Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 2 dokumen yang sesuai dengan query
cover
Eliana Stefani
"Furfural merupakan produk intermediate memiliki banyak senyawa turunan yang berperan penting di industri serta berpotensi menjadi energi terbarukan. 2-Metilfuran sebagai aditif bahan bakar berguna untuk meningkatkan nilai angka oktan bahan bakar. Namun, untuk dapat mengkonversi furfural menjadi 2-metilfuran masih menghadapi banyak hambatan, seperti harga dari katalis yang mahal dan kondisi operasi optimal. Pada penelitian ini, katalis NiCu/Al2O3 akan di preparasi dengan metode wetness incipient impregnation. Dilakukan variasi suhu kalsinasi pada 400℃, 500℃, 600℃ dan 700℃ pada saat preparasi katalis NiCu/Al2O3 untuk mendapatkan pengaruhnya terhadap karakteristik dari katalis. Adapun meningkatnya suhu kalsinasi dari 400oC menjadi 700oC berpengaruh terhadap luas permukaan katalis yang menurun dari 110.65 menjadi 101.61 m2/g. Akan tetapi, ukuran pori mengalami trend yang berbeda, yakni meningkat seiring dengan kenaikan suhu kalsinasi, dari 5.15 menjadi 6.84 nm. Pengaruh dari peningkatan suhu kalsinasi lainnya, yaitu, pada tingkat asam kuat yang menurun, 0.4922 mmol/g menjadi 0.0995 mmol/g, dimana hal ini lebih disukai untuk reaksi hidrogenasi mengarahkan reaksi ke pembentukan 2-metilfuran dengan mencegah terbentuknya byproduct juga mencegah terjadi coke deactivation yang disebabkan asam kuat. Selanjutnya, pada penelitian ini akan dilakukan hidrogenasi pada fasa gas untuk menghindari masalah leaching. Reaksi hidrogenasi dilakukan pada kondisi operasi, tekanan 18 bar, suhu reaksi 250oC, kecepatan pengadukan 400 rpm, selama 4 jam, menggunakan donor hidrogen yaitu gas H2 dan katalis NiCu/Al2O3 yang telah dikalsinasi pada suhu 400oC. Dari hasil penelitian ini produk hasil reaksi hidrogenasi dikarakterisasi dengan FTIR dan telah terdapat kandungan gugus C-H stretching, C=C stretching, C-H bending pada senyawa bio-oil.

Furfural is an intermediate product with many derivative compounds that play a crucial role in the industry and have the potential to become a renewable energy source. 2-Methylfuran, as a fuel additive, is useful for increasing the octane number of fuel. However, the conversion of furfural into 2-methylfuran still faces many obstacles, such as the high cost of the catalyst and optimal operational conditions. In this research, NiCu/Al2O3 catalyst will be prepared using the wet incipient impregnation method. Variations in calcination temperature at 400℃, 500℃, 600℃, and 700℃ will be conducted during the preparation of NiCu/Al2O3 catalyst to understand its influence on the characteristics of the catalyst. The increase in calcination temperature from 400oC to 700oC affects the catalyst's surface area, decreasing from 110.65 to 101.61 m2/g. However, the pore size shows an increasing trend with the rise in calcination temperature from 5.15 to 6.84 nm. The effect of the increased calcination temperature is also observed in the decrease in strong acid sites, from 0.4922 mmol/g to 0.0995 mmol/g, which is preferable for hydrogenation reactions leading to the formation of 2-methylfuran and preventing coke deactivation and byproduct formation caused by strong acid. Acidity and catalyst pore size influence catalytic performance. Furthermore, in this study, hydrogenation will be conducted in the gas phase to avoid leaching issues. Hydrogenation reaction is performed under operating conditions, pressure of 18 bar, reaction temperature of 250oC, stirring speed of 400 rpm, for 4 hours, using hydrogen gas as the hydrogen donor and NiCu/Al2O3 catalyst calcined at 400oC. The results of this study characterize the products of the hydrogenation reaction using FTIR, revealing the presence of C-H stretching, C=C stretching, and C-H bending groups in the bio-oil compound."
