Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 3 dokumen yang sesuai dengan query
cover
Anak Agung Ngurah Gde Sapteka
"Avalanche Photodiode (APD) merupakan divais semikonduktor yang sangat sensitif untuk mengubah cahaya menjadi arus atau tegangan berdasarkan fenomena avalanche, yakni suatu fenomena yang terjadi pada material semikonduktor ketika carriers pada region transisi dipercepat oleh medan listrik untuk memperoleh energi yang cukup untuk membentuk pasangan elektron-hole bebas melalui benturan - benturan dengan elektron-elektron yang terikat.
Pada tesis ini dilakukan perancangan dan simulasi APD untuk mendeteksi cahaya visible dengan memperhitungkan efek dead space berdasarkan penelitian Pauchard dan kawan-kawan. Rancangan divais APD dengan bahan silikon terdiri dari lima layer yakni, yakni layer p1+ dengan konsentrasi 1020 /cm3, layer dengan konsentrasi 1011 /cm3, layer p2+ dengan konsentrasi 1019 /cm3, layer n dengan konsentrasi 1017 /cm3 dan layer n+ dengan konsentrasi 1020 /cm3. Adapun panjang geometri masing-masing layer berturut-turut setara dengan light penetration depth minimum, selisih antara light penetration depth maksimum dengan light penetration depth minimum, 100 nm, panjang multiplication region (MR = 370 nm, 470 nm atau 570 nm), dan 200 nm.
Simulasi APD dilakukan dengan komputasi numerik dengan perangkat lunak Matlab versi 7.11.0.584. untuk menentukan dead space, struktur divais, koefisien ionisasi dan total mean gain. Efek dead space pada rancangan APD dengan panjang MR sebesar 370 nm; 470 nm dan 570 nm menghasilkan nilai maksimum total mean gain berturut-turut sebesar 9,72; 25,82 dan 50,19. Rancangan-rancangan ini memiliki nilai maksimum elektron dead space sebesar 112,7 nm dan nilai maksimum hole dead space sebesar 152,4 nm sehingga disimpulkan bahwa perancangan APD untuk mendeteksi cahaya visible memerlukan MR dengan panjang minimum 152,4 nm.

An avalanche photodiode (APD) is a highly sensitive semiconductor device to convert light to electricity through avalanche multiplication phenomena, a phenomena that can occur in semiconductor materials when the carriers in the transition region are accelerated by the electric field to energies sufficient to free electron-hole pairs via collisions with electron bond.
This thesis carried out the design and simulation of APD to detect visible light by calculating the effect of dead space based on research Pauchard et al. The design of APD device using silicon material composed of five layers namely, layer p1+ with a concentration of 1020/cm3, layer with a concentration of 1011/cm3, layer p2+ with a concentration of 1019/cm3, layer n with a concentration of 1017/cm3 and layer n+ with a concentration of 1020/cm3. The geometry length of the layers are equal to minimum light penetration depth, difference between maximum light penetration depth and minimum light penetration depth, 100 nm, length of multiplication region (MR = 370 nm, 470 nm or 570 nm), and 200 nm respectively.
APD simulation performed with numerical computing using Matlab software version 7.11.0.584 to determine dead space, device structure, ionization coefficient and total mean gain. The dead space effect on APD designs with MR of 370 nm MR; 470 nm and 570 nm produce maximum value of total mean gain of 9.72; 25.82 and 50.19. respectively. These designs have a maximum value of electron dead space of 112.7 nm and a maximum value of hole dead space of 152.4 nm so it concluded that the design of an APD to detect visible light requires MR with minimum length of 152.4 nm.
"
Depok: Fakultas Teknik Universitas Indonesia, 2011
T29534
UI - Tesis Open  Universitas Indonesia Library
cover
Anak Agung Ngurah Gde Sapteka
"Riset ini difokuskan pada karakteristik linier arus-tegangan dioda P-I-N silikon skala nano doping tinggi dalam rentang temperatur dari 50K hingga 250 K serta karakteristik arus-tegangan dan konduktansi dioda P-N Silikon skala nano doping tinggi pada temperatur 5,5K. Untuk itu dioda P-N dan P-I-N dengan konsentrasi doping tinggi difabrikasi pada wafer ultra tipis berstruktur silicon-oninsulator (SOI). Dari hasil fabrikasi telah diperoleh konsentrasi doping tinggi Boron dan Phosphorus pada divais dioda mencapai 1×1020 cm-3 and 2×1020 cm-3, berturut-turut.
