Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 63 dokumen yang sesuai dengan query
cover
Putri Tabriza Ahmadin
"Penelitian ini dilakukan untuk mengamati kinetika pembentukan besi cobalt (FeCo) dari nanopartikel cobalt ferrite (CoFe2O4) dengan proses reduksi menggunakan karbon. Variasi data dilakukan pada temperatur 1000ºC, 1100ºC, dan 1200ºC selama 1 jam, 3 jam, dan 5 jam untuk setiap suhu. Variasi suhu dan waktu digunakan untuk mengetahui suhu dan waktu terbaik CoFe2O4 akan tereduksi menjadi FeCo secara optimum. Metode yang digunakan dalam mencari suhu dan waktu optimal proses reduksi ialah dengan mengamati fraksi berat (wt%) pada hasil uji XRD dan menganalisisnya dengan pendekatan John Mehl Avrami Kinetics (JMAK). Hasil menunjukkan bahwa jumlah FeCo yang terbentuk semakin bertambah seiring dengan bertambahnya waktu yang diberikan pada masing-masing temperatur saat proses perlakuan panas. Suhu terbaik dalam mereduksi CoFe2O4 ialah pada suhu 1100ºC selama 5 jam dengan wt% tertinggi yang dihasilkan, sebanyak 92%, dengan lanju konstanta selama 0,0002039 s-1 yang diperoleh dari persamaan avrami.

This research was conducted to observe the kinetics of cobalt-iron (FeCo) formation from cobalt ferrite (CoFe2O4) nanoparticles with a reduction process using carbon. Data variations were carried out at temperatures of 1000ºC, 1100ºC and 1200ºC for 1 hour, 3 hours and 5 hours for each temperature. Variations of temperature and time are used to determine which temperature and time that CoFe2O4 will be reduced to FeCo optimally. The method used in finding the optimal temperature and time for the reduction process is by observing the weight fraction (wt%) from the XRD test results and analyzing with the John Mehl Avrami Kinetics (JMAK) approximation. The results showed that the amount of FeCo formed increased with increasing time given at each temperature during the heat treatment process. The best temperature for reducing CoFe2O4 is at 1100ºC for 5 hours with the highest wt% produced, as much as 92%, with a constant rate of 0.0002039 s-1 obtained from the avrami equation."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hafidzurrahman Suhairi
"Palm Kernel Meal (PKM) merupakan by-product pengolahan minyak kernel sawit yang jarang dimanfaatkan. Penggunaan masih terbatas sebagai campuran pakan ternak dengan komposisi 3-5% dari total pakan. Hal ini disebabkan tingginya serat kasar mencapai kisaran 20-40% dari berat kering PKM. Padahal, PKM mengandung komposisi mannan dengan kandungan total 45-56% pada jaringan hemiselulosa. Pemanfaatan lebih lanjut biomassa PKM sebagai substrat produksi β-mannanase dan menghasilkan turunan mannooligosakarida (MOS) sangat menjanjikan. Konsentrasi PKM sebagai substrat, pH, suhu inkubasi, dan penambahan mikropartikel Al2O3 sebagai faktor penentu simulasi RSM. Kondisi operasi terpilih menjadi basis scale-up produksi fermentor batch kapasitas 1,5 L dengan pengaruh laju aerasi 1,0 vvm. Disamping, itu dilakukan estimasi parameter kinetika pertumbuhan Kitasatospora sp. produksi aktivitas β-mannanase dan substrat PKM terkonsumsi dengan asumsi model Logistik, Luedeking-Piret dan Modified Luedeking-Piret. Titik optimum yang diperoleh dilanjutkan dengan purifikasi parsial. Setelah itu, hidrolisis PKM dilakukan untuk mengamati sinergisitas pelarut NaOH-HCl dengan enzim sebagai ekstraktor turunan mannan. Simulasi menunjukkan 3% (w/v) PKM, pH 6,5, suhu 34 °C, dan 0,2% (v/v) Al2O3 merupakan kondisi terpilih untuk scale-up. Pada fermentor 1,5 L setelah melalui pemurnian parsial, diperoleh aktivitas tertinggi 44,34 U/mL, laju aktivitas 0,302 U/mL-1 jam-1, konsentrasi delta gula total (ΔS) 39,17 gr/L, dan SUY 78,15%. Estimasi kinetika dari fitting model terukur µmax, Xo, Xmax, β, α, Z, dan γ secara berurutan adalah 0,0492 jam-1; 0,435 gr/L; 8,93 gr/; 0,085 U/mgX.jam; 4,467 U/mgX; 0,026 grS/grX.jam; dan 4,328 grS/grX. Adapun hasil hidrolisis zona bening dan TLC menunjukkan kemampuan β-mannanase yang disintesis Kitasatospora sp. menghasilkan turunan MOS yang didominasi mannobiosa (M2), dengan 72 jam pembentukan dari bantuan pelarut.

