Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 131167 dokumen yang sesuai dengan query
cover
Michael Johannes Nait
"Sistem coupled-tank MIMO banyak digunakan dalam industri untuk pengendalian ketinggian fluida dan menjadi platform ideal dalam studi sistem kendali. Metode Proportional-Integral-Derivative (PID) masih menjadi standar dalam pengendalian proses industri, namun memiliki keterbatasan pada sistem nonlinier dan tidak stabil karena memerlukan pemodelan matematis untuk penentuan parameternya. Penelitian ini mengusulkan penggunaan Reinforcement Learning (RL), khususnya algoritma Soft Actor-Critic (SAC), sebagai alternatif pengendali. SAC merupakan algoritma RL berbasis kebijakan stokastik yang mampu mempelajari aksi optimal melalui interaksi dengan lingkungan dan reward-based learning. Sistem dirancang dan diuji menggunakan MATLAB dan Simulink, dengan pengendali PID sebagai pembanding. Evaluasi performa dilakukan berdasarkan parameter overshoot, rise time, settling time, dan steady state error (SSE). Hasil menunjukkan bahwa agen SAC mampu mengendalikan ketinggian air dengan lebih baik dibanding PID dalam aspek overshoot (rata-rata 4,955% pada tangki 1 dan 2,43% pada tangki 2), rise time (32,6 detik pada tangki 1), serta settling time (102,46 detik pada tangki 1 dan 55,06 detik pada tangki 2). Kesimpulannya, SAC unggul dalam kestabilan jangka pendek dengan respons cepat dan akurat, sementara PID lebih baik dalam kestabilan jangka panjang berkat nilai SSE yang sangat kecil.

MIMO coupled-tank systems are widely used in industry for fluid level control and become an ideal platform in the study of control systems. Proportional-Integral-Derivative (PID) method is still the standard in industrial process control, but it has limitations in nonlinear and unstable systems because it requires mathematical modeling for parameter determination. This research proposes the use of Reinforcement Learning (RL), specifically the Soft Actor-Critic (SAC) algorithm, as an alternative controller. SAC is a stochastic policy-based RL algorithm capable of learning optimal actions through interaction with the environment and reward-based learning. The system was designed and tested using MATLAB and Simulink, with the PID controller as a comparison. Performance evaluation is performed based on overshoot, rise time, settling time, and steady state error (SSE) parameters. The results show that the SAC agent is able to control the water level better than the PID in terms of overshoot (average of 4.955% in tank 1 and 2.43% in tank 2), rise time (32.6 seconds in tank 1), and settling time (102.46 seconds in tank 1 and 55.06 seconds in tank 2). In conclusion, SAC excels in short-term stability with fast and accurate response, while PID is better in long-term stability thanks to very small SSE values. "
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2025
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ranya Andjani Khairunnisa Johan
"Proses industri banyak melibatkan penggunaan coupled tank, salah satu proses yang dilakukan adalah pengendalian ketinggian cairan. Pada penelitian ini dilakukan pengendalian ketinggian air pada sistem coupled tank menggunakan Reinforcement Learning berbasis algoritma Soft Actor Critic (SAC) menggunakan MATLAB dan Simulink. Sebelum diimplementasikan ke dalam sistem coupled tank dilakukan serangkaian proses training pada algoritma SAC. Hasil dari proses training ini merupakan action dalam bentuk besar bukaan control valve. Kinerja pengendali dievaluasi menggunakan nilai rise time, settling time, overshoot, dan steady state error. Berdasarkan parameter ini, algoritma SAC dapat mengendalikan sistem dengan baik dengan rise time kurang dari 47 sekon, settling time kurang dari 62 sekon, overshoot dibawah 10%, dan steady state error kurang dari 1%. Ketika diberikan gangguan algoritma SAC dapat kembali ke keadaan stabil dalam waktu kurang dari 45 sekon.

