. Reaction is carried out at temperature 320, 340 and 360 0C within 3.47, 4.79, 8.56 and 13.89 minutes of reaction time. Reaction product will then be analyzed with density, viscosity, cetane number, FTIR and GC ? MS. Viscosity product is have decrease from 63.3052 cSt290C to 56.4448 s/d 60.9578 cSt290C in 3200C. Its mean the hydrocarbon longchain is cracking. Expect to the viscosity is increase in 340 and 3600C, its mean is the radical reaction is begin. Density is the same tren. Cetane number is increase from 37 to 41. The maximum convertion is 15.28% is the required in 3200C and 3.47 minutes. To obtained the convertion 100%, pyrolysis in 320, 340 and 3600C with time pyrolysis is 38,48; 35,6 and 30,65 minutes.
The obtained viscosity in optimum condition is 34,17; 37,16 and 38,14 cSt(290C). to get the viscosity is diesel like fuel, bio-oil is heated until 2500C. after heating, bio-oil viscosity is 4,7; 5,67 and 4,29 cSt(290C).
"
Depok: Fakultas Teknik Universitas Indonesia, 2010
T30805
UI - Tesis Open  Universitas Indonesia Library
cover
Felix Widjaja
"Proses perengkahan katalitik termal pada penelitian ini bertujuan untuk mengolah lemak hewani menjadi bahan bakar bio. Pada penelitian ini, bahan bakar bio jenis disintesis dari lemak sapi dalam reaktor autoclave berpengaduk menggunakan katalis MgO dengan variabel perbedaan suhu (370℃ dan 400℃) dan jumlah katalis yang digunakan sebanyak 3%wt dan 5%wt dari berat umpan. Reaksi dilakukan dengan harapan mendapatkan yield dan konversi terbaik dari keempat sampel, sehingga dapat ditentukan pengaruh kondisi operasi untuk sintesis renewable jet fuel. Setelah berhasil disintesis produk cair organik didistilasi untuk mendapatkan fraksi renewable jet fuel dan dikarakterisasi berdasarkan Standar Nasional Indonesia (SNI) dan ASTM D7566 untuk melihat nilai viskositas, bilangan asam, densitas, titik beku, dan bilangan iodin, serta menggunakan Gas Cromatography and Mass Spectroscopy (GC-MS) untuk mengidentifikasi fraksi komponen dan Fourier Transform Infrared Spectroscopy (FTIR) untuk mengidentifikasi gugus fungsi dari hasil sintesis. Renewable jet fuel akan dibandingkan antar sampel untuk memperoleh karakteristik terbaik yang kemudian akan dibandingkan dengan avtur konvensional. Persentase nilai konversi dan yield tertinggi diperoleh pada sampel RJF-D dengan suhu 400℃ dan katalis MgO sebanyak 5% wt, diperoleh konversi sebesar 38,25% dan yield sebesar 14,75%. Dari hasil pengujian sampel terbaik yaitu sampel RJF-D diperoleh spesifikasi renewable jet fuel seperti densitas dan viskositas sudah memenuhi standar SNI, sehingga sampel RJF-D dapat dicampur dengan avtur bersandar SNI sehingga dapat menghasilkan avtur berstandar ASTM D7566 dengan kadar campuran maksimal 17,17%.

The thermal catalytic cracking process in this study aims to process animal fats into biofuels. In this study, biofuel was synthesized from beef tallow in a stirred autoclave reactor using MgO as a catalyst with a variable temperature difference (370℃ and 400℃) and the amount of catalyst used was 3%wt and 5%wt of the weight of the feed. The reaction was carried out in the hope of obtaining the best yield and conversion from the four samples, so that the effect of operating conditions on the synthesis of renewable jet fuel could be determined. After successfully synthesized, the organic liquid product was distilled to obtain a renewable jet fuel fraction and characterized based on the Indonesian National Standard (SNI) and ASTM D7566 to see the value of viscosity, acid number, density, freezing point, and iodine number, as well as using Gas Chromatography and Mass Spectroscopy (GC-MS) to identify component fractions and Fourier Transform Infrared Spectroscopy (FTIR) to identify functional groups of the synthesized products. Renewable jet fuel will be compared between samples to obtain the best characteristics which will then be compared with conventional jet fuel. The highest percentage of conversion value and yield was obtained in the RJF-D sample with a temperature of 400℃ and as much as 5%wt MgO catalyst, 38.25% conversion and 14.75% yield were obtained. From the results of testing the best sample, namely the RJF-D sample, the specifications for renewable jet fuel such as density and viscosity have met the SNI standard, so that the RJF-D sample can be mixed with SNI-based jet fuel so that it can produce jet fuel with ASTM D7566 standard with a maximum mixture content of 17.17%."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Jayusandi Mulya Sentosa
"Olefin ringan merupakan salah satu bahan baku petrokimia yang yang sebagian besar dihasilkan menggunakan sumber daya alam yang tidak dapat diperbarui. Limbah jerami padi merupakan sumber biomassa lignoselulosa yang potensial karena memiliki kandungan selulosa yang besar dan jumlah yang melimpah di Indonesia. Pada penelitian ini, proses yang terjadi adalah proses katalitik pirolisis dengan suhu operasi sekitar 500oC dan laju alir N2 sekitar 150 ml/menit. Jenis katalis logam tersangga yang digunakan yaitu La2O3/ZSM-5, ZnO/ZSM-5, La2O3/Al2O3 dan ZnO/Al2O3 yang dibuat dengan metode impregnasi. Proses katalitik pirolisis dilakukan menggunakan reaktor unggun tetap dengan tungku listrik sebagai sumber panas. Untuk memahami hasil katalitik pirolisis, percobaan juga dilakukan dalam kondisi pirolisis limbah jerami padi tanpa katalis.