Palm Kernel Meal (PKM), called as by-product from palm kernel oil processing, which is rarely being utilized. The usage is limited as livestock feed’s blend with composition accounted only 3-5% off from total feed. The problem lies on the high content of crude fibres, up to 20-40% of PKM’s dry matter. Meanwhile, PKM contains relatively high mannan comprises around 45-56% from hemicellulose’s tissue. Further application of PKM biomass as substrate for β-mannanase production and resulting any derivatives of mannooligosaccharides (MOS) are very promising. Substrate, initial pH, incubation temperature, and additional microparticle Al2O3 were determined as independent factors for RSM simulation. The chosen condition was used for scalled-up through 1,5 L stirred tank-bioreactor batch, 1,0 vvm aeration rate. The kinetics parameters of Kitastospora sp. growth, enzyme production and substrate consumption were estimated through Logistic, Luedeking-Piret, and Modified Luedeking-Piret model assumption. The optimal point obtained was continued by partial purification. Subsequently, PKM hydrolysis was also done to observe synergistic enzyme effect with NaOH-HCl solvent-assisted for mannan’s derivative produced. The evidence showed 3% (w/v) PKM, pH 6.5, 34 °C, and 0.2% (v/v) Al2O3 were the best operating for β-mannanase production. Further confirmation in scale-up phase indicated the highest enzyme activity, rate of production, total sugar concentration, and SUY were calculated as 44.34 U/mL, 0.302 U/mL-1 hr-1, 39.17 g/L and 78.15%, respectively. Kinetics production parameter components, comprised as µmax, Xo, Xmax, β, α, Z, and γ, were expected around 0,0492 hr-1; 0,435 g/L; 8,93 g/; 0,085 U/mgX.hr; 4,467 U/mgX; 0,026 gS/gX.hr; dan 4,328 gS/gX, respectively. From clear zone and TLC experimental, it proved that the enzyme was capable to produce MOS from PKM, mainly mannobiose (M2) with extension of 72 hours duration by solvent-assisted enzymatic reaction."
Depok: Fakultas Teknik Universitas Indonesia, 2021
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Widodo Wahyu Purwanto
"Tujuan dari penelitian ini adalah untuk melakukan studi kinetika reaksi reformasi CH4/C02 menggunakan katalis Ni/A1203, dengan pendekatan analisis kinetika makro (`hukum pangkat sederhana' dan 'hukum pangkat kompleks') yang kemudian dikembangkan dengan analisis kinetika mikro. Hasil studi kinetika makro menunjukkan bahwa model kinetika `hukum pangkat kompleks' dapat memperbaiki model kinetika `hukum pangkat sederhana' yang selama ini dipakai pada reaksi reformasi C02/CH4.
Hasil pengembangan kinetika mikro menunjukkan bahwa model kinetika yang terbaik adalah yang diturunkan dari mekanisme khemisorpsi, dengan tahap penentu laju reaksinya adalah reaksi permukaan yang disertai dengan disosiasi C02.
Pada umumnya model kinetika makro dapat memprediksi data dengan baik, terutama jika kondisi operasinya berada pada rentang kondisi percobaan kinetika. Akan tetapi informasi kinetika yang diberikan oleh model kinetika makro tidak selengkap model kinetika mikro. Model kinetika `hukum pangkat sederhana' hanya berlaku pada rentang kondisi percobaan kinetika saja, sedangkan model `hukum pangkat kompleks' dan model kinetika mikro dapat dipakai pada rentang kondisi operasi yang lebih luas.
Parameter kinetika energi aktivasi yang diperoleh untuk semua model kinetika, ternyata lebih rendah dari pada entalpi reaksinya. Hal ini menunjukkan bahwa kemungkinan pengaruh tahanan difusi masih ada, atau kondisi isotermal yang tidak/belum terpenuhi."