A lot of industrial processes utilize the use of coupled tanks, with one of the processes being liquid level control. In this study, Reinforcement Learning is implemented to control the water level in the coupled tank system using Soft Actor Critic (SAC) algorithm through MATLAB and Simulink. Before being implemented into the coupled tank system, the SAC algorithm went through a series of training processes. The result of this training process is an action in the form of adjusting control valve opening percentage. The controller performance is evaluated using parameters such as rise time, settling time, overshoot, and steady state error. Based on these parameters, the SAC algorithm manages to perform well in controlling the system with a rise time of less than 47 seconds, a settling time of less than 62 seconds, overshoot of less than 10%, and steady state error below 1%. When the system received a disturbance the SAC algorithm can return to a steady state in less than 45 seconds."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nur Fadilah Yuliandini
"Sistem Coupled tank umum digunakan pada bidang industri otomatis, salah satu pengendalian yang umum terjadi pada coupled tank adalah pengendalian ketinggian air. Sistem pengendalian tersebut bertujuan untuk menjaga ketinggian air yang berada pada tangki. Penelitian ini melakukan simulasi pengendalian ketinggian air pada coupled tank dengan menerapkan Reinforcement Learning (RL) dengan algoritma Deep Deterministic Policy Gradient (DDPG). Proses simulasi tersebut dilakukan menggunakan simulink pada MATLAB. Algoritma DDPG melalui serangkaian training sebelum diimplementasikan pada sistem coupled tank. Kemudian pengujian algoritma DDPG dilakukan dengan memvariasikan nilai set point dari ketinggian air dan sistem diberikan gangguan berupa bertambahnya flow in dari control valve lain. Performa dari algorima DDPG dalam sistem pengendalian dilihat dari beberapa parameter seperti overshoot, rise time, settling time, dan steady state error. Hasil yang diperoleh pada penelitian ini bahwa algoritma DDPG memperoleh nilai settling time terbesar sebesar 109 detik, nilai steady state error terbesar sebesar 0.067%. Algoritma DDPG juga mampu mengatasi gangguan dengan waktu terbesar sebesar 97 detik untuk membuat sistem kembali stabil.

The Coupled Tank system is commonly used in the field of industrial automation, and one of the common controls implemented in this system is water level control. The purpose of this study is to simulate water level control in a coupled tank using Reinforcement Learning (RL) with the Deep Deterministic Policy Gradient (DDPG) algorithm. The simulation process is performed using Simulink in MATLAB. The DDPG algorithm undergoes a series of training sessions before being implemented in the coupled tank system. Subsequently, the DDPG algorithm is tested by varying the set point values of the water level and introducing disturbances in the form of increased flow from another control valve. The performance of the DDPG algorithm in the control system is evaluated based on parameters such as overshoot, rise time, settling time, and steady-state error. The results obtained in this study show that the DDPG algorithm achieves a maximum settling time of 109 seconds and a maximum steady-state error of 0.067%. The DDPG algorithm is also capable of overcoming disturbances, with the longest recovery time of 97 seconds to restore system stability."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Ziyad Ain Nur Rafif
"Sistem coupled-tank merupakan konfigurasi yang digunakan pada industri dalam hal pengendalian ketinggian air, biasanya dengan metode pengendalian proportional, integral, derivative (PID). Namun, metode lain seperti reinforcement learning (RL) juga bisa diterapkan. Metode RL dapat dikombinasikan dengan programmable logic controller (PLC) yang sering digunakan dalam proses industri. PLC mengontrol ketinggian air dengan membaca data dari water level transmitter dan mengatur bukaan control valve berdasarkan algoritma RL yang sudah dilatih untuk mencapai kontrol optimal. Algoritma RL yang digunakan adalah twin-delayed deep deterministic (TD3) policy gradient. Performa algoritma ini diukur menggunakan parameter seperti overshoot, rise time, settling time, dan steady-state error, lalu dibandingkan dengan pengendali PID konvensional. Hasil simulasi dan pengujian pada hardware menunjukkan bahwa algoritma RL menghasilkan overshoot sebesar 6.59% dan steady-state error sebesar 3.53%, di mana steady-state error ini terjadi karena sensor yang sensitif sehingga data ketinggian air tidak pernah terekam konstan dan stabil. Sebagai perbandingan, pengendali PID memiliki overshoot sekitar 23.38% dan steady-state error terkecil berkisar pada 7.15%, yang berarti pengendali RL sudah memiliki performa yang lebih baik dibandingkan pengendali PID.

