Ditemukan 2 dokumen yang sesuai dengan query
Ardy Lefran Lololau
"Penelitian ini bertujuan menganalisis dan mengestimasi secara teoretis mekanika dan fenomena kerusakan pada pembebanan multiaksial komposit alami rami/PLA. Estimasi sifat mekanik multiaksial komposit rami/PLA dilakukan berdasarkan mekanika komposit yang dimodelkan dari karakteristik rami dan PLA. Hasil pengujian mekanik ASTM D638, D695 dan D3846 masing-masing menunjukan PLA berkekuatan tarik, tekan dan geser sebesar 20.32, 90.14 dan 21.22 MPa, dengan modulus elastisitas 1.75 GPa. Dengan fraksi volume penguat 26%, rami dan PLA dimodelkan dalam suatu lamina unidireksional dengan kekuatan ultimat tarik longitudinal 109.8 MPa dan transversal 12.3 MPa, kekuatan ultimat tekan longitudinal 87.94 MPa dan tranversal 83.09 MPa, serta kekuatan geser ultimat 13.01 MPa melalui pengujian mekanik masing-masing berstandar ASTM D3039, D3410 dan D3518. Lamina-lamina ini kemudian disusun dalam laminasi yang terdiri dari delapan lamina yang berorientasi simetris-seimbang, kemudian diterapkan pada struktur tabung dinding tipis untuk diberikan pembebanan multiaksial. Dengan tekanan dalam konstan 1.2 MPa sekaligus beban biaksial tensi torsi, secara semi-empiris, laminasi thin-walled tube komposit rami/PLA mampu menahan tegangan longitudinal maksimum 120.5 MPa dan tegangan geser bidang maksimum 13.03 MPa. Fenomena kerusakan laminasi menunjukan adanya kecenderungan pada tiga pola kerusakan yang diobservasi pada rasio biaksial positif dan berakibat pada evolusi tegangan regangan global pada laminasi tabung dinding tipis komposit rami/PLA.
This study aims to theoretically analyze and estimate the mechanics and damage phenomena under multiaxial loading experienced by ramie/PLA bio-composites. The multiaxial mechanical behavior estimation was modeled from its constituents’ properties based on the mechanics of composite materials. The mechanical test result shows that PLA had tensile, compressive, and shear strengths of 20.32, 90.14, and 21.22 MPa, respectively, with a modulus of elasticity of 1.75 GPa using ASTM D638, D695, and D3846 as their standards. With reinforcements’ volume fraction of 26%, ramie and PLA were modeled in a unidirectional lamina with the ultimate longitudinal tensile strength of 109.8 MPa and 12.3 MPa on transversal axis, ultimate longitudinal compressive strength of 87.94 MPa and 83.09 MPa on transversal axis, and ultimate shear strength of 13.01 MPa from mechanical testing according to ASTM D3039, D3410, and D3518 standards, respectively. These laminas were then stacked in a laminate of eight symmetrical-balanced oriented lamina, then applied to a thin-walled tube structure subjected to multiaxial loading. With a constant internal pressure of 1.2 MPa and biaxial tension-torsion loads, semi-empirically, the thin-walled tube ramie/PLA laminate can retain maximum longitudinal stress of 120.5 MPa and maximum in-plane shear stress of 13.03 MPa. The damage phenomena of laminate show that it tends to propagate in the three damage patterns observed in six positive biaxial ratios and finally will affect the evolution of stress and strain globally in the ramie/PLA thin-walled tube laminate."
Depok: Fakultas Teknik Universitas Indonesia, 2021
T-Pdf
UI - Tesis Membership Universitas Indonesia Library
Ardy Lefran Lololau
"Penelitian tentang material komposit yang diperkuat serat alami telah mendapatkan urgensi dalam beberapa dekade terakhir, terutama untuk menghasilkan produk mekanis yang lebih baik sambil memahami perilaku mekanisnya melalui pembebanan siklik dan multiaksial yang kompleks. Oleh karena itu, penelitian ini dikhususkan untuk merekayasa dan mengembangkan proses preparasi dan proses manufaktur serta mengarakterisasi perilaku mekanik multiaksial dari prepreg komposit asam polilaktat yang diperkuat serat rami. Proses preparasi dan proses manufaktur telah dilakukan melalui tiga stase rekayasa dan pengembangan: Alpha, Beta, dan Gamma. Prosedur, tujuan, dan hasil terperinci dari setiap stase telah ditampilkan. Beberapa jenis spesimen juga telah dipreparasi untuk diuji melalui pembebanan aksial maupun multiaksial. Uji statis dan fatig telah dilakukan pada arah longitudinal dan transversal dari spesimen prepreg asam polilaktat yang diperkuat serat rami dengan menggunakan sebuah perangkat Arcan yang dimodifikasi untuk meniru kondisi tegangan tarik-geser biaksial pada spesimen. Kerusakan pada spesimen yang gagal juga telah diamati dengan menggunakan mikroskop digital dan modul SEM. Data eksperimental kemudian dibandingkan dengan data prediksi dari perhitungan amplop kegagalan Empiris, Semi-empiris, dan Quasi-eksperimental dengan menggunakan kriteria kegagalan konvensional, yaitu tegangan maksimum, Tsai-Hill, Hashin, dan Tsai-Wu. Kriteria Tsai-Hill dan Hashin memberikan hasil prediksi yang lebih baik karena perhitungannya yang berbeda untuk setiap kuadran pembebanan. Setelah melalui pembebanan dinamis, material memiliki kekuatan fatig sebesar 36-40% dari kekuatan ultimat untuk lamina dan sebesar 42-55% dari kekuatan ultimat untuk laminasi yang mana diperoleh pada sekitar 106 siklus sebagaimana kurva S-N melandai untuk setiap pembebanan berdasarkan rasio biaksial.
Research on natural fiber-reinforced composite materials has gained urgency in the last decades, especially in producing a better mechanical product while understanding its mechanical behavior through complex cyclic and multiaxial loading. Thus, this work is devoted to engineer the preparation and manufacturing process and characterize the multiaxial mechanical behavior of a novel ramie fiber-reinforced polylactic-acid composite prepreg. The preparation and manufacturing processes have been carried out through three engineering and developing phases: Alpha, Beta, and Gamma. The detailed procedures, aims, and results of each stage are presented. Various specimen types have also been prepared to be subjected to axial and or multiaxial loading. Static and fatigue tests were performed on the longitudinal (warp) and transversal (weft) direction of the ramie fiber-reinforced polylactic-acid prepreg specimen using a novel modified Arcan fixture to mimic the biaxial tensile-shear stress state on the specimen. The damage on failed specimens has also been observed on a digital microscope and a SEM module. The experimental data are then compared to the predictive data from empirical, semi-empirical, and quasi-experimental calculation of failure envelopes using known failure criteria, e.g., maximum stresses, Tsai-Hill’s, Hashin’s, and Tsai-Wu’s. The Tsai-Hill and Hashin criteria yield a better predictive result due to their distinctive computation for each loading quadrant. During the dynamic loading, the material had its fatigue strength at 36-40% of the ultimate strength for lamina and at 42-55% of the ultimate strength for the quasi-isotropic laminate, obtained around 106 cycles as the S-N curve flattened for each loading based on the biaxial ratio."
Depok: Fakultas Teknik Universitas Indonesia, 2024
D-pdf
UI - Disertasi Membership Universitas Indonesia Library