Fakultas Teknik Universitas Indonesia, 1998
LP 1998 68
UI - Laporan Penelitian  Universitas Indonesia Library
cover
"The present study investigated the phenol utulization kinetics of a pure culture of an indigenous pseudomonas fluorescence under steady state and non-steady state (washout) conditions..."
Artikel Jurnal  Universitas Indonesia Library
cover
cover
Yuli Aulia Yuhana
"Iso-oktana dapat dikompres sampai volume kecil tanpa mengalami pembakaran spontan. Hal itu terjadi karena iso-oktana memiliki temperatur autoignition yang tinggi (417_C). Iso-oktana merupakan suatu senyawa kimia yang dapat digunakan untuk meningkatkan bilangan oktan yang terkandung dalam suatu bahan bakar. Sebagai tambahan, pencampuran iso-oktana dengan n-heptana dijadikan acuan utama untuk bahan bakar (primary reference fuel) yang menyatakan jumlah persen iso-oktana yang terkandung dalam campuran tersebut menunjukkan bilangan oktana.
Penelitian ini bertujuan membuat mekanisme kinetika kimia untuk reaksi oksidasi dan pembakaran iso-oktana, mengetahui ignition delay time, polutan yang mungkin dihasilkan dan pengaruh temperatur, tekanan dan rasio ekivalensi pada reaksi oksidasi dan pembakaran iso-oktana. Untuk mencapai semua tujuan tersebut, diperlukan suatu model kinetika kimia oksidasi dan pembakaran iso-oktana yang menyeluruh (comprehensive) sehingga memiliki rentang validitas yang luas dan representatif terhadap kondisi oksidasi dan pembakaran yang sebenarnya.
Model kinetika yang diperoleh, melalui perhitungan, akan divalidasi dengan menggunakan data percobaan yang diperoleh untuk profil konsentrasi dari eksperimen Dagout pada reaktor jetstirred dengan 0,1 % iso-oktana, rentang temperatur 550 K - 1150 K, tekanan 10 atm dan rasio ekuivalen 0,3 - 1,5 dan eksperimen Fieweger dkk. pada shock tube untuk profil ignition delay times dengan rentang temperatur 550 - 1700 K, tekanan 1 - 45 atm dan rasio ekuivalen 0,3 - 1,5.
Secara umum, hasil validasi mekanisme menunjukkan bahwa model kinetika telah mereproduksi hasil percobaan dengan baik. Hasil analisis sensitivitas yang dilakukan pada setiap kondisi operasi pembakaran dapat mengidentifikasi reaksi-reaksi yang paling penting dan relevan dalam kondisi tersebut. Hasil simulasi reaktor jet-stirred menunjukkan bahwa kondisi optimum pembakaran sempurna terjadi pada tekanan 10 atm, temperatur 1200 K dan campuran stoikiometri. Kemudian, hasil simulasi shock tube menunjukkan bahwa ignisi tercapai dengan cepat pada tekanan dan temperatur awal yang tinggi.

Iso-octane can be compressed until small volume without experiencing spontaneous combustion. That because iso-octane have high temperature autoignition ( 417_C). Iso-octane is a chemistry compound which applicable to increase octane number which implied in a fuel, mixing of iso-octane and nheptane is primary reference fuel which expressing number of gratuities isooctane which implied in the mixture shows octane number.
This research aim to make mechanisms of chemistry kinetics to react oxidation and combustion iso-octane, knows ignition delay times, pollutant that is possibly and temperature influence, pressure and equivalence ratio at reaction of oxidation and combustion iso-octane. To reach all purpose of the, required an oxidation chemistry kinetics model and combustion of iso-octane which totally causing has wide validity spread and representative to an actual condition of oxidation and combustion.
Model kinetics obtained, through calculation, will be validation by using attempt data obtained for profile concentration from Dagout experiments at reactor jet-stirred with 0,1 % isooctane, range temperature 550 K-1150 K, pressure at 10 atm and equivalence ratio 0,3-1,5 and Fieweger experiments at shock tube for ignition delay times profile with range temperature 550-1700 K, pressure 1-45 atm and equivalence ratio 0,3-1,5.
