Ditemukan 1 dokumen yang sesuai dengan query
Aryo Hastungkoro Harimurti Mukarta
"Dalam melakukan klaim subrogasi, perusahaan penjaminan kredit sering mengalami kendala di mana pihak yang dijamin tidak melunasi pinjamannya sesuai kesepakatan. Hal ini membuat perusahaan penjaminan kredit mengklasifikasikan pihak terjamin yang berpotensi untuk melunasi pinjaman kreditnya, dan pihak terjamin yang tidak berpotensi untuk melunasi pinjaman kreditnya. Penelitian ini mengevaluasi prediksi potensi klaim subrogasi pada penjaminan kredit menggunakan berbagai model pembelajaran mesin berdasarkan data dunia nyata dari perusahaan penjaminan kredit besar di Indonesia. Eksperimen menggunakan Logistic Regression, sebuah metode prediksi berbasis persamaan linier, Penalized Logistic Regression, bentuk dari Logistic Regression yang koefisien-koefisiennya diberikan penalti, dan Random Forest Classifier, sebuah metode berbasis ensemble learning. Model diuji menggunakan Hold-out Validation dan data prediksi dibandingkan dengan data uji untuk false positive dan false negative. Hasil penelitian menunjukkan bahwa Random Forest Classifier memberikan hasil yang lebih baik, menunjukkan kinerja rata-rata yang lebih baik dibandingkan dengan Logistic Regression dan Penalized Logistic Regression . Temuan studi ini dapat digunakan oleh analis klaim dan subrogasi baik dari perusahaan penjaminan kredit maupun peneliti independen dalam menilai kekuatan dan kelemahan masing-masing model dan untuk menyusun aturan keputusan yang efektif secara empiris untuk mengevaluasi kebijakan subrogasi.
In making subrogation claims, credit guarantee companies often encounter problems where the guaranteed party does not pay off their loan according to the agreement. This makes credit guarantee companies classify those who have the potential to pay off their credit loans, or those that are not potential to pay off their credit loans. This study evaluates the prediction of potential subrogation claims in credit guarantees using various machine learning models based on real-world data from a large credit guarantee company in Indonesia. The experiment used Logistic Regression, a linear equation-based prediction method, Penalized Logistic Regression, a form of Logistic Regression whose coefficients are penalized, and the Random Forest Classifier, an ensemble learning-based method. The model was tested using Hold-out Validation and prediction dataset were compared to test dataset for false positives and false negatives. The results showed that the Random Forest Classifier gave better results, indicating a better average performance compared to Logistic Regression and Penalized Logistic Regression. The findings of this study can be used by claims and subrogation analysts from both credit guarantee companies and independent researchers in assessing the strengths and weaknesses of each model and to construct empirically effective decision rules for evaluating subrogation policies."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership Universitas Indonesia Library