Ditemukan 85 dokumen yang sesuai dengan query
Grayson, C. Jackson Hackson
Boston: Arno Press, 1960
658.3 GRA d
Buku Teks Universitas Indonesia Library
Pollard, William E.
Beverly Hill : Sage, 1986
361.607 2 POL b
Buku Teks Universitas Indonesia Library
Hervind
"Distribusi posterior adalah distribusi dari parameter dengan informasi lainnya telah diketahui. Distribusi posterior dari seluruh parameter pada model dibutuhkan untuk menaksir parameter dengan pendekatan Bayesian melalui Gibbs sampling. Gabungan dari model small area tingkat unit dan model kesalahan pengukuran dapat diselesaikan menggunakan pendekatan Bayesian. Terdapat delapan parameter pada model tersebut yang akan diperoleh distribusi posteriornya. Dalam memperoleh distribusi posterior, kesalahan dapat terjadi pada penentuan fungsi likelihood dan prior jika semua parameter lain digunakan dalam perhitungan. Sifat d-separation pada Bayesian network digunakan untuk mereduksi parameter-parameter yang tidak dibutuhkan untuk memperoleh suatu distribusi posterior. Langkah selanjutnya adalah menggunakan teorema Bayes dengan parameter yang telah tereduksi. Berdasarkan hasil teorema Bayes, dilakukan manipulasi aljabar sedemikian sehingga p.d.f. dari distribusi posterior parameter tersebut sama atau sebanding dengan p.d.f. dari suatu distribusi.
Posterior distribution is a distribution of a parameter with other informations are knowns. Posterior distribution of all parameter in model are required to parameter estimation by Bayesian approach with Gibbs sampling. The conjugation of small area unit level model and measurement error model could be solved by Bayesian approach. There are eight parameters in the model that each posterior distribution will be obtained. In approach of obtaining posterior distribution, fallacy of likelihood function and prior selection might occur if all parameter are included. D separation property in Bayesian network is used to reduce unnecessary parameters in obtaining the posterior distribution. In the next step, Bayes rsquo theorem is used on reduced parameters. Based on Bayes rsquo theorem result, aljabar manipulation is used such that posterior probability density function p.d.f. is same or proportional to a well known p.d.f."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2017
S-pdf
UI - Skripsi Membership Universitas Indonesia Library
Ibrahim Fajar
"Penyakit kronis merupakan salah satu permasalahan bidang kesehatan yang cukup serius di seluruh dunia. Menurut WHO tahun 2017, 70 penyebab kematian di seluruh dunia diakibatkan oleh penyakit kronis.Pemerintah telah membuat beberapa kebijakan seperti kebijakan yang diatur dalam Peraturan Menteri Kesehatan Republik Indonesia nomor 71 tahun 2017 untuk mengatasi masalah penyakit kronis tersebut. Data dan informasi terkait banyaknya pegidap penyakit kronis diperlukan untuk menginformasikan keberhasilan dari pelaksanaan kebijakan tersebut.
Tujuan dari penelitian ini adalah untuk mengetahui proporsi pengidap penyakit kronis pada kecamatan Duren Sawit. Data yang digunakan dalam penelitian ini adalah data primer berupa data survei secara langsung serta data sekunder berupa data sensus dari Dinas Kesehatan Dinkes 2017 dan Badan Pusat Statistika BPS 2017. Metode sampling yang digunakan adalah probability sampling, yaitu simple random sampling dengan ukuran sampel sebesar 1 dari total kepala keluarga yang tinggal di kecamatan Duren Sawit, yaitu sebanyak1229 kepala keluarga. Pada penaksiran langsung, menduga suatu parameter hanya berdasarkan data survei dari subpopulasi merupakan tindakan yang kurang tepat, dikarenakan ukuran sampel yang didapat relatif sedikit atau terdapat subpopulasi yang tidak terpilih menjadi sampel.
Untuk mengatasi hal tersebut, akan dilakukan penaksiran tidak langsung dengan metode small area estimation SAE, yaitu meminjam informasi tambahan seperti data administratif atau data sensus dari area lain atau area itu sendiri serta adanya penambahan pengaruh acak area ke dalam model. Pada penelitian ini, akan dicari taksiran proporsi pengidap penyakit kronis di kecamatan Duren Sawit menggunakan penaksiran langsung dan penaksiran tidak langsung dengan metode hierarchical Bayes pada SAE. Hasil taksiran yang didapat dari penaksiran langsung dan penaksiran tidak langsung akan dibandingkan nilai variansinya untuk menentukan taksiran mana yang lebih reliable.