Generally, result of validity of mechanisms indicates that kinetics model has reproduced result of attempt carefully. Sensitivity analysis result in each operating condition of combustion can identify reactions most important and relevant under the condition. Result of simulation of jet-stirred reactor indicates that optimum condition of a perfect combustion happened at initial pressure 10 atm, temperature 1200 K and stoichiometric mixture. Then, result of simulation shock tube indicates that ignisi is reached swiftly at high initial pressure and temperature.
"
Depok: Fakultas Teknik Universitas Indonesia, 2008
S49630
UI - Skripsi Open  Universitas Indonesia Library
cover
Mohamad Niko Alfredo
"Campuran iso-oktana dengan n-heptana merupakan bahan bakar acuan utama gasoline yang disebut juga sebagai PRF (primary reference fuel) dalam penentuan nilai RON (research octane number). Nilai RON pada PRF menyatakan n jumlah persen iso-oktana yang terkandung dalam campuran tersebut. Penelitian ini mengembangkan mekanisme kinetika kimia untuk reaksi oksidasi dan pembakaran PRF, yang dapat memprediksi produk antara yang dihasilkan, pengaruh komposisi iso-oktana dan n-heptana, tekanan, temperatur dan rasio ekivalensi. Model kinetika kimia oksidasi dan pembakaran PRF yang dikembangkan memiliki rentang validitas yang luas dan representatif terhadap kondisi oksidasi dan pembakaran yang sebenarnya. Model kinetika reaksi yang diperoleh divalidasi dengan menggunakan data percobaan yang diperoleh untuk profil konsentrasi dari eksperimen Dagaut dkk. [1] pada reaktor jet-stirred untuk RON 10, 50, 70, dan 90 yang dilakukan pada rentang temperatur 550 K - 1150 K, tekanan 10 atm dan rasio ekuivalen 1. Selain itu juga dilakukan validasi terhadap waktu tunda ignisi (ignition delay time) dengan menggunakan data percobaan Fieweger dkk. [3] pada reaktor shock tube pada variasi RON 0, 60, 80, 90, dan 100. Dengan tekanan operasi 40 atm dan rasio ekuivalen 1. Secara umum, hasil validasi mekanisme menunjukkan bahwa model kinetika mampu mereproduksi hasil percobaan dengan baik. Hasil analisis sensitivitas yang dilakukan dapat mengidentifikasi reaksi-reaksi yang paling penting dan relevan dalam kondisi tersebut. Hasil simulasi reaktor jet-stirred menunjukkan bahwa kondisi optimum pembakaran sempurna terjadi pada PRF dengan nilai RON 90 pada tekanan 10 atm, dan temperatur 1200 K dan campuran stoikiometri. Kemudian, hasil simulasi shock tube menunjukkan bahwa ignisi tercapai dengan cepat pada tekanan dan temperatur awal yang tinggi.

Iso-octane and n-heptane mixture known as Primary Reference Fuel were use as reference for gasoline in determining Research Octane Number (RON). The nominal after RON shows the mole percentage of iso-octane in the mixture. This research aim to make mechanisms of chemistry kinetics to react oxidation and combustion iso-octane and n-heptane mixture, knows ignition delay times, pollutant that is possibly and temperature influence, pressure and equivalence ratio at reaction of oxidation and combustion iso-octane. To reach all purpose, required an oxidation chemistry kinetics model and combustion of iso-octane and n-heptane mixture which totally causing has wide validity spread and representative to an actual condition of oxidation and combustion. Model kinetics obtained, through calculation, were validated by using attempt data obtained for profile concentration from Dagout experiments at reactor jet-stirred on RON 10, 50, 70 and 90, range temperature 550 K-1150 K, pressure at 10 atm and equivalence ratio 1,0. And also Fieweger experiments at shock tube for ignition delay times profile with range temperature 550-1150 K, pressure 40 tm and equivalence ratio 1,0. Generally, result of validity of mechanisms indicates that kinetics model has reproduced result of attempt carefully. Sensitivity analysis result in each operating condition of combustion can identify reactions most important and relevant under the condition. Result of simulation of jet-stirred reactor indicates that optimum condition of a perfect combustion for RON 90 happened at initial pressure 10 atm and temperature 1200 K at stoichiometric mixture. Then, result of simulation shock tubes indicates that ignition is reached swiftly at high initial pressure and temperature."