Hasil pirolisis dikondensasikan dengan menggunakan perangkap serapan dingin dengan n-heksana. FT-IR Fourier Transform - Infrared dan GC-TCD Gas Chromatography-Thermal Conductivity Detector digunakan sebagai instrumen analitik untuk mengidentifikasi keberadaan dan kuantitas olefin ringan dalam bio-oil dan bio-gas. Dalam metode ini, ada beberapa variasi yang ditentukan, yaitu jenis katalis logam tersangga dan komposisi logam pada katalis 1, 5, dan 10. Keberadaan olefin ringan terdeteksi dengan adanya peak pada FT-IR dengan nomor gelombang 3010-3095 cm-1, 1610-1680 cm-1, dan 675-995 cm-1. Perbedaan susut massa yang sedikit, yaitu diantara 66,5 hingga 78,5 selama 25 menit pada setiap sampel, dengan massa awal sebesar 2 gram menunjukkan katalis tidak mempengaruhi mekanisme reaksi. Produk olefin ringan yang paling besar kandungannya terdapat pada sampel dengan katalis ZnO/ZSM-5 dengan komposisi logam 5, yaitu sebesar 29,1, sedangkan produk olefin ringan tanpa katalis yang terbentuk sebesar 11.

Light olefins are one of the most common petrochemical raw materials produced using non renewable natural resources. Rice straw waste is a potential source of lignocellulosic biomass because it has a large cellulose content and an abudant amount in Indonesia. In this research, the process is developed by catalytic pyrolysis processes with operating temperature around 500oC and N2 flow rate around 150 ml min. The type of supported metal catalyst used are La2O3 ZSM 5, ZnO ZSM 5, La2O3 Al2O3 and ZnO Al2O3, which made with the impregnation method. The catalytic pyrolysis process was carried out in a fixed bed turbular reactor with electric furnace as the heat source. To comprehend the catalytic pyrolysis processes, the experiment was also performed in condition pyrolysis rice straw waste without catalyst.
The output of pyrolysis is condensed by using cold absorption trap with n hexane. FT IR Fourier Transform Infrared and GC TCD Gas Chromatography Thermal Conductivity Detector serve as analytical instrument in order to identify the presence and the quantity of light olefins group in bio oil and bio gas. In this method, there are several variations to be determine, there are type of supported metal catalyst and metal composition on catalysts 1, 5, and 10. Light olefins were detected with peaks in FT IR with a wavenumber of 3010 3095 cm 1, 1610 1680 cm 1, and 675 995 cm 1. A slight difference in mass shrinkage, which is between 66.5 to 78.5 for 25 minutes in each sample, with an initial mass of 2 grams indicates that the catalysts does not affect the reaction. The largest light olefins yields were found in samples with ZnO ZSM 5 catalyst with 5 metal oxide, which amounted to 29.1, while light olefin products without catalyst were formed at 11.
"
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Yola Yolanda
"Fuel cell urea membutuhkan katalis berbasis logam Ni. Tetapi logam Ni memiliki sifat over potensial yang tinggi sehingga menurunkan efisensi fuel cell. Doping dengan MnO2 dapat menurunkan over potensial Ni. Oleh karena itu pada penelitian ini NiMn2O4 dideposisi dengan metode hidrotermal pada permukaan busa nikel untuk digunakan sebagai katalis pada anoda fuel cell urea. Pendeposisian dilakukan pada struktur busa nikel yang berpori menggunakan larutan Mn(NO3)2.6H2O dan Ni(NO3)2.6H2O sebagai prekusor nikel dan mangan dengan kehadiran urea. Reaksi dilakukan autoclave dan dipanaskan di dalam furnace dengan suhu 180° C selama 24 jam. Dilanjtkan dengan annealing pada 400° C selama 2 jam. Hasil penelitian menunjukkan bahwa busa nikel telah berhasil dimodifikasi dengan NiMn2O4. NiMn2O4/busa nikel menunjukkan densitas arus yang baik untuk fuel cell urea berdasarkan hasil cyclic voltammetry. Variasi konsentrasi prekusor nikel dan mangan pada rasio 1:1 menunjukkan hasil terbaik dengan densitas arus sebesar 206.453 mA cm-2 didalam larutan 2 M KOH dan 0.33 M Urea. Aplikasi pada Direct Urea Fuel Cell menunjukkan densitas daya yang dihasilkan adalah 0.304 mW cm-2 dengan mengunakan larutan 2 M KOH dan 0.33 M Urea dalam anoda dan larutan 2 M H2O2 dan 2 M H2SO4 pada katoda.

