Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 2 dokumen yang sesuai dengan query
cover
Fachri Munadi
"Kilang minyak di Indonesia menghasilkan vacuum residue dari unit distilasi vakum, dimana pemanfaatannya masih sangat rendah. Sebagai residu minyak berat, vacuum residue mengandung hidrokkarbon aromatik tinggi dan dapat digunakan sebagai bahan baku untuk menghasilkan karbon aktif dengan luas permukaan tinggi. Karbon aktif saat ini banyak digunakan sebagai gas storage dan electric double layer capacitor (EDLC). Electric double layer capacitor (EDLC) dengan elektroda karbon aktif diketahui memiliki kapasitas tinggi untuk penyimpanan energi. Vacuum residue bersifat isotropik, dapat dipirolisis membentuk karbon anisotopik yang memiliki struktur kristal yang tinggi sehingga meningkatkan kekuatan mekanik karbon aktif. Dalam penelitian ini, vacuum residue dicampur dengan dehydrated castor oil yang mengandung conjugated double bonds, kemudian dilakukan pirolisis dengan heating rate 5oC/menit sampai suhu maksimum 450oC dengan holding time pada suhu maksimum selama 90 menit. Penambahan dehydrated castor oil pada vacuum residue dilakukan dengan variasi 0%, 5%, 10%, dan 15%. Minyak jarak dapat diperoleh dari tanaman minyak jarak, yang banyak ditanam di Indonesia, melalui proses ekstraksi biji jarak. Dehidrasi minyak jarak dilakukan menggunakan katalis natrium bisulfat dan melalui heat treatment pada suhu 230oC. Pirolisis vacuum residue dan penambahan dehydrated castor oil dari 0%wt, 5%wt, 10%wt, dan 15%wt mengurangi rasio atom C/H dari prekursor, berturut-turut dari 1,82 menjadi 1,50; 1,48; dan 1,45. Produk pirolisis vacuum residue dan dehydrated castor oil digunakan sebagai prekursor untuk proses aktivasi dan karbonisasi pembuatan karbon aktif. Aktivasi dilakukan dengan menggunakan larutan KOH yang diimpregnasi pada prekursor dan dilanjutkan dengan karbonisasi dengan heating rate 5oC/menit hingga 700oC dan holding time selama 30 menit. Hasil penelitian menunjukkan bahwa penambahan minyak jarak pada vacuum residue berturut-turut dari 0%wt, 5%wt, 10%wt, dan 15%wt dapat meningkatkan luas permukaan karbon aktif dari 150,32 m2/g menjadi, 236,97; 290,99; dan 357,78 m2/g.

Crude oil refineries in Indonesia produce much waste in the vacuum distillation as vacuum residue, but its utilization is still low. As heavy oil residue, vacuum residue contains high aromatics and therefore high carbon which can be utilized as raw material to produce high surface area activated carbon (AC). Such a AC is widely used in the field of gas storage and electric double-layer capacitors (EDLCs). Electric double-layer capacitors (EDLCs) with activated carbon electrodes are known to have higher capacity for energy storage. Vacuum residue containing isotropic aromatics can be pyrolysed to form anisotopic aromatics which has high crystalline content thus increasing mechanical strength of AC. In the present work, vacuum residue was mixed with dehydrated castor oil as conjugated double bond source, then followed by pyrolysis at heating rate of 5oC/min until 450oC and holding time at 450oC for 90 minutes. The amount of dehydrated castor oil added to vacuum residue was varied at 0%, 5%, 10%, and 15% weight of vacuum residue. Castor oil can be obtained from castor oil plants, which are widely grown in Indonesia, by extraction process of castor bean. Dehydration of castor oil used a catalyst of sodium bisulfate to obtain conjugated double bonds. Co-pyrolysis of vacuum residue and addition of conjugated double bonds reduce C/H atomic ratio precursors, from 1.82 to 1.50, 1.48, and 1.45. Product of co-pyrolysis of vacuum residue and dehydrated castor oil was used as a precursor to prepare for activation and carbonization. The activation was conducted by activating the precursor with KOH solution and followed by carbonization at heating rate of 5oC/min until 700oC and holding time at 700oC for 30 minutes. The results show that the addition of castor oil by 0%wt, 5%wt, 10%wt, and 15%wt improved pore surface area from 150.32 m2/g, 236.97, 290.99, and 357.78 m2/g."