Depok: Fakultas Teknik Universitas Indonesia, 2024
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Eliana Stefani
"Biofuel hasil produksi dari ko-pirolisis trigliserida dan polipropilena masih mengandung oksigenat yang cukup tinggi sehingga memiliki heating value yang rendah, korosif dan tidak stabil. Pada penelitian ini, katalis ZrO2/ -Al2O3 - TiO2 diharapkan dapat memperbaiki karakteristik bio-oil dan mengarahkan reaksi sehingga menghasilkan biofuel. Katalis dikalsinasi dengan variasi suhu 1150˚C dan 1300˚C dan variasi heating rate 5, 7 dan 9˚C/menit. Setelah dikarakterisasi, didapatkan bahwa katalis yang paling optimum yaitu memiliki fasa struktur kristal tetragonal terbanyak sebesar 4.2%, luas permukaan 3.7 m2/g, komposisi rasio atom yang tepat yaitu pada variasi heating rate 7˚C/menit dengan suhu 1150˚C, Kemudian, pada proses catalytic co-pyrolysis komposisi umpan yang digunakan adalah 50%, 60%, 75% dan 90% Polipropilena dengan loading katalis ZrO2/ -Al2O3 – TiO2 sebanyak 15% total umpan. Penelitian ini dilakukan di reaktor berpengaduk dengan jumlah feed 200 gram, laju pemanasan 10˚C/menit, suhu pirolisis 550˚C dan kecepatan pengadukan 80 RPM dengan laju aliran gas nitrogen 100 mL / menit. Dari hasil katalitik ko-pirolisis menggunakan katalis ZrO2/ -Al2O3 – TiO2 diperoleh hasil yield produk biofuel tertinggi sebesar 50% pada variasi 50% PP. Penggunaan katalis ZrO2/ -Al2O3 – TiO2 mampu meningkatkan produksi alkana dan alkena dengan mengurangi kandungan asam karboksilat dan keton pada biofuel. Hal ini menunjukkan bahwa, penggunaan katalis juga mampu memaksimalkan reaksi deoksigenasi, selain adanya penggunaan PP yang berperan sebagai donor hidrogen untuk mengikat rantai karbon. Menurut analisis GC MS, H NMR dan C NMR, kandungan senyawa yang dominan adalah alkana dan alkena. Apabila dilihat dari nilai viskositas kinematik biofuel, diketahui bahwa nilai viskositas mendekati bahan bakar 0# diesel.

Biofuel produced from the triglyceride and polypropylene co-pyrolysis still contains high oxygenate content which requires low calorific value, corrosive and unstable. In this study, the ZrO2 / α-Al2O3 - TiO2 catalyst is expected to improve the characteristics of bio-oil and facilitate reactions so as to produce biofuels. The catalyst is calcined with a temperature variation of 1150˚C and 1300˚C and a variation of the heating rate of 5, 7 and 9˚C/minute. After being characterized, the most optimal catalyst was obtained which had the most tetragonal crystal structure phase of 4.2%, surface area of ​​3.7 m2/g, the composition of the right atomic ratio at a heating rate variation of 7˚C/min with a temperature of 1150˚C Then, in the catalytic co-pyrolysis process, the composition of the feed used is 50%, 60%, 75% and 90% Polypropylene by loading ZrO2/α-Al2O3 - TiO2 catalyst as much as 15% of the total feed. This research was carried out on a stirred tank reactor with total feed 200 gram, heating rate of 10 ˚C /min, pyrolysis temperature of 550˚C and a stirring speed of 80 RPM with a nitrogen gas flow rate of 100 mL / min. From the results of pyrolysis using ZrO2/α-Al2O3 - TiO2 catalysts are entitled to the highest biofuel yield of 50% in a variation of 50% PP. The use of ZrO2/α-Al2O3 - TiO2 catalyst has succeeded in increasing the production of alkanes and alkenes by reducing the carboxylic acid and ketone content in biofuels. This shows that, supporting the catalyst can also maximize the deoxygenation reaction, in addition to the use of PP which uses a donor to bind the carbon chain. According to GC MS, H NMR and C NMR analysis, alkanes and alkenes are predominant compounds in bio-oil. When seen from the value of viscosity, kinematic biofuel, recommended about the value of viscosity, 0# diesel fuel."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library