Coupled-tank system is a configuration commonly used in industry, mainly for water level control with proportional, integral, and derivative (PID) control method. But, other methods like reinforcement learning (RL) can be implemented for this control problem. This RL method can be combined with programmable logic controller (PLC) which is often used in industry process. PLC will control water level by reading data from water level transmitter and controlling a control valve opening according to a trained RL algorithm to gain an optimal control. The RL algorithm used is twin-delayed deep deterministic (TD3) policy gradient. The algorithm’s performance will be measured by parameters such as overshoot, rise time, settling time, and steady-state error, and then compared with the conventional PID control method. According to the results from simulation and from the real hardware, the overshoot value that happens is only in the range of 6.59% with the smallest steady-state error value ranged around 3.53%, which happens due to the sensitive sensor so that water level data never recorded at a constant and stable state. For comparison, the PID control has an overshoot around 23.38% and smallest steady-state error around 7.15%, which means that the RL control method has a better performance than the PID control method."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Miftahur Roziqiin
"Sistem pengendalian merupakan suatu sistem yang banyak ditemukan dan berhubungan dengan beragam jenis proses yang ada pada berbagai bidang, terutama bidang industri. Proses pengendalian yang umum ditemukan dalam industri adalah proses thermal mixing. Salah satu contoh proses thermal mixing yang cukup sederhana adalah proses pencampuran air panas dan air dingin atau water thermal mixing, dengan tujuan untuk mencapai temperatur campuran yang diinginkan, tetapi tetap menjaga ketinggian air agar tidak melebihi kapasitas wadah. Nilai temperatur tersebut dapat dicapai dengan cara mengatur debit aliran air yang masuk ke dalam wadah pencampuran. Pada penelitian ini, diimplementasikan sistem pengendalian menggunakan Reinforcement Learning dengan algoritma Soft Actor-Critic pada simulasi pengendalian ketinggian dan temperatur air pada proses water thermal mixing menggunakan Simulink pada MATLAB. Agent dilatih agar dapat mengendalikan sistem secara cepat dan tepat dalam menentukan action berupa nilai untuk mengatur valve menghasilkan debit aliran air yang diperlukan. Hasil dari penelitian ini menunjukkan bahwa algoritma SAC dapat digunakan untuk mengendalikan sistem dengan baik, dengan nilai overshoot terbesar yaitu 1.33% untuk pengendalian ketinggian air dan steady-state error terbesar yaitu 0.33℃ saat mengendalikan temperatur campuran, dan nilai settling time terbesar yaitu 160 sekon saat terjadi perubahan set point untuk ketinggian air dari 2.5 dm menjadi 5 dm, serta mampu mengendalikan kestabilan sistem ketika mengalami gangguan dalam waktu 93 sekon.

The control system is a system that is widely found and relates to various types of processes that exist in various sector, especially the industrial sector. The control process commonly found in industry is the thermal mixing. One of the thermal mixing processes is the process of mixing hot and cold water or water thermal mixing, with the aim of reaching the desired temperature, but still maintaining the water level, so that it does not exceed the capacity of the container. This temperature value can be reached by adjusting the flow of water entering the mixing container. In this study, a control system was implemented using Reinforcement Learning with Soft Actor-Critic algorithm on a simulation of controlling water level and temperature in the water thermal mixing using Simulink in MATLAB. Agents are trained to be able to control the system quickly and precisely in determining the action in the form of a value to adjust the valve to produce the required water flow rate. The results of this study indicate that the SAC algorithm can be used to control the system properly, with the biggest overshoot of 1.33% for controlling water level and steady-state error of 0.33℃ when controlling the temperature of the mixture, and the settling time of 160 seconds when the set point value change for the water level from 2.5 dm to 5 dm, as well as being able to control the stability of the system when experiencing disturbances within 93 seconds."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Early Radovan
"Penelitian ini menyimulasikan sistem pengendalian temperatur dan ketinggian air pada sistem pengendali MIMO, yang bekerja dengan cara mengendalikan debit air dingin dan air panas untuk menghasilkan temperatur dan ketinggian air yang diinginkan. Simulasi ini dilakukan dengan menggunakan pengendali Reinforcement Learning dengan algoritma Proximal Policy Optimization (PPO) pada Simulink MATLAB. Tujuan dari penelitian ini, sistem dapat menjaga temperatur campuran dan ketinggian air yang terukur agar tetap berada di daerah set point yang ditentukan. Hasil training pengendali PPO diuji dengan melakukan perubahan set point, baik penambahan nilai ataupun pengurangan nilai set point. Pada penelitian ini diasumsikan bahwa proses pencampuran temperatur terdistribusi secara sempurna dan tangki tidak menyerap kalor. Penelitian ini memiliki batasan dimana temperatur air dingin 25℃ dan air panas 90℃ serta ketinggian maksimum tangki sebesar 7,5 dm. Kemampuan agent PPO dilihat dari beberapa parameter seperti overshoot, settling time, rise time, dan error steady state sebagai data kualitatif. Berdasarkan hasil simulasi, secara keseluruhan agent PPO meiliki hasil settling time dan rise time yang berbanding lurus dengan banyaknya perubahan set point. Nilai error steady state tertinggi sebesar 0.98%, terjadi pada pengendalian ketinggian air. Sedangkan nilai overshoot tertinggi sebesar 1,02% dan terjadi pada pengendalian ketinggian air juga.