ABSTRACT
Urea fuel cells require a Ni metal-based catalyst. However, Ni metal has high over potential properties, thus reducing fuel cell efficiency. Doping with MnO2 can reduce the over potential of Ni. Therefore, in this study NiMn2O4 was deposited by hydrothermal method on the surface of nickel foam to be used as a catalyst in the urea fuel cell anode. The deposition was carried out on the porous nickel foam structure using a solution of Mn(NO3)2.6H2O and Ni(NO3)2.6H2O as a precursor to nickel and manganese in the presence of urea. The reaction is autoclaved and heated in a furnace at 180 ° C for 24 hours. Continued with annealing at 400 ° C for 2 hours. The results showed that nickel foam was successfully modified with NiMn2O4. NiMn2O4 / nickel foam shows good current density for urea fuel cells based on cyclic voltammetry results. The variation in the concentration of nickel and manganese precursors at a 1: 1 ratio showed the best results with a current density of 206,453 mA cm-2 in a 2 M KOH solution and 0.33 M Urea. Application to the Direct Urea Fuel Cell shows that the resulting power density is 0.304 mW cm-2 using a 2 M KOH solution and 0.33 M Urea in the anode and a 2 M H2O2 and 2 M H2SO4 solution at the cathode.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Yuniaty Afrieny
"Pada penelitian ini dilakukan sintesis senyawa analog kalkon (1,5-Difenil-2,4-pentadien-1-on) dari sinamaldehida (0,01 mol) dan asetofenon (0.01 mol) melalui reaksi kondensasi aldol silang menggunakan katalis CaO dan uji sitotoksik sel murin leukemia P-388 serta dilanjutkan dengan sintesis senyawa pirazol (3-fenil-5-styril-1H-pirazol) melalui reaksi senyawa analog kalkon dengan hidrazin hidrat. Preparasi katalis CaO dilakukan dari cangkang telur bebek melalui metode kopresipitasi dan dihasilkan distribusi ukuran partikel CaO 57-94 nm dalam medium polietilen glikol. Reaksi optimasi pada penambahan jumlah katalis (0,2 g) menghasilkan persen konversi senyawa analog kalkon sebesar 99,2 % dan lama reaksi pemanasan selama 8 jam dengan komposisi hidrazin hidrat 55%-60% (0,02 mol) diperoleh persen konversi senyawa pirazol sebesar 83,71 %. Karakterisasi menggunakan spektrofotometri UV-Visible menunjukkan adanya pergeseran batokromik pada senyawa analog kalkon sebesar 59 nm. Spektrofotometri infra merah menunjukkan pada senyawa analog kalkon terdapat ikatan C=O pada bilangan gelombang 1654,03 cm-1 dan pada senyawa pirazol menunjukkan adanya ikatan C=N pada bilangan gelombang 1679,11 cm-1. Hasil kromatografi gas dan spektroskopi massa diperoleh senyawa analog kalkon muncul pada waktu retensi 16,64 menit dengan nilai m/z sebesar 234,2 dan senyawa pirazol diperoleh pada waktu retensi 22,74 menit dengan nilai m/z sebesar 246,1. Senyawa analog kalkon sangat aktif sebagai senyawa antikanker dengan nilai IC50 = 1,503 µg/mL pada hasil uji sel murin leukemia P-388.

This research was conducted a synthesis of chalcone analog compound (1,5-Diphenyl-2,4-pentadien-1-on) of cinnamaldehide (0.01 mol) and acetophenone (0,01 mol) by a cross aldol condensation reaction using CaO catalysts and cytotoxic test cell murine leukemia P-388 and proceeded with the synthesis of pyrazole compound (3-phenyl-5-styril-1H-pyrazole). The CaO catalyst preparation from duck egg shell through coprecipitation method resulted CaO particle size distribution 57-94 nm in medium of polyethylene glycol. Optimization result by adding catalyst (0.2 g) produced the highest percent conversion of chalcone analog compound by 99.2% and heating reaction for 8 hours with the hydrazine hydrate (0.02 mol) obtained 83.71% conversion of pyrazole compound. The characterization using UV-Visible spectrophotometry showed a bathochromic shift in chalcone analog compound by 59 nm. Infrared spectrophotometry showed C=O vibration of the chalcone analog compound at 1654.03 cm-1 and C=N vibration of pyrazole compound at 1679.11 cm-1. Gas chromatography and mass spectroscopy analysis gave chalcone analog compound a retention time of 16.64 minutes with m/z values ​​of 234.2 and pyrazole compound a retention time of 22.74 minutes with m/z value of 246.1. This chalcone analog compound is very active as an anticancer compound with IC50 value of 1.503 µg/mL in murine leukemia cells P-388 assay.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2015
S60744
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>