Pengukuran karakteristik arus-tegangan dioda P-I-N silikon skala nano doping tinggi dilakukan pada beberapa divais dengan lapisan intrinsik sepanjang 200 nm dan 700 nm. Linieritas arus pada rentang forward bias dari 1,5 V hingga 2,0 V dan rentang temperatur dari 50 K hingga 250 K menunjukkan divais ini sesuai untuk sensor temperatur rendah. Pada pengukuran juga diperoleh data bahwa dioda P-I-N silikon skala nano doping tinggi menghasilkan arus yang lebih tinggi saat temperatur diturunkan dalam rentang forward bias dari 1,5 V hingga 2,0 V. Selain itu juga diperoleh data bahwa divais skala nano dengan lapisan intrinsik yang lebih panjang dan lebih lebar akan menghasilkan arus yang lebih tinggi pada rentang forward bias dari 1,5 V hingga 2,0 V dan temperatur dari 50K hingga 250K.
Hasil pengukuran pada dioda P-N silikon skala nano doping tinggi pada rentang forward bias hingga 0,1 Volt maupun rentang reverse bias hingga -0,1 Volt menghasilkan beberapa puncak konduktansi yang menunjukkan kesesuaian nilai dengan level energi density of state dua dimensi (2D DOS) dan level energi kombinasi phonon pada temperatur 5,5K. Pada forward bias, level energi diskret heavy hole, light hole, serta kombinasi phonon TA, LA, TO dan LO berkontribusi signifikan pada puncak konduktansi dalam rentang tegangan hingga 0,1 Volt. Demikian juga halnya pada reverse bias, level energi diskret elektron 2-fold valley, 4-fold valley, serta kombinasi phonon TA, LA, TO dan LO berkontribusi signifikan pada puncak konduktansi dalam rentang tegangan hingga -0,1 Volt. Transport elektron pada dioda P-N Silikon dalam skala nano doping tinggi akan mengalami puncak konduktansi saat elektron memiliki energi yang sama dengan level diskret energi 2D DOS. Hal ini membuktikan adanya phonon-assisted tunneling pada dioda P-N silikon skala nano doping tinggi.

This report is focused on linier current-voltage (I?V) characteristic of highly-doped nanoscale Silicon P-I-N diodes at temperature from 50K to 250K and also I-V and conductance characteristics of highly-doped nanoscale Silicon P-N diode at temperature 5.5K. For that purpose, we fabricated nano scale P-I-N and P-N diodes within ultra thin silicon-on-insulator (SOI) structures. From fabrication, we achieved high doping concentrations of Boron and Phosphorus in SOI diodes, 1×1020 cm-3 and 2×1020 cm-3, respectively.
Measurement of current-voltage characteristics of highly-doped nanoscale silicon PIN diode is performed on devices with intrinsic layer length of 200 nm and 700 nm. The current linearity under forward bias range from 1.5 V to 2.0 V and temperature range from 50K to 250K shows that these devices are suitable for lowtemperature sensor. The measurement data shows also that highly-doped nanoscale silicon PIN diode produces higher current when the temperature is lowered under forward bias from 1.5 V to 2.0 V. In addition, the data shows that nanoscale devices with longer and wider intrinsic layer would generate higher current under forward bias range from 1.5 V to 2.0 V and temperature from 50K to 250K.
Measurement of highly-doped nanoscale silicon P-N diode under forward bias to 0.1 Volt and also reverse bias to -0.1 Volt results conductance peaks that show relationship with two-dimensional density of state (2D DOS) and phonon combination energy level at temperature 5.5K. Under forward bias, discrete energy level of heavy hole, light hole and phonon combination of TA, LA, TO and LO have significant contribution to conductance peaks in range 0.1 Volt. Also under reverse bias, discrete energy level of electron 2-fold valley, 4-fold valley and phonon combination of TA, LA, TO and LO have significant contribution to conductance peaks in range -0.1 Volt. Electron transport of highly-doped nanoscale silicon P-N diode will experience conductance peaks when it has equal energy with 2D DOS discrete energy level. It proves the existence of phonon-assisted tunneling on highly-doped nanoscale silicon P-N diode.
"
Depok: Fakultas Teknik Universitas Indonesia, 2016
D2149
UI - Disertasi Membership  Universitas Indonesia Library
cover
Anak Agung Ngurah Gde Sapteka
"This report is focused on the linear region of I-V characteristics of nanoscale highly-doped p-i-n diodes fabricated within ultrathin silicon-on-insulator (SOI) structures with an intrinsic layer length of 200 nm and 700 nm under a forward bias at a temperature range from 50 K to 250 K. The doping concentrations of Boron and Phosphorus in SOI p-i-n diodes are high, 1×1020 cm-3 and 2×1020 cm-3, respectively. The linearity of I-V characteristics of the p-i-n diodes under a certain forward bias voltage range and temperature range from 50 K to 250 K indicate these devices are suitable for low temperature sensing purposes. We conclude that highly-doped p-i-n diodes produce a higher current as the temperature decreases under a certain bias voltage range. Nanoscale diodes with longer and wider intrinsic layers generate higher currents under a certain range of bias voltage and low temperature measurements."
Depok: Faculty of Engineering, Universitas Indonesia, 2015
UI-IJTECH 6:3 (2015)
Artikel Jurnal  Universitas Indonesia Library