This research simulates water level and temperature control system on MIMO control system, which works by controlling the flow of cold water and hot water to produce the desired temperature and water level. This simulation is carried out using Reinforcement Learning with Proximal Policy Optimization algorithm on Simulink MATLAB. The purpose of this research, the system can maintain measured temperature of mixture and water level in order to remain in the set point area. The results training of the PPO controller set point, either adding or reducing the set point. In this study, it is assumed that the temperature mixing process is perfectly distributed and the tank does not absorb heat. This research has a limit where the temperature of cold water is 25 and hot water is 90, and the maximum height of the tank is 7.5 dm. The ability agent of the PPO can be seen from overshoot, settling time, rise time, and steady state error as qualitative data. Based on the result of simulation, overall the agent PPO has settling time and rise time that is directly proportional to the number of changes at set point. The highest value of steady state error is 0.98%, occurred in controlling water level. While the highest value of overshoot is 1.02% and occurs in controlling water level as well.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Annisa Khoirul Mumtaza
"Sistem coupled tank merupakan salah contoh penerapan sistem kontrol level industri yang memiliki karakteristik yang kompleks dengan non linieritas yang tinggi. Pemilihan metode pengendalian yang tepat perlu dilakukan untuk dapat diterapkan dalam sistem coupled tank agar dapat memberikan kinerja dengan presisi tinggi. Sejak awal kemunculannya, Reinforcement Learning (RL) telah menarik minat dan perhatian yang besar dari para peneliti dalam beberapa tahun terakhir. Akan tetapi teknologi ini masih belum banyak diterapkan secara praktis dalam kontrol proses industri. Pada penelitian ini, akan dibuat sebuah sistem pengendalian level pada sistem coupled tank dengan menggunakan Reinforcement Learning dengan menggunakan algoritma Twin Delayed Deep Deterministic Policy Gradient (TD3). Reinforcement Learning memiliki fungsi reward yang dirancang dengan sempurna yang diperlukan untuk proses training agent dan fungsi reward tersebut perlu diuji terlebih dahulu melalui trial and error. Performa hasil pengendalian ketinggian air pada sistem coupled tank dengan algoritma TD3 mampu menghasilkan pengendalian yang memiliki keunggulan pada rise time, settling time, dan peak time yang cepat serta nilai steady state eror sangat kecil dan mendekati 0%.

The coupled tank system is an example of the application of an industrial level control system that has complex characteristics with high non-linearity. It is necessary to select an appropriate control method to be applied in coupled tank systems in order to provide high-precision performance. Since its inception, Reinforcement Learning (RL) has attracted great interest and attention from researchers in recent years. However, this technology is still not widely applied practically in industrial process control. In this research, a level control system in a coupled tank system will be made using Reinforcement Learning using the Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm. Reinforcement Learning has a perfectly designed reward function that is required for the agent training process and the reward function needs to be tested first through trial and error. The performance of the results of controlling the water level in the coupled tank system with the TD3 algorithm is able to produce controls that have advantages in rise time, settling time, and peak time which are fast and the steady state error value is very small and close to 0%."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Annisa Khoirul Mumtaza
"Sistem coupled tank merupakan salah contoh penerapan sistem kontrol level industri yang memiliki karakteristik yang kompleks dengan non linieritas yang tinggi. Pemilihan metode pengendalian yang tepat perlu dilakukan untuk dapat diterapkan dalam sistem coupled tank agar dapat memberikan kinerja dengan presisi tinggi. Sejak awal kemunculannya, Reinforcement Learning (RL) telah menarik minat dan perhatian yang besar dari para peneliti dalam beberapa tahun terakhir. Akan tetapi teknologi ini masih belum banyak diterapkan secara praktis dalam kontrol proses industri. Pada penelitian ini, akan dibuat sebuah sistem pengendalian level pada sistem coupled tank dengan menggunakan Reinforcement Learning dengan menggunakan algoritma Twin Delayed Deep Deterministic Policy Gradient (TD3). Reinforcement Learning memiliki fungsi reward yang dirancang dengan sempurna yang diperlukan untuk proses training agent dan fungsi reward tersebut perlu diuji terlebih dahulu melalui trial and error. Performa hasil pengendalian ketinggian air pada sistem coupled tank dengan algoritma TD3 mampu menghasilkan pengendalian yang memiliki keunggulan pada rise time, settling time, dan peak time yang cepat serta nilai steady state eror sama dengan 0%.