Chronic disease is one of the health problems that are serious enough in the rest of the world. According to WHO 2017, 70 of the causes of deaths worldwide are caused by chronic disease. The Government has made some policies such as the policy that is set in a regulation of the Minister of health of the Republic of Indonesia number 71 years 2017 to control problem of chronic disease. Data and information related to the chronic diseases sufferer are required to inform the success of the implementation of the policy. The purpose of this research is to know the proportion of chronic disease sufferer in the subdistrict Duren Sawit. The data used in this research is the primary data in the form of survey data directly as well as secondary data in the form of census data from Dinas Kesehatan Dinkes 2017 and Badan Pusat Statistik BPS 2017. The sampling method used is probability sampling, thesimple random sampling with a sample size is 1 of the total heads of families living in the subdistrict Duren Sawit, that is 1229 heads of families. On direct estimation, estimating a parameter only based on survey data of subpopulations is inappropriate action, because the sample size that obtained from subpopulations relatively few or there is a subpopulation that is not selected as the sample. To overcome this, indirect estimation will be carried out with small area estimation SAE methods, which borrowed extra information such as administrative data or census data from other areas or area itself and there rsquo s an addition random area effect into the model. In this study, will look estimation of proportion for people with chronic diseasein subdistrict Duren Sawit use direct estimation and indirect estimation with hierarchical Bayes at SAE method. The results of the estimates obtained from the valuation of the direct and indirect estimation will be compared to the value of variance to determine which estimates are more reliable."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership Universitas Indonesia Library
Nalendra Dwimantara
"
Kambuhnya kanker payudara bergantung pada stadium tumor awal, terapi yang dilakukan sebelumnya, dan tumor biologi. Pengukuran darah lengkap merupakan salah satu pemeriksaan laboratorium yang relatif murah, mudah dan efektif dalam mendiagnosis kanker. Analisis regresi kesulitan dalam membuat kesimpulan dari data yang mengandung sejumlah besar variabel penjelas yang saling berkorelasi. Profile regression mengadopsi sudut pandang yang lebih global, dimana kesimpulan didasarkan pada kelompok yang mewakili pola variabel penjelasnya. Pengelompokan dilakukan untuk menganalisis suatu data dengan melihat karakteristik tiap pengamatan pada data. Suatu data jika dibagi menjadi beberapa kelompok mengartikan data tersebut memiliki karakteristik pengamatan yang berbeda-beda. Analisis pada data yang heterogen bertujuan untuk mengidentifikasi subpopulasi yang homogen dan menentukan hubungan antar variabel dalam setiap subpopulasi. Finite Mixture Model (FMM) dengan pendekatan Bayesian digunakan untuk mengidentifikasi subpopulasi dari pasien kanker payudara berdasarkan pengukuran darah. Berdasarkan nilai Deviance Information Criterion (DIC) didapatkan bahwa subpopulasi yang terbentuk untuk data rasio pengukuran darah pasien kanker payudara adalah dua subpopulasi. Peluang pasien mengalami kekambuhan pada subpopulasi 1 sebesar 35% dan 72% pada subpopulasi 2. Sedangkan subpopulasi yang terbentuk untuk data inter-rasio pengukuran darah pasien kanker payudara yang terbentuk adalah dua subpopulasi. Peluang pasien mengalami kekambuhan pada subpopulasi 1 sebesar 9% dan 3% pada subpopulasi 2.
Recurrence of breast cancer depends on the initial tumor stage, previous therapies, and biological tumors. A complete blood test is one of the relatively inexpensive, easy and effective laboratory tests in diagnosing cancer. Simple regression analysis has difficulties in drawing conclusions from data that contain large numbers of explanatory variables that are correlated. Profile regression adopts a more global perspective, where conclusions are based on groups representing covariate patterns. Clustering method aims to analyze data by looking at the characteristics of each observation in the data. If the data is divided into groups, that means that the data has different observational characteristics. Analysis of heterogeneous data purposes to identify homogeneous subpopulations and determine the relationships between variables in each subpopulation. Finite Mixture Model (FMM) with Bayesian approach is used to identify subpopulations of breast cancer patients based on blood measurements. Based on the value of the Deviance Information Criterion (DIC), it was found that the number of subpopulations formed for the data of the ratio of blood measurements for breast cancer patients are two subpopulations. The probability of patients experiencing recurrence in subpopulation 1 was 35% and 72% in subpopulation 2. Whereas the number of subpopulations formed for the data of the inter-ratio data of breast cancer patients formed are also two subpopulations. The probability of patients experiencing recurrence in subpopulation 1 is 9% and 3% in subpopulation 2."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
T-pdf
UI - Tesis Membership Universitas Indonesia Library