Depok: Fakultas Teknik Universitas Indonesia, 2008
S49810
UI - Skripsi Open  Universitas Indonesia Library
cover
Cepi Supriyadi
"Gasolin merupakan bahan bakar kendaraan bermotor sebagai penyumbang pencemaran udara paling besar akibat produk pembakaran yang dihasilkannya. Oleh karena itu, dilakukan usaha untuk meminimalisasi pencemaran yang dihasilkan yaitu dengan melakukan rekayasa proses oksidasi dan pembakaran terhadap komponen penyusunnya yang salah satunya adalah sikloheksana. Rekayasa dari proses oksidasi dan pembakaran itu sendiri meliputi kajian terhadap waktu tunda ignisi dan profil konsentrasi spesi sehingga diperoleh prediksi waktu tunda ignisi dan profil konsentrasi pada berbagai kondisi operasi.
Model kinetika reaksi sikloheksana yang digunakan dalam proses rekayasa divalidasikan terhadap data percobaan Lemaire dkk dalam rapid compression machine untuk waktu tunda ignisi pada rentang temperatur 650 - 900 K, tekanan 8 atm dan 12,5 atm dengan rasio ekivalensi stoikiometri dan data percobaan dari El Bakali dkk dan Voisin dkk dalam jet-stirred reactor untuk profil konsentrasi spesies pada rentang temperatur tinggi (750 - 1150 K), rasio ekivalensi , tekanan 10 atm, residence time nya 0,5 detik serta meggunakan 99% N2 sebagai diluen.
Secara umum, validasi mekanisme menunjukkan bahwa model kinetika telah mereproduksi hasil percobaan dengan baik. Hasil analisis sensitivitas yang dilakukan pada setiap kondisi operasi pembakaran dapat mengidentifikasi reaksi-reaksi yang paling penting dan relevan dalam kondisi tersebut. Hasil simulasi jet-stirred menunjukkan bahwa profil konsentrasi spesi memberikan produk pembakaran yang baik pada tekanan dan temperatur tinggi (25 atm dan 1100 K) untuk campuran stoikiometri. Begitu juga dengan hasil simulasi rapid compression machine menunjukkan bahwa ignisi tercapai pada tekanan dan temperatur awal yang tinggi (25 atm dan 1100 K).

Gasoline as a vehicle fuel is the largest contributor for air pollutions that caused by the combustion product. Therefore, it can be done for minimizing a pollution with make an oxidation and combustion engineering process toward cyclohexane as a gasoline component. The oxidation and combustion engineering process including ignition delay time and concentration profile of species. So we will get the ignition delay time and the concentration profile of species predictions for various operating conditions.
The kinetics model mechanisms used in an oxidation and combustion engineering process was validated toward the experiment data Lemaire et al in rapid compression machine for ignition delay time with stoichiometric mixtures, range temperature 650 ' 900 K, pressure 8 atm and 12.5 atm and then the experiment data El Bakali et al and Voisin et al in jet-stirred reactor for the concentration profile of species in high-temperature regimes (750 ' 1150 K), with equivalence ratios , the residence time is 0.5 second and at 99% dilution by nitrogen.
Generally, result of validity mechanisms indicates that kinetics model has reproduced result of attempt carefully. Sensitivity analysis result in each operating condition and combustion can identify most important reactions and relevant under the condition. Simulation result of jet-stirred reactor indicates that the species concentration profile of perfect combustion product happen at high initial pressure and temperature (25 atm and 1100 K) for stoichiometric mixture. Then, result of simulation rapid compression machine indicates that ignition is reached by swiftly at high initial pressure and temperature (25 atm and 1100 K).
"
Depok: Fakultas Teknik Universitas Indonesia, 2009
S51907
UI - Skripsi Open  Universitas Indonesia Library
cover
Widi Agsanto
"Bahan bakar gasolin mengandung ratusan hingga ribuan campuran hidrokarbon. Dalam hal ini bahan bakar gasolin memiliki fraksionasi hidrokarbon C4-C12 yang akan bereaksi secara beragam dengan oksigen dalam udara untuk membentuk karbondioksida, karbon monoksida dan uap air sebagai produk akhir sehingga perlu dilakukan pengoptimalan pembakaran yang terjadi di ruang bakar yang menghasilkan daya energi lebih besar dengan konsumsi bahan bakar yang lebih irit. Disamping itu pencemaran gas buang yang tidak sempurna menjadi berkurang.
