Found 1 Document(s) match with the query
Pontoh, Kevin Jeremia
"Penelitian ini mengeksplorasi katalisis plasmonik, berfokus pada penggunaan resonansi plasmon permukaan terlokalisasi (RPPT) dari nanopartikel untuk mendorong reaksi kimia. Berbeda dengan proses katalitik konvensional, katalisis plasmonik menawarkan sifat unik yang dapat digunakan untuk meningkatkan proses katalitik melalui peningkatan medan elektromagnetik yang diinduksi plasmon, pembentukan muatan (elektron atau hole) berenergi tinggi, atau efek fototermal. Studi numerik menunjukkan bahwa iradiasi laser pulsa dapat lebih efisien untuk katalisis yang diinduksi plasmon dibandingkan dengan laser gelombang kontinu (CW), namun investigasi eksperimental, terutama untuk sintesis nanopartikel bottom-up, masih belum banyak diselidiki. Menggunakan sintesis core-shell Au-Ag sebagai reaksi model, penelitian ini secara eksperimental menyelidiki efek eksitasi laser pulsa nanosekon. Pertama-tama, kami berhasil mensintesis nanopartikel emas (Au) berbentuk bola dengan puncak LSPR yang dapat disesuaikan mendekati panjang gelombang laser 532 nm. Percobaan pemanasan konvensional menunjukkan bahwa pembentukan core-shell terhambat secara kinetik di bawah 55°C. Laser CW (532 nm, 67 mW) tidak memiliki efek signifikan, sedangkan iradiasi laser pulsa nanosekon pada 532 nm secara signifikan menginduksi pembentukan core-shell, dibuktikan dengan pergeseran LSPR ke panjang gelombang lebih pendek yang besar dan peningkatan absorbansi. Laju pertumbuhan shell perak yang tampak meningkat seiring dengan peningkatan daya laser pulsa, menunjukkan pengaruh langsung efek plasmon terhadap kinetika pertumbuhan shell. Temuan ini memberikan pemahaman baru mengenai sintesis nanopartikel yang diinduksi laser pulsa dan potensi laser pulsa untuk meningkatkan proses katalitik secara signifikan dibandingkan metode konvensional lain.
This study explores plasmonic catalysis, focusing on using localized surface plasmon resonance (LSPR) of nanoparticles to drive chemical reactions. In contrast to conventional catalytic processes, plasmonic catalysis offers unique properties that can be utilized to boost catalytic process via plasmonic-induced electromagnetic field enhancement, hot-carrier generation or photothermal effect. Numerical studies suggest pulsed laser irradiation can be more efficient for plasmon-induced catalysis compared to continuous-wave (CW) lasers, but experimental investigations, particularly for bottom-up nanoparticle synthesis, remain unexplored. Using Au-Ag core-shell synthesis as a model reaction, this research experimentally investigated the effect of nanosecond pulsed laser excitation. We successfully synthesized spherical Au nanoparticles with a tunable LSPR peak near the laser wavelength of 532 nm. Next, conventional heating experiments showed core-shell formation was kinetically inhibited below 55 °C. Crucially, while CW laser (532 nm, 67 mW) had little effect, nanosecond pulsed laser irradiation at 532 nm significantly induced core-shell formation, evidenced by a large LSPR blue shift and increase of absorbance. The apparent silver shell growth rate increased with increasing pulsed laser power, highlighting direct influence of plasmonic-induced effect on shell growth kinetics. These findings highlight the potential of pulsed laser to enhance catalysis significantly in comparison to other methods. "
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2025
S-pdf
UI - Skripsi Membership Universitas Indonesia Library