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fachri Munadi
"Industri energi dunia berkontribusi 87% terhadap peningkatan gas rumah kaca di dunia. Untuk mengurangi emisi gas rumah kaca di dunia, hidrogen merupakan alternatif sumber energi dengan densitas energi gravimetrik 120 MJ/kg dan densitas volumetric 0,0824 kg/m3. Tantangan utama hidrogen sebagai energi alternatif adalah densitas volumetriknya yang sanagt rendah, sehingga memerlukan teknologi penyimpanan hidrogen dengan densitas volumetrik yang lebih tinggi. Sistem penyimpanan hidrogen sangat penting dalam siklus supply-chain hidrogen, terutama dari segi keekonomiannya. Sistem penyimpanan hidrogen terdiri dari proses hidrogenasi, transportasi, dan dehidrogenasi. Pada penelitian ini dilakukan analisis tekno-ekonomi dari 5 jenis teknologi penyimpanan hidrogen: compressed hydrogen, liquid Hydrogen, liquid organic hydrogen carrier, metal hydride, and amonia. Penelitian ini menggunakan Aspen Hysys dalam process design, process modeling, dan equipment sizing. Biaya sistem (IDR/kg) ditentukan berdasarkan Capital Expenditure (CapEx) dan Operational Expenditure (OpEx) dari masing-masing proses hidrogenasi dan dehidrogenasi, serta biaya transportasi pada 2000 km. Hasil penelitian menunjukkan bahwa pembawa liquid organic hydrogen carrier memiliki biaya sistem terendah sebesar IDR 40.254/kg, diikuti metal hydride sebesar IDR 45.247/kg, compressed hydrogen sebesar IDR 54.926/kg, amonia sebesar IDR 165.434/kg, dan liquid hydrogen sebesar IDR 189.658/kg. Namun efisiensi penyimpanan liquid organic hydrogen carrier hanya bernilai 8,71%, metal hydride bernilai 7,66%, dan amonia bernilai 33,49%. Hasilnya menunjukkan bahwa baik LOHC ataupun metal hydride memiliki tingkat kematangan teknologi yang baik.

The world's energy industries contribute 87% to the increase in global greenhouse gases. To reduce global greenhouse gas emissions, hydrogen as clean energy is an alternative energy source with a gravimetric energy density of 120 MJ/kg and a volumetric density of 0.0824 kg/m3. The main challenge of hydrogen as an energy carrier is its low volumetric density, thus requiring hydrogen storage technology at higher volumetric densities. Hydrogen storage systems are crucial to the hydrogen supply chain process, especially in terms of its economics. The hydrogen storage system consists of hydrogenation, transportation, and dehydrogenation processes. This paper uses the techno-economic analysis of five types of hydrogen storage technologies: compressed hydrogen, liquid Hydrogen, liquid organic hydrogen carrier, metal hydride, and ammonia. Hysys was introduced to help process design, process modeling, and equipment sizing of each technology. System costs (IDR/kg) are determined based on projected Capital Expenditure (CapEx) and Operational expenditure (OpEx) of each hydrogenation and dehydrogenation process, as well as shipping transportation cost at 2000 km. The results show that liquid organic hydrogen carrier had the lowest system cost of IDR 40.254,65/kg, followed by metal hydride at IDR 45.247,35/kg, compressed hydrogen at IDR 54.926,27/kg, ammonia at IDR 165.434,6/kg, and liquid hydrogen at IDR 189.658,25/kg. However, the storage efficiency of liquid organic hydrogen carriers is only 8.71%, metal hydride 7,66%, and ammonia 33,49%. The results show that both LOHC and metal hydride have better technological maturity."
Depok: Fakultas Teknik Universitas Indonesia, 2024
T-pdf
UI - Tesis Membership  Universitas Indonesia Library