The coupled tank system is an example of the application of an industrial level control system that has complex characteristics with high non-linearity. It is necessary to select an appropriate control method to be applied in the coupled tank system in order to provide high-precision performance. Since its inception, Reinforcement Learning (RL) has attracted great interest and attention from researchers in recent years. However, this technology is still not widely applied practically in industrial process control. In this research, a level control system in a coupled tank system will be created using Reinforcement Learning using the Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm. Reinforcement Learning has a perfectly designed reward function that is required for the agent training process and the reward function needs to be tested first through trial and error. The performance of the results of controlling the water level in the coupled tank system with the TD3 algorithm is able to produce controls that have advantages in rise time, settling time, and peak time which are fast and the steady state error value is equal to 0%."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ardi Ferdyhana
"Sistem pengendalian ketinggian air merupakan aplikasi yang umum digunakan dalam bidang industri otomasi. Aplikasi dari sistem ini berguna untuk menjaga nilai ketinggian air yang dibutuhkan dalam proses kontrol. Pada penelitian ini, sistem pengendalian ketinggian air dibuat dalam skala lab dengan menerapkan sistem kendali menggunakan reinforcement learning dengan policy gradient agent. Pada plant yang dibuat ini terdapat perangkat keras programmable logic controller (PLC), control valve, flow transmitter dan water level transmitter. Perangkat keras tersebut dihubungkan ke MATLAB dan Simulink menggunakan OPC server sebagai jalur komunikasi dua arah. Implementasi policy gradient agent pada sistem pengendalian ketinggian air digunakan dalam dua kondisi yaitu simulasi dan plant. Parameter yang digunakan untuk menentukan performa pengendalian adalah overshoot, rise time, dan settling time. Berdasarkan hasil pengendalian yang didapatkan, terdapat nilai overshoot yang cukup kecil, yaitu 0.38 % pada simulasi dan sebesar 2,92 % pada plant.

Water level control system is a commonly used application in industrial automation. The application of this system is useful for maintaining the value of the water level needed in the control process. In this study, the water level control system was made on a lab-scale by implementing a control system using reinforcement learning with a policy gradient agent. In this plant, there is a programmable logic controller (PLC), control valve, flow transmitter, and water level transmitter. The hardware is connected to MATLAB and Simulink using an OPC server as a two-way communication line. The implementation of the policy gradient agent in the water level control system is used in two conditions, namely simulation and plant. The parameters used to determine the control performance are overshoot, rise time, and settling time. Based on the control results obtained, there is a fairly small overshoot value, namely 0.38% in the simulation and 2.92% in the plant."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Gesha Mahendra Cunyadha
"Temperatur dan kelembaban dapat mengubah sifat dari suatu material sehingga akan menyebabkan penurunan kualitas material. Dalam penelitian ini dilakukan simulasi sistem pengendalian temperatur dan kelembaban relatif menggunakan permodelan heat-exchanger untuk mengubah nilai temperatur dan humidifier untuk mengubah nilai kelembaban relatif. Pengendalian dilakukan menggunakan Agent Reinforcement Learning dengan Algoritma Soft Actor-Critic (SAC) pada perangkat lunak Simulink-MATLAB. Penelitian ini bertujuan untuk menghasilkan pengendalian yang lebih baik daripada pengendalian yang telah digunakan dengan pengendali PI. Parameter pembanding yang digunakan merupakan respon transient yang meliputi nilai persentase overshoot, settling time, rise time, dan steady state error. Adapun batasan dalam penelitian ini adalah nilai temperatur dan kelembaban relatif yang dibatasi pada daerah kerja dengan temperatur dibawah 25°C dan kelembaban relatif dengan rentang 20-60%. Dari hasil penelitian ini agent RL-SAC dapat mengendalikan sistem temperatur dan kelembaban relatif dengan respon transient dengan rata-rata nilai overshoot 82% lebih cepat dan rata-rata nilai settling time 47% lebih cepat dibandingkan dengan pengendali PI.

Temperature and humidity can change the properties of a material so that it will cause a decrease in the quality of the material. In this study, a simulation of a temperature and relative humidity control system was carried out using a heat-exchanger model to change the temperature value and a humidifier to change the relative humidity value. Control is carried out using Reinforcement Learning Agent with the Soft Actor-Critic (SAC) Algorithm in the Simulink-MATLAB software. This study aims to produce a better control than the control that has been used with the PI controller. The comparison parameter used is the transient response which includes the percentage value of overshoot, settling time, rise time, and steady state error. The limitations in this study are the values of temperature and relative humidity which are limited to work areas with temperatures below 25°C and relative humidity with a range of 20-60%. From the results of this study the RL-SAC agent can control the temperature and relative humidity system with transient responses with an average overshoot value of 82% faster and an average settling time value of 47% faster than the PI controller."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>