Penelitian ini bertujuan mempelajari prilaku hidrokarbon parafin undekana (C11H24) dengan menggunakan acuan profil dekana yang diperuntukan untuk mempelajari sifat kimia pembakaran undekana yaitu dengan cara memahami kinetika kimia pembakaran sebagai prilaku tunggal yang terkandung dalam bahan bakar, sehingga dapat mengetahui prilaku bahan bakar tersebut dan dalam mengembangkan model kinetika kimia pembakaran dan oksidasi undekana dengan menggunakan konsep aturan Muharam.
Model kinetika undekana yang diperoleh melalui pengembangan dari model dekana, melakukan verifikasi model kinetika dekana sebagai sub komponen model kinetika undekana dengan menggunakan data percobaan yang diperoleh untuk profil ignition delay times dari eksperimen Pfahl et al. pada reaktor shock tube dengan rasio bahan bakar 0,5 - 2, rentang temperatur 700 K - 1300 K, tekanan 13,5 bar dan 50 bar.
Secara umum, hasil pengembangan mekanisme menunjukkan bahwa model kinetika telah mereproduksi hasil percobaan dengan baik dan dilakukan simulasi Jet Stirred menunjukkan bahwa ignisi tercapai pada tekanan dan temperatur awal yang tinggi. Begitu juga dengan simulasi Shock Tube menunjukkan bahwa profil konsentrasi spesi memberikan produk pembakaran yang baik pada tekanan dan temperatur tinggi untuk campuran Lean Fuel.

Gasoline fuel contain hundreds hydrocarbon mixture. Gasoline fuel mechanism keeps hydrocarbon C4-C12 fractional part which will give various react to the oxygen in the air to form carbondioxide, carbonmonoxide and H2O as the final production. Then, it will produce bigger energy to the economize on gasoline fuel consumption. Beside that, a pollution of incomplete gas exhaust could be minimized.
This research is aimed to study the C11H24 behavior as one of gasoline fuel composition, which applies modelling reference of decane and intended for studying of decane combustion. Way by understanding, A combustion of chemical kinetic as a single mechanism in fuel. To develop a kinetic model of chemical combustion undecane by applying a simple rule of muharam concept.
Model of undecane kinetic is taken from decane model development, to verify decane kinetic model as sub component of undecane kinetic model by applying of the existing experiment data to form a profile of ignition delay times from pfahl et al experiment at a jet stirrer by the ratio of fuel is about 0.5-2.0, temperature range is about 700-1300 K, pressure is about 13.5 and 50 bar.
Generally, a result of mechanism development shows a kinetic model does a reproduction of well experiment output and it is done by jet stirred practice and show an ignition will reach the former high pressure and temperature. A simulation of shock tube likewise shows that a concentration profile gives a well combustion production in high prsssure and temperature of lean fuel mixture.
"
Depok: Fakultas Teknik Universitas Indonesia, 2009
S51787
UI - Skripsi Open  Universitas Indonesia Library
cover
Sitinjak, Ricardo M.T.
"Studi degradasi fotokatalitik paraquat diklorida menggunakan fotokatalis magnetik Fe3O4/TiO2 dan Fe3O4/SiO2/TiO2 menjadi perhatian dalam masalah pencemaran lingkungan, misalnya kontaminasi air tanah oleh herbisida. Herbisida jenis paraquat ini sangat berbahaya dalam lingkungan khususnya daerah perkebunan kelapa sawit dimana senyawa ini dapat mencemari air tanah. Fototakalis magnetik Fe3O4/TiO2 dan Fe3O4/SiO2/TiO2 dipreparasi dengan menggunakan metode heteroaglomerasi. Komposit Fe3O4/TiO2 dipreparasi dengan rasio berat 1:1 dan Fe3O4/SiO2/TiO2 dengan rasio berat 2:1:3. Keunggulan dari komposit Fe3O4/TiO2 dan Fe3O4/SiO2/TiO2 yaitu memiliki sifat fotoaktif yang cukup baik dan mudah untuk dipisahkan dari air yang diolah. Karakterisasi komposit dilakukan dengan instrumentasi SEM-EDX, FT-IR, UV-VIS DRS, danVSM. Pengujian fotokatalis magnetik Fe3O4/TiO2 dan Fe3O4/SiO2/TiO2 untuk degradasi senyawa paraquat diklorida telah berhasil dilakukan. Hasil uji degradasi paraquat diklorida menggunakan komposit Fe3O4/TiO2 dan Fe3O4/SiO2/TiO2 pada reaktor batch dengan dosis katalis 1 g/L menghasilkan penurunan paraquat diklorida masing-masing sebesar 41% dan 85% dalam rentang waktu sampai 240 menit pada kondisi pH=6. Sedangkan pada reaktor alir kecil dengan dosis katalis 1 g/L dan masing-masing memiliki %degradasi sebesar 32% dan 71% dan pada reaktor alir besar dengan dosis 0,2 g/L masing-masing sebesar 7% dan 14% dalam retang waktu sampai 6 jam. Studi kinetika dari proses degradasi paraquat diklorida (sistem heterogen) mengikuti orde-satu pseudo, nilai konstanta kecepatan yang dihasilkan pada proses degradasi paraquat diklorida menggunakan komposit Fe3O4/TiO2 dan Fe3O4/SiO2/TiO2 adalah sebesar 0,153 Jam-1 dan 0,54 Jam-1 dengan waktu paruh yang paling cepat masing-masing sebesar 4,53 jam dan 1,286 jam. Sedangkan menggunakan reaktor alir kecil memiliki nilai konstanta kecepatan masing-masing komposit adalah 0,057 Jam-1 dan 0,207 Jam-1 dengan waktu paruh masing-masing 12,16 jam dan 3,348 jam dan untuk reaktor alir besar nilai konstanta kecepatan masing-masing komposit adalah 0,007 Jam-1 dan 0,0132 Jam-1 dengan waktu paruh masing-masing 99,021 jam dan 52,51 jam.

Study on the degradation of paraquat dichloride by using photocatalytic magnetic Fe3O4/TiO2 and Fe3O4/SiO2/TiO2 attracted attention in environmental pollution problems, including on the contamination of ground water by herbicide. Paraquat, one type of herbicide, which is being used in the palm oil plantation area may lead to a ground water contamination. Photocatalytic magnetic Fe3O4/TiO2 and Fe3O4/SiO2/TiO2 were prepared by using the heteroaglomeration method. Whre, the Fe3O4/TiO2 composite were prepared by the mass ratio of 1:1 and Fe3O4/SiO2/TiO2 with mass ratio of 2:1:3. Advantages of the composite Fe3O4/TiO2 and Fe3O4/SiO2/TiO2 are having the nature of quite good fotoactive and easy to recollect from the treated water, due to its magnetic properties. Composite characterizations were conducted by SEM-EDX, FT-IR, UV-VIS DRS, and VSM. Photocatalytic activity examination of the magnetic photocatalytic Fe3O4/TiO2 and Fe3O4/SiO2/TiO2, were carried out toward water containing paraquat dichloride. The results of the degradation experiments by using Fe3O4/TiO2 and Fe3O4/SiO2/TiO2 in the batch reactor with 1 g/L of catalyst dose, for the 240 minutes, at pH=6, showed that of paraquat dichloride can be eliminated as much as 41% and 85% , respectiveley. While in the small flow reactor with a dose of 1g/L catalyst paraquat can be eliminated as much as 32% and 71% respectively. While for the big flow reactor with a dose of 0,2 g/L paraquat dichloride can be eliminated only 7% and 14%, respectivelye. Kinetic study of the (heterogeneous) batch process indicated the pseudo-1st-order, with the apparent rate constant of the degradation of paraquat dichloride using composite Fe3O4/TiO2 and Fe3O4/SiO2/TiO2 were 0,153 h-1 and 0,54 h-1 and fastest half-life 4,53 h and 1,286 h, respectivelye. While when using a small flow reactor the value of the apparent rate constant of each composite was 0,057 h-1 and 0,207 h-1 with a half-life of each 12,16 h and 51,286 h respectivelye. For the big flow reactor the value of the apparent rate constant of each composite was 0,007 h-1 and 00132 h-1 with a half-life of each 99,021h and 52,51h respectivelye.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2014
S